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Abstract

Badgroundmodellingis a commorform of motionde-
tection employedby manyautonomousrideo surveillance
systems.Accurately modellingthe badkgroundis a chal-
lengingtask, particularly for outdoorscenesvhele factors
sud as badkground motion and camer shale can cause
the mistalen detectionof foreground objects. Recentre-
seach has developedbadground modelsthat are capa-
ble of detectingforegroundmotionin real-timewhile ignor-
ing mostof the badgroundmotion,but it is not clear how
well thesemodelswould perform on outdoor sceneghat
exhibit typical videosurveillanceproblems.Theaim of this
paperis to assesghe performanceof leading badkground
models(namelyW*, the Hybrid DetectionAlgorithm, and
Three-fame Tempoal Difference),usingvideo sequences
that containproblemswhich trouble existing videosurveil-
lancesystemsThestrengthsandweaknessesf thesebadk-
groundmodelsare reportedand analysedwith the aim of
identifyingsuitabledirectionsfor the developmenbf robust
badground modelsfor motion detectionin outdoorvideo
surveillancesystems.

1. Intr oduction

When monitoring a scenefor surnweillance purposesit
is oftendesirableto distinguishbetweenobjectsthat move
normally, suchastreesblowing in thewind, andobjectsthat
move in away thatis unusual suchasa persorwalking in
anareathatis forbidden.The normally moving objectscan
bereferredto asbackgroundbjects while the objectswith
unusuamovementcanbeconsideredsforegroundobjects.
Accuratelyclassifyingthesawo typesof objectsfor agiven
videosequencés achallengingaskfor anautomaticvideo
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motiondetectiorsystembutis crucialfor automatingzideo
suneillance.Oneapproachs to modelthebackground1].

In backgroundnodelling,thevideosequencés analysed
anda modelof the scends constructedver time to repre-
sentthe usualscenecontent. New framesof the video se-
guencecanthen be comparedo this model, with regions
thatdiffer beingclassifiedasforegroundmotion. However,
if this techniqueis basedon pixel intensities,the differ-
encesnaynotbesolelydueto foregroundmotion. Lighting
changesnoise,andcameramovementall causeintensities
to changeandcancausefalseclassification.Two common
sourcesof false detectionare backgroundmovementand
camerashale [1, 2, 3, 4]. Both of theseare arefrequently
encountereth outdoorvideosureillancesystems.

Modern suneillance systemsexpect the motion detec-
tion systemto accuratelyclassify groupsof detectionsas
entire objects. It mustalsobe ableto operatein real-time
on minimal hardwareusingat leastCIF resolutionimages.
A motiondetectionsystembasedn backgroundnodelling
is ableto meetthesecriteria,andtherearemary examples
of suchsystems.

The temporaldifferencetechniqudl] usesthe previous
frame as the backgroundmodel. Motion is detectedus-
ing the differenceshetweenpixel intensities- if the mag-
nitudesof the differencesare greaterthana threshold,the
pixel is classifiedas foreground. The main problemwith
thismethodis thatit detectsall the motionwithin thescene,
leadingto the developmentof more advancedmodelsof
the background However, mary arebasedon assumptions
thatmake themfundamentallyunsuitablefor usein anout-
doorsuneillancesystemwith two examplesbeingPfinder
[5] and Wallflower [3]. Pfinderis unableto adequately
modeltypical outdoorbackgroundnovementhaving been
designedvith a differentpurposein mind, and Wallflower
is not ableto properlymodeltreemovement- see[6] for a



morecompletedescriptiorof theirrespectre shortcomings.

This paperaims to comparethe backgroundmodels
known asW* [7], the Hybrid DetectionAlgorithm (HDA)
[8], and the Three-frameTemporal Difference(TTD) to
identify theadvantage®f developinganadvancedmodelof
the background.Video sequencegepresentatie of typical
outdoorsuneillancescenesre usedto evaluatethe back-
groundmodels trying to identify the modelmostappropri-
atefor outdoorvideo suneillance.Although|[3] includesa
review of somerecentlydevelopedbackgroundmodels,it
focussesnore on problemsencounteredn indoor suneil-
lance. The contribution of this work is to concentrateon
sometypical outdoorsuneillance problems- background
movementandcamerashale.

Thethreebackgroundnodelsto beimplementedarede-
scribedin Section2. The experimentsperformedin this
paperareoutlinedin Section3, andthe resultsof theseex-
perimentareanalysedn Sectior4.

2. Background models

Although descriptionsof the three backgroundmodels
to becomparedn this paperhave beenpreviously provided
[8, 7, 6], they are given herein orderto allow true repli-
cation of the experiments. All three backgroundmodels
have parameterghat are crucial to their performance so
they needto be statedclearly.

2.1 Three-frameTemporal Difference

The temporaldifferencetechniqueis basedon the as-
sumptionthat ary interframechangeof pixel intensitiesis
the direct result of motion within the scene. The Three-
frameTemporaDifferences avariationdesignedo reduce
theeffectsof noise,andusegheprevioustwo framesasthe
backgroundnodel. Every pixel z in frame I is compared
to thatin framesI;_; andI;_,. If the magnitudeof either
differencds lessthanapresethreshold.I'h, thenthatpixel
is labelledasbackground:

(II,_1(z) — I,(z)| > Th)
AND 1)

(lIt,Q(IL') - It(.??)l > Th)

To eliminatenoisefurther, objectsmadeup of threepixels
or lessareremovedfrom thefinal foregroundmotionmask.
The outcomef a preliminaryinvestigationindicatethata
valueof 20 for T'h givesthebestresults.

Therearetwo main problems[1] with the temporaldif-
ferencingtechnique. If a homogeneousbject undegoes

motion, the temporaldifferencefails to detectthatinterior
pixelshave moved. Theonly pixelsdetectedrethoseatthe
“wavefront” of the motion. Thus, further processingnust
be performedto recover the entiremoving object. The sec-
ond problemis that oncean object stopsmoving, it is no
longerdetectedThisis obviously unsatisctorybecauset

is still importantto detectforegroundobjectswhenstation-
ary. In reality, motion detectionis rarely usedby itself for

foregroundobjectdetectionhowever, anability by the mo-
tion detectorto detectobjectsthat are stationaryfor small
periodsof timeis still extremelybeneficial.

2.2 Hybrid DetectionAlgorithm

The HDA is describedn [8] andincorporateghethree-
frametemporaldifferencetechniqueo detectall pixelsthat
maycontainmotion. Thebackgroundnodelconsistof two
adaptve parametersor every pixel z in imagel, - the cur-
rent backgroundintensity B;(z) and the thresholdT(z).
Both are updateddependingon whetherthe pixel z is de-
terminedto be staticor moving:

Bew(z) = { zf(t x(;c) + (1 =) Ie(z) z rsr:;“ﬁ] . 2
¥Ti(x)+
Tita(z) = { 5(1 —v)(|Is(x) — Bi(z)|) = statig 3)
Ti(x) x moving.

A three-framalifferencealgorithm(1) is usedto determine
the subsetof pixelsin theimagel; that might be moving,
thatis, if the differencesaregreaterthanthethresholdthen
pixel I;(x) is moving. Theresultingregionsof pixelsthen
undego two morphologicaldilationsfollowed by oneero-
sion. Althoughthis techniques not describedn [8] it en-
suresthat pixels areaddedto larger objectsif they arerel-
atively close,thusreducingthe numberof detectedbbjects
andimproving the quality of thoseobjectsdetected.Con-
nectedcomponentlusteringis performed,providing each
objectwith auniquelabel.

Backgroundsubtractioris thenperformedonthe bound-
ing box of eachregion R,,. Eachforegroundobjectb,, is de-
terminedby comparingthe pixel intensitieswithin R,, with
thebackgroundntensity Thatis,

bn(z) = (2 : |In(z) — Bp(x)| > Tn(z),z € Ry(z)). (4)

The initial backgroundntensity By(z) is the sameas
the pixel valuesin the secondimage, I;(z). The initial
thresholdsT(z), aresetto 20 basedntheoutcomeof an
initial investigation.Thevalueof «y is notprovidedin [8], so
is basedon experimentation A valueof v = 0.995 is used
in this papersincethis is the smallestvalue that prevents
slowly moving foregroundobjects,suchasa personwalk-
ing, from beingincorporatednto thebackgroundnodel.



Collins et al. [8] reportthatthis techniqueis very fast
andis usedastheir primarymotiondetectiormethod.How-
ever thereare somebasicproblemswith the techniqueas
described. As it usestemporaldifferencingto determine
the regions on which to perform backgroundsubtraction,
moving objectsthatbecomestationarywill notbedetected.
Moving objectsthat are detectedare not guaranteedo be
detectedas one whole object. That is, as the pixels de-
tectedby thetemporaldifferencestepmayonly bea subset
of the whole object, they may be spatially separatedguch
thatthe dilation processdoesnot bring themtogether The
connecteccomponentlgorithmwill thenassignthe same
object multiple labels, which may leadto confusionin a
higherlevel process.

2.3 wH

W4 [7] is areal-timesystemdesignedo detectmultiple
peoplein anoutdoorervironment.lt is ableto operateat 25
framespersecondising320 x 240 sizedgreyscaleimages
onadual300MHz Pentiumll PC.Thebackgroundnodel
usedrepresentgachpixel z with threevalues- the mini-
mumpixel valuem(z), themaximumpixel valuen(z), and
the maximumdifferenceof pixel intensitybetweernconsec-
utive framesd(z) obsenedduringalearningphase.

Foregroundobijectsin the scenearedetectedy compar
ing the currentframeto thebackgroundnodel. If

(i () —m(z)| > d())

AND (5)

(IIe(2) — n(z)| > d(z))

thenpixel I;(z) is classifiedasforeground;otherwise [; (x)
is classifiedasbackgroundA connectedcomponentslgo-
rithm is thenappliedto the resultingmotion mask,with all
objectssmallerthan3 pixelsassumedo be noise.

3. Experiments

Each backgroundmodelling techniquewill be evalu-
ated using seven video sequencesecordedin our labo-
ratory. While thesesequencesire not standardtest data,
they aretypical of outdoorscenesndexhibit the problems
of backgroundmotion and camerashale. Eachsequence
was recordedat 25 framesper secondandis madeup of
384 x 288 sizedframes.All framesarecomprisecof 8-bit
greyscalepixels, typical of the framesusedin surneillance
applications.A brief descriptionof the sequencefollows,
andexampleframesfrom thesequenceetareshovnin Fig-
urel.

(a)bus

(b) walk (c) shale

Figure 1. Examples frames from the se-
quences used during the experiments de-
scribed in this paper.

bus: This sequencés comprisedbf 740framesandcon-
tains quite substantiatree movementin the foregroundof
the scene.A busentersthefield of view at frame640and
takes50 framesto traversethe scene.The busis aImost%
of theimagesize.

walk: This sequence&ontains988 framesand contains
muchlessbackgroundnovement,althougha light breeze
causeshetreesto moveslightly. A persorwalksacrosshe
scendrom frame700until frame935.

shake: Thissequencés madeup of 990framesanddoes
notinvolve ary foregroundobjects. The cameraundegoes
quite substantialshale similar to that causedby gustsof
wind.

collide: This sequenceontains990framesandexhibits
smallamountf backgroundnovementcausedy aslight
breeze Two peopleenterthe sceneby frame700andleave
by frame880.

overtake: Two peopletake 200framesto maove through
the scenethat containsbackgroundnovementcausedy a
light wind.

disperse: A groupof four peoplearestationaryfor 640
framesbeforedispersingrom the sceneby frame840.

approach: Two peopleare stationaryfor the entire se-
guence,while a third personentersthe sceneafter frame
700. A strongbreezecausegyuite substantiatree move-
mentin thebackgroundf thescene.

Thesesequencesre usedasthe basisfor threeexper
imentsto evaluatethe accurag of the backgroundmod-
elling techniques. Each experimentinvolves obtaininga
motion maskat variousstagesof the sequencesyhich is
then comparedto the hand-generateddeal motion mask
usingthe bit-wise exclusive-OR operator The differences
aredescribedn termsof falsepositivesandfalsenegatives.
This comparisoris ratherbasicin nature,andprovidesre-
sults that would be misleadingif interpretedin isolation.
However, whenusedin conjunctionwith thequalitative ap-
proachof comparingthe resultantimages,it provesto be
guiteadequatéor the purpose®f this evaluation.



3.1 Experiment 1 - Background motion removal

The ability of eachtechniqueto representthe back-
ground motion in scenesrom a stationarycameraunder
constantllumination is examined. Thefirst 625 framesof
thebussequencandthefirst 640framesof theapproactse-
guencecontainlargeamountof backgroundnotion, while
thefirst 675framesof thewalk sequenceg50framesof the
collide sequence60framesof the overtale sequenceand
610framesof thedispersesequenceontainminimal back-
groundmotion. Eachtechniqués usedto producea motion
maskat the endof thesesectionsof the sequences.

3.2 Experiment 2 - Foreground motion detection

Theability of eachtechniqueto allow reliabledetection
of foregroundobjectsin the presencef backgroundnotion
is examined.Thebus sequenceontainsa largeforeground
object,while the walk, collide, overtale, disperseandap-
proachsequencesontainsmall foregroundobjects. Each
techniqueis usedto producea motion maskat frame 665
of thebussequenceframe800of thewalk sequencefame
770 of the collide sequenceframe 830 of the overtale se-
guenceframe700 of the dispersesequenceandframe730
of theapproactsequence.

3.3 Experiment 3 - Camerashake

The ability of eachtechniqueto remove the effects
of camerashale underconstantillumination is examined.
Eachtechniquds usedto producea motion maskatframes
875and9000f theshale sequence.

4. Analysis

The analysisof the resultsinvolves obtainingthe total
numberof erroneouslyclassifiedpixels andcomparingthe
motion masksproducedby eachtechnique.Any deficien-
ciesarethenexplained,andthebesttechniquefor eachsce-
nario identified. The resultsof the experimentsare sum-
marisedn Tablel.

4.1 Experiment 1 - Background motion removal

Experimentl shows thatthe TTD is the techniquebest
ableto remove the effects of wind in a scene. It canbe
seenin Figure2 thatthe W* methoddetectsnuchmoreof
the backgroundmotionthanthe othertwo techniquespro-
ducingmorethan 10 timesthe numberof incorrectly clas-
sified pixels. Furtheranalysisshawvs thatthelearningphase

of the algorithmis the causeof thesemis-classifications.

If the intensity of pixel I;(z) hasa large rangeof values

but only changeslowly, therewill bealargedifferencebe-
tweenm(z) andn(z), but d(z) will besmall. It is there-
fore likely that I;(x) differsfrom m(z) and/orn(z) by an
amountmuchlarger thand(z), resultingin the possibility
thatI;(x) is wrongly classifiedasforeground(see(5)). Ex-
amplesof this canbe obsened in Figures2 and 3 where
cloudsandtreesare detectedasforegroundobjectsby the
W* techniquewhile boththe HDA andTTD have correctly
classifiedhemasbackground.

(ayw4 (b) HDA ()TTD

Figure 2. The motion masks produced after
the fir st 625 frames of the bus sequence show
that the TTD is able to model more of the tree
movement than W* and the HDA.

Figure 3 highlightsthe advantageof usingthe previous
two framesasthe backgroundmodel. The walk sequence
containsonly a smallamountof backgroundnotion,sothe
interframepixel intensity differencesare small. The TTD
doesnot detectmuch,if ary, of the backgroundmotion as
aresult. As the HDA algorithmusesthe TTD astheinitial
phaseijt alsodetectsverylittle of thebackgroundmotion.

(ayw4 (b) HDA ()TTD

Figure 3. The motion masks produced after
the first 675 frames of the walk sequence
show that the W* model does not represent
the background movement well, while both
the TTD and HDA techniques do not detect
any background movement.

The resultsfrom Experimentl showv that the TTD is
slightly more robust to the backgroundmotion contained
in the sequencethanthe HDA, while W* is proneto mis-



Table 1. Experimental results.

Errors fpercent qf image)
Experiment Scene
Error Type W HDA D
False Positive 723 105 099
bus frame 613 Falss Negative ooo| ooo|  ooo
False Fositive 302 oo 0.oa
alk feame 675
etk trame False Hegative ooa| om0l odo
. Falze Positive ooz 0oo 0.00
collide frame 650 oe Megative ooo| ooo|  ooo
i False Positive 0o7 0oz 0.oa
ttake fratme 660
pertake Hame False Hegative ooo|  ooo|  o.oo
. Falze Positive 019 013 ooz
disperse frame 610 oe Megative ooo| ooo|  ooo
False Positive 0o oo 0.oa
h frame 640
FPproac R 0T | False Negative ] | I
Average Errors 177 0.20 0.17
Falge Fositive Q.59 371 0.67
bus frame 665 False Negative 1379 1433 2516
False Positive 38l 004 oo
alk feame 800
etk ame False Hegative oos|  ou1| 036
. Falge Fositive 022 014 031
Hide frame 770
polies frame False Hegative 058| 050|082
2 False Positive 020 024 017
overtake frame 830 o ce Megative 104 03| o082
. False Fositive 028 03z 035
i frame 700
SpeLse tame False Hegative 10| 1o 142
Falze Positive oog ooy 014
approach frame 730 o Megative 043 o032  03s
&erage Errors 520 3.57 3.14
False Positive 0o7 296 1196
hake frame 875
shake Hame False Hegative oon| ool oo
3 Falge Positive 0.0z 230 599
shale frame 500 p oe Megative ] |
Average Ertors 0.07 263 3.97
Falze Positive 181 (1] 148
Chearall False Hegative 123 1.20 .08
Average Errots 304 1.09 3.56

classifyingmary of the pixels containingbackgroundno-
tion.

4.2 Experiment 2 - Foreground motion detection

The resultsfrom Experiment2 shav that the HDA is
betterableto properly detectthe foregroundobjectsin the
video sequences.The TTD removes more of the back-
groundmotionin thebus sequenc¢hanthe othertwo tech-
nigues,but fails to detectmostof the interior pixels of the
busobject. This canalsobeseenin Figure4 wheretheinte-
rior of thepersonis notdetectedy the TTD asundegoing
motion. Althoughthe W* techniquehasthe lowestnumber
of falsenegatives, it detectsan extremely high numberof
falsepositivesasdiscussedn the previoussection.

The large number of false negatives producedby the
threetechniquesor the bus sequencés dueto thefactthat
theideal motion maskquite correctlydoesnot includethe
occludingleaves. The threetechniqueshave shovn that
they areableto ignoremuchof the motion associatedvith
tree movement,and so have not detectedmary of thetree

(@) w* (b) HDA (c)TTD

Figure 4. The HDA is the most successful
technique at extracting the entire person as
foreground movement while not detecting
any of the tree motion.

regionsasforegroundmovement. The areaswherethe ig-
noredmotioncorrespondso thebusobjecthave contributed
to thevery largefalsenegative value.



4.3 Experiment 3 - Camerashake

Experiment3 shawvs thatthe W* techniqueis the best
atignoringthemotioncausedy camerashale, highlighted
by the motion masksshown in Figure5. Boththe TTD and
HDA techniquegietectmuchmoremotion becausehein-
terframecameramovementis quite large, meaningthatthe
previoustwo framesare often very differentto the current
frame.

(ayw4 (b) HDA (c)TTD

Figure 5. Of the three techniques, only W*
is able to model the shaking of the camera,
while both the TTD and HDA produces large
number s of false positives.

Mostvideosuneillancesystemavould useanimagesta-
bilisation routine to remove the effects of camerashale.
However, this solutionis not perfect,asit is sometimesm-
possibleto performperfectstabilisation9]. Thereforejt is
an advantagef the backgroundmodelis ableto represent
thecameramnotionasit improvestheaccurag of themotion
detectionalgorithm.

5. Conclusion

Backgroundmodellingis a motion detectiontechnique
applicableto video surwillance systemsasit canbe im-
plementedn real-time,is accurateandcanoperateon the
typesof imagestypically usedin the application. It is im-
portantfor the backgroundmodellingtechniqueemployed
to be able to ignore the backgroundmotion typically en-
counteredn outdoorsceneswhile still beingableto detect
foregroundobjects.

This paperhasevaluatedtwo recentlydevelopedback-
groundmodels- W* andthe Hybrid DetectionAlgorithm
- andthe more establishedr hree-frameTemporal Differ-
ence. Thetwo never modelsgreatlyreducethe amountof
backgroundnotiondetectedn anoutdoorscenecontaining
confusingphenomenaomparedo thesimplerTTD. It was
shown thatthe HDA is betterableto modelcommonback-
groundmovementin outdoorscenesvhile the W* method
canremovetheeffectsof significantcamerashale. Boththe
HDA andW* areableto detectentire foregroundobjects

whereasthe TTD failed to detectinterior pixels as mov-
ing. This paperhasdemonstratedhatthe useof advanced
backgroundnodelsallows for areductionin the numberof
erroneouslyclassifiedpixels.
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