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Abstract 
 
   Photogrammetry is the science of extracting three-
dimensional data from overlapping sets of images.  To 
obtain the highest accuracy, it has always been essential 
to obtain high-resolution images. Many digital camera 
systems cannot provide resolution equivalent to their film 
counterparts and hence their use in photogrammetric 
applications has been restricted. This paper describes the 
implementation of an algorithm which is device 
independent and can combine several low resolution 
images into one single high resolution composite, that is, 
the same field of view is represented by more pixels and 
by more grey scale information. This algorithm is 
illustrated with applications which show its 
implementation using Fourier theory to model the grey-
scale surface of the enhanced image.  
 
1. Introduction 
 
   Photogrammetry allows the determination of the size 
and shape of objects from remotely sensed measurements 
made on images.  The advent of digital technology has 
produced opportunities for new and diverse applications 
of this discipline to be undertaken which were not feasible 
with traditional photogrammetric techniques. Digital 
image technology and digital photogrammetry find 
applications in a wide range of fields, including industrial 
measurements, archaeological, architectural, astronomical, 
medical, GIS updating, close range and aerial mapping as 
well as law enforcement forensics.  Examples of these 
applications are regularly presented at conferences of the 
International Society for Photogrammetry and Remote 
Sensing, such as that held in Amsterdam in June, 2001.  
   Innovative applications of digital photogrammetry are 
being reported at an increasing rate.  In particular, close 
range applications require the speed and on-line 
capabilities of analog CCD cameras, or the portability and 
flexibility of digital still cameras. While there exist many 
areas where digital photogrammetry can be efficiently 
used, its applications are often limited by the resolution of 
the imagery. 

 
2. Why Enhance Resolution? 
 
  The main objective of digital photogrammetry is to 
obtain accurate spatial information about remotely sensed 
objects. Fundamental to this objective is the indisputable 
fact that the best results are always obtained from images 
with the highest resolution. In other words, the lower the 
resolution of the imagery, the lower the level of accuracy 
attainable. The resolution can also affect the visual quality 
of the results and the precision of classifications made 
from the imagery. 
   Digital photogrammetry is sometimes limited by the cost 
of acquiring digital imagery at appropriate resolutions. 
Low resolution imagery is relatively inexpensive to 
acquire, but may not provide the accuracy required, 
especially in subsequent processing to derive a DTM 
(Digital Terrain Model). Hence, the purpose of image 
enhancement is to improve the quality of a lower 
resolution image so that it becomes more suitable for an 
application than the original image [1] 
 
3. Digital Image Resolution Enhancement 
 
   Developments into the enhancement of the resolution of 
digital images can be divided into two main streams: those 
using hardware or software solutions. Hardware 
solutions may involve modifications to the cameras used 
for image acquisition while software solutions may relate 
to different aspects of image processing, including image 
registration, reconstruction and image fusion. 
   The enhancement of the resolution of digital images via 
hardware solutions has been based on the accurate 
movement of the CCD array at a sub-pixel level. Lenz and 
Lenz [6] attempted resolution enhancement by moving the 
CCD array in a regular pattern by very small amounts 
(approx. 3µm) between each image in a sequence of 25 
images. This successful hardware solution to the problem 
added substantial costs to the camera.  Other hardware-
based solutions have been incorporated to some modern 
image capture devices but these are very specific, 
purpose-built devices. For example the new CanoScan 
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D660U by Canon utilizes a Variable Refraction Optical 
System (VAROS) that allow a 600 dpi sensor to achieve 
1200 dpi resolution by shifting the ‘vision’ of the sensor 
by half a pixel to create a second view of the subject. The 
two views are then interlaced to create a 1200*1200 
optical image. Jahn and Reulke [3]) utilised an analogous 
approach in describing a staggered line of arrays in 
PushBroom sensors onboard aircrafts or satellites.  
   As far as the software techniques are concerned, Long 
[7] presented a method for generating enhanced resolution 
radar images of the earth’s surface using spaceborne 
scatterometry.  The method utilized the spatial overlap in 
scatterometer measurements made at different times. A 
notable aspect raised by Long was that noise in the refined 
image increased as the resolution was improved. This is a 
drawback that has to be precisely modelled in resolution 
enhancement techniques to ensure that the enhanced 
image has not suffered any noticeable degradation in 
accuracy. 
   Jensen and Antastassiou [4] presented a non-linear 
interpolation scheme for enhancing the resolution of 
digital still images by determining edges within the images 
to sub-pixel level. 
   Image processing methods are also designed to visually 
enhance images for specific applications by changing the 
values of the pixels in the image. While these methods 
improve the visual quality of the image they do not 
increase the resolution of the image. Some of these 
methods include edge enhancement, noise reduction, and 
blur removal [1]. 
   Many enhancement algorithms also use interpolation 
methods to create a higher resolution image. In this case, a 
surface is fitted to the data of the low resolution images, 
where the shifts and rotations of these images relative to 
one another have been determined by least squares 
matching techniques. As the surface passes through all the 
data points it is then possible to interpolate it at specified 
points defined by a uniform and refined sampling grid 
using algorithms based on Nyquist Frequency Theory [8].  
 
4. Interpolation techniques 
 
   There are three common methods for interpolating 
scattered data to a uniform refined grid: nearest 
neighbour, bilinear interpolation, and cubic 
convolution.  
   Nearest neighbour uses the digital value from the pixel 
in the original image which is nearest to the new pixel 
location in the corrected image. This is the most simple 
method and does not alter the original values. This 
method tends to result in a disjointed or blocky image 
appearance.  

   Bilinear interpolation takes a weighted average of four 
pixels in the original image nearest to the new pixel 
location. 
   Cubic convolution interpolation goes even further to 
calculate a distance weighted average of a block of sixteen 
pixels from the original image which surround the new 
output pixel location. As with bilinear interpolation, this 
method results in completely new pixel values. However, 
these two methods both produce images which have a 
much sharper appearance.  The result of these techniques 
is shown in the simulated example below.  

 
        Figure 1 – Original image                                         

 
Figure 2 – Fine/coarse grid geometry 
 
   Sixteen images were manufactured from the original 
image shown in Figure 1. Each image was created by 
sampling the original image at uniformly spaced points 
starting from the sub-pixel shifts assigned to each coarse 
image. Three of the sixteen coarse images are shown in 
Figure 3.  Figure 2 shows the geometry of the fine/coarse 
grid ratio (1/1.5) considered in this example.  

 
Figure 3 – Coarse images (1, 2 . . . 16) 
  The results of combining 8 of the above samples of 
coarse images using the above mentioned interpolation 
techniques are illustrated in Figure 4. The enhancement 
does not create an image which is larger in area than the 
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input images; rather it creates an image with larger 
number of smaller pixels over the same area.  

 

    
Figure 4 – Enhancement results by interpolation. 
From top to left and right: Nearest neighbour, Linear 
and Cubic 
   The accuracy of each interpolation technique is shown 
in Figure 5. This graph depicts the standard error of the 
differences between the interpolated images and the 
original, thus giving a result in terms of grey values.  
Using more than 8 coarse images does not improve the 
final resolution. In addition, the curves reveal how the 
cubic convolution method of interpolation produces the 
results closest to the original image in Figure 1.  
 

Figure 5.  Accuracy measure of interpolation 
techniques. 
 
 
 

5. A rigorous geometric algorithm 
 
   This section relates to the published work of Fryer and 
McIntosh [2], and briefly describes a rigorous geometric 
algorithm which uses several low-resolution images to 
produce one high resolution resultant image.  The general 
steps of this algorithm are described below. This 
algorithm, combined with harmonic, or Fourier, theory 
together with the geometric configurations of the pixels in 
object space forms the foundations for a generalised 
surface model for digital images. 

1. Collect several low-resolution images. 
2. Determine pixel offsets of each image from the 

first using least squares area-based image 
matching. 

3. Form a set of equations using the offsets as 
coefficients, the enhancement ratio and the grey 
levels from the low resolution images as 
observations. 

4. Solve for higher resolution pixels. 
5. Display the resultant higher resolution image. 

The pixel offsets mentioned in point 2 above refer to 
finding the shifts and rotations between the low resolution 
images. Least squares matching techniques can overcome 
difficulties arising from radiometric differences in the 
images being matched and can achieve sub-pixel 
accuracies of approximately 0.1 pixels. A simplistic 1-D 
example of the methodology and the geometry involved in 
this algorithm is given below. Consider just 5 fine pixels 
from a line in the ‘true‘ (or higher resolution) image we 
require: 
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  The Xi values represent the unknown grey values of the 
high resolution pixels in a least squares solution. Consider 
the determination of these unknowns from two images 
referred to as coarse images, and let the enhancement ratio 
be 3/2 (i.e., three fine pixels are equivalent in length to 
two coarse pixels). In this example, the left-most fine 
image coincides with the left-most coarse image. The 
second coarse image is shifted half a fine pixel. If the 
pixels in coarse image 1 are C1, C2 and C3 and the pixels 
in coarse image 2 are C4, C5 and C6, then consideration 
of the proportion of a fine pixel that a coarse pixel covers, 
and the enhancement ratio, provides the observation 
equations. The set of equations and their matrix 
representation ([C]=[A][X]) as well as the results of the 
solution via simultaneous equations using least squares 
methods ([X]=[ATA]-1 * [ATC]) are given below:  
     Observation equations                 Ci                             
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   To develop the observation equations, each pixel in the 
coarse images must be related to the fine pixel’s 
coordinate system, thus determining which fine or 
unknown pixels are affected by each individual coarse 
pixel. For example in Figure 7, the upper left hand coarse 
pixel C(1,1), covers the area bound by (0,0)  (1.5,1.5) 
in the fine pixel coordinate system. These coordinates 
show the upper, lower, left and right bounds of the coarse 
pixel. Using these bounds, the proportion of the coarse 
pixel which affects each fine pixel can be found, such that: 

 
Coarse(1,1) = [Fine(1,1) +  0.5*Fine(2,1) +  0.5*Fine(1,2) 

+ 0.25*Fine(2,2)] * p-2 

 

   Where Fine(1,1), Fine(2,1), Fine(1,2) and Fine(2,2) are 
the unknown fine pixels. This process is completed for 
each coarse pixel to build up the matrix of coefficients in 
the observation equations.  
Figure 7 – Coarse pixel on the fine coordinate C1 = (X1  +   1/2 X2) * p-1 

C2 = (1/2 X2  +  X3) * p-1 
C3 = (X4  +  1/2 X5) * p-1 
C4 = (1/2 X1  +   X2) * p-1 

C5 = (X3  +   1/2X4) * p-1 

C6 = (1/2X4  +   X5) * p-1 
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=[ATA]-1 * [ATC] = [180 30 90 20 240] 
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ple. 

 be pointed out that the relationship between 
els and the coarse pixels is neither simple nor 
refore, the fine pixels can only be solved by 
uch as those set out above. 
D case relates to similar geometric 
ons. Figure 7 shows a simple case of a ratio 
e coordinates on the arrays illustrating the fine 
inate system in row and columns. 

system 
 
6. Fourier surface modelling for digital 
images 
 
   The algorithm described in this section forms the 
foundations for modelling digital images in terms of 
surfaces using Fourier theory.  The precision of this 
development and the beneficial aspects of this 
transformation are described in the ensuing sections. 
   Fourier analysis is the process of fitting Fourier series 
by least squares to data and of calculating the various 
amplitudes and phase angles of the various waves. Since a 
given function P(x) is frequently represented by a series of 
discrete points (observations), the resulting Fourier series 
depicts the points and the closeness of fit between the 
points, and therefore, the usefulness and accuracy of 
Fourier series will depend on the actual frequencies 
present in P(x) and those calculable from the discrete 
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points.  However, if any interpretation is to be made from 
Fourier series, some assumptions have to be made about 
the function beyond the limits of the data. The most 
simple assumption and the one used here is that P(x) 
repeats itself completely, that is, it is completely periodic. 
An important aspect about Fourier series on periodic 
functions is that the first few terms often are a pretty good 
approximation to the whole function, not just the region 
around a specific point.  For full details of the theory 
behind Fourier series the reader is referred to [5].   
   The standard form for a Fourier series of period T 
is given by 
 
P(x) = ½ a0 + a1 cos wx + b1 sin wx + a2 cos 2wx + b2 sin 2wx 
+...     
 
Where w is the angular frequency, w= 2π/T. In our case 
T, the period, represents the number of discrete points x = 
1,2, . . . , n. The constants a0, a1, b1, a2, b2, . . . are the 
Fourier coefficients. There exist functions which can be 
evaluated numerically to acquire the Fourier coefficients 
for continuous functions, and can then be used to calculate 
the amplitudes and phase angles for each of the series 
components. However, for the purpose of this paper the 
determination of such coefficients is based on describing 
P(t) in terms of a number of discrete points (pixel grey 
values) separated by constant intervals.  For example, the 
five grey levels used in the 1-D example developed in 
section 5 can be expressed as a generalized Fourier linear 
model in which the ‘discrete’ Fourier series includes five 
terms, that is, the number of the required fine pixels: 
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P(x) = ½ a0 + a1 cos wx + b1 sin wx + a2 cos 2wx + 
b2 sin 2wx 

 
Let us now consider a situation whereby the coefficients 
of the above series can be found from the same data, 
assumptions and geometric considerations of the two 
coarse images described in section 5 where, for instance, 
the coarse pixel C1 was geometrically related to the fine 
pixels X1 and X2 by the expression C1=(X1+1/2X2)*2/3 
etc.  The same C1 can be also related to the P(x) above so 
that C1=[P(1)+½P(2)]*2/3. P(x) is evaluated at x=1 and 
x=2 because these are the coordinates of the fine pixels 
X1 and X2 respectively. Thus, the six equations 
associated to the six coarse pixels are 
 

130    =  0.5a0  - 0.06a1 + 0.83b1 – 0.44a2  + 0.07b2 
 70    =  0.5a0 - 0.81a1 - 0.19b1  + 0.31a2   + 0.32b2 
93    =  0.5a0 + 0.54a1 - 0.63b1 – 0.21a2  - 0.39b2 
80    =  0.5a0 - 0.44a1 + 0.71b1 – 0.06a2  - 0.44b2 
 67    =  0.5a0 - 0.44a1 - 0.71b1 – 0.06a2  + 0.44b2 

         167   =  0.5a0 + 0.77a1 - 0.32b1 + 0.40a2  - 0.19b2 
 

   The solution of this set of simultaneous equations via 
least squares produces the required coefficients ai and bi 
of the discrete Fourier expansion, which is then evaluated 
at the fine coordinate points x= 1, 2,…,5 in order to 
recover the grey values of the original fine pixels. 
 

P(x) = 111.97 + 82.18 cos wx + 46.80 sin wx + 
46.75 cos 2wx + 61.62 sin 2w 

x  = 1, 2, 3, 4, 5 
[Xi] = [180 30 90 20 240] 

 
  The two dimensional case adheres to the same principles 
described earlier and uses the same geometric 
relationships between coarse and fine pixels established in 
section 5. Here, the standard Fourier model would be a 
bivariate expansion (i.e., in x and y) representing a 
surface whose order depends on how many rows and 
columns exist in the image.   
   An example of the effectiveness of this method can be 
seen in Figure 8. This is the general 2-D case. Four of the 
coarse images of the lighthouse in Figure 3 have been 
combined to produce a higher resolution image. There are 
grey levels in the finer resolution image that are higher 
and others which are lower than in any of the four coarse 
images. By way of comparison note how the cubic 
convolution interpolation method (combination of 8 
images) produces a blurred image with less contrast. 

      
Figure 8 – Enhanced resolution image (Fourier) 

and interpolated image (cubic) 
 
   The Fourier approach combined with the algorithm of 
section 5  provides for a thorough and global surface 
representation of a digital image and has a valuable effect 
on the formation and solution of the observation 
equations. The Fourier surface model generates a function 
which incorporates the edges of the image and this is of 
importance when dealing with very large images requiring 
the sectioning of the fine pixel array in order to produce 
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sub-images of a size which can be economically 
computed. 
    The method described is section 5 required sparse 
matrix storage techniques because the number of non-zero 
elements in the overall matrix of observation equations 
from the image enhancement was typically 2% of the total 
number of elements in the array. The present Fourier 
surface approach involves the successive adding of sine or 
cosine curves to model the surface shape and since sine or 
cosine can only range between 0 and 1, the system of 
equations will be more balanced and only a small portion 
of elements will be equal to zero.  

7.  Precision and accuracy tests 
   To assess the precision of the enhancement algorithm, a 
series of tests were carried out using the low resolution 
images of the lighthouse test image shown in Figure 3. 
These tests were simulated so that the true image was 
known prior to the enhancement. In this way, both the 
internal precision and the accuracy could be assessed. The 
tests were performed using an enhancement ratio of 1.5 
with a varying number of images (from 2 to16) to which a 
range of levels of random noise had been added to the 
grey values of the coarse pixels. It should be noted that 
there exists an amount of inherent noise in the digital 
image from a typical camera system and these tests were 
to simulate that effect.  
   There was a clear correspondence between the noise in 
the images and the precision of the results.  There is a 
progressive, yet proportional, worsening of results as the 
noise in the images increases. Further it could be shown 
that the accuracy of the enhanced image was improved as 
the number of coarse images increased, although more 
than 8 images did not improve the final resolution. 
 
8.  Conclusion 
 
   The objective of this paper was to introduce the use of 
harmonic, or Fourier, analysis to a rigorous geometric 
algorithm for enhancing the resolution of 
photogrammetric digital images. Improving the accuracy 
of digital photogrammetry necessarily involves 
improvements in image resolution. A software solution, 
which is device independent, has been proposed. The 
application of the enhancement algorithm has been 
demonstrated in simulated tests using sets of low-
resolution images whose relative positions with respect to 
one another are known. The notable finding from the 
experimentation included: 
(i).  The relationship between the fine pixels in the 
enhanced resolution image and the original coarse ones is 
neither simple nor direct, and therefore cannot be solved 
by simple interpolation methods. 

(ii).  The amount of noise in the low-resolution images 
proportionally affects the precision of the resultant 
enhanced image. The results can be improved by using 
more than the minimum number of images required for the 
enhancement process. 
(iii)   Fourier surface modelling proved to be an efficient 
method for treating edge areas of the fine pixel array and 
the edges of sub-sections used to process large images.  
(iv)   Fourier surface models provided an alternative and 
more balanced system of observation equations as 
compared to the previously published rigorous method. 
(v)   Least squares image matching is the most crucial 
aspect of the process, as the coefficients for the resolution 
enhancement are based on the shifts which are determined 
by this technique.  
   Further work and investigation is required into this 
Fourier approach, especially with regard to: the use of 
polynomials or other suitable functions for surface 
representation of a digital image as compared to a Fourier 
approach; testing the Fourier surface model with real data 
and varying enhancement ratios; testing the Fourier 
surface method as a photogrammetric tool in a series of 
close range 3-D experiments; and, determining the 
effectiveness of the methods in the case of images 
containing sharp changes of grey levels. 
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