
DICTA2002: Digital Image Computing Techniques and Application, 21--22 January 2002, Melbourne, Australia.

1

An Investigation of Using K-d Tree to Improve Image Retrieval Efficiency

Yunshuang He, Guojun Lu and ShyhWei Teng
Gippsland School of Computing and Information Technology

Monash University, Churchill, Vic 3844
yunshuang.he@infotech.monash.edu.au

Abstract

� � Content-based image retrieval problem is in

essence to determine distance or similarity between

multi-dimensional image feature vectors. Linear

comparison will be too slow when vector dimensions

and image database are large. We investigate the use

of K-d tree in image retrieval based on color

histograms and found that K-d trees improve

retrieval efficiency significantly. We evaluate the

impact of leaf node size and the number of images

required to retrieval on the retrieval performance.

Finally, we discuss the relationship between vector

dimensions and retrieval efficiency.

1. Introduction

� � In multimedia database system, content-based

retrieval of similar objects such as images, audios

and videos, have been required in many applications

[1], [2], [3], [4]. However, in contrast to classical

search in a relational database, similarity search is

often required for content-based retrieval. For

example, Image database can be queried to find and

retrieve images in the database that are similar to the

query image.

� � Similarity is typically measured not on objects

directly, but rather on feature vectors of objects. In

many cases, feature vector, which are extracted from

the important properties of objects, are often high-

dimensional vectors. Examples of features are color

histograms [4], shape descriptors [2], [6] and Fourier

vectors [5] etc. Then similarity of two objects is

determined as the distance between two feature

vectors and similarity search corresponds to a

nearest-neighbor search within the vector space of

the features.

� � The most straightforward way to solve the

nearest neighbor search problem in high dimensional

space is to sequentially/linearly compare all feature

vectors, using the given distance measure. It will

calculate all the distance between query and points in

data set, which is very expensive for large database.

� � The other approach to this problem is to use a

multidimensional index structure. One technique is

space-partitioning method, which recursively

partitions space into mutually disjoint subspaces,

like k-d tree [7], quadtree [8], and LSD tree [9].

Another technique is Data-partitioning index tree

which divide the data space according to the

distribution of data, such as R-tree [10], R+ tree [11],

R* tree [12], X-tree [13] and SR Tree [14]. The main

idea behind this approach is to efficiently prune

searching space during searching process so that the

access cost becomes logarithmic in the number of

objects in the tree.

� � Data partition structures like R-tree [10],

R*-tree [12], and X-tree [13], consist of bounding

boxes which are hierarchically arranged in a

DICTA2002: Digital Image Computing Techniques and Application, 21--22 January 2002, Melbourne, Australia.

2

d-dimensional Space. This structure uses all the d

dimensions to represent space partitioning which

leads to nodes with low fanout at high

dimensionalities. Furthermore, the overlap in the

directory increases very rapidly with growing

dimensionality of the data. Overlap in the directory

directly affects the query performance; more overlap

means more paths have to follow when processing a

query.

� � Space partition structures like k-d tree [7],

quadtree [8], and LSD-tree [9], are more suitable for

high dimensional feature spaces. Firstly, the fanout

of node is independent of dimensionality since the

size of these structures will not increase with

dimensionality. Secondly, the space is always

partitioned into non-overlap subspaces, unlike data

partition structure, which may follow multiple paths

even for simple point queries.

� � In this paper, we study colour based image

retrieval efficiency using K-d trees. We evaluate the

impact of leaf node size and the number of images

required to retrieval on the retrieval performance.

Finally, we discuss the relationship between vector

dimensions and retrieval efficiency.

2�VAM K-D Tree

� � The k-d tree [7] is a binary tree in which each

node represents a hyper-rectangle and a hyper-plane

orthogonal to one of the coordinate axis, which splits

the hyper-rectangle into two parts. These two parts

are then associated with the two child nodes.

� � Sproull [17] provided taxonomy of k-d tree

variants. He listed what we call the three dimensions

of k-d tree variations: (1) split (partition plane)

orientation, (2) split (partition plane) position, and (3)

distance representation.

� � VAM K-D tree [18] choose the split orientation

as the dimension with the largest variance. They

found that compared with the standard maximum

spread dimension, used in [19], this provided

equivalent or slightly better search performance and

required less CPU time to build the tree.

Furthermore they chose the partition value of a node

to be the approximate median of the data points in

the hyper-rectangle represented by that node along

the split dimension, making the k-d tree node split

equally to their child nodes.

����������������������������

� �

	

�

����

�����

������

�

�

�

�

�

�

�����

�����

����������������������������

� �

	
��

��
���

���
��

�

����

�����

�����

	
��

��
�	�

���
���

�

�

�

�

�

�����

�����

����������������������������

� �

	
��

��
���

���
��

�

����

�����

�����

	
��

��
�	�

���
��

�

	
��

��
�	�

���
��

��	
��

��
���

�����

�����

�

�

�

�

�

�

�����

�����

Figure 1. Creation of VAM KD Tree

DICTA2002: Digital Image Computing Techniques and Application, 21--22 January 2002, Melbourne, Australia.

3

� � Figure 1. shows the creation of VAM KD Tree,

with dimension of 2 and bucket size of 2. Initially,

the whole data space corresponds to one node as the

root of tree. After insertion of another data, the root

node is overflowed and a split occurs. The split

dimension is 0 and position is 3, which are

determined by largest variance and approximate

median value. Then the data are moved to child

nodes of root corresponds to their position in split

dimension. With the next insertion, the right node of

root is overflowed. Again this node is split into two

child nodes. This process is repeated each time the

capacity of a leaf node is exceeded.

3. Nearest Neighbor Search Algorithm for
K-D Tree

At each leaf node visited the distance between

the query point and each data point in the bucket is

computed, and the nearest neighbor is updated if this

is the closest point seen so far. At each internal node

the subtree whose corresponding hyper-rectangle is

closer to the query point is visited. Later, the farther

subtree is searched if the distance between the query

point and the closest point visited so far exceeds the

distance between the query point and the

hyper-rectangle of the farther subtree.

����������������������������

� �

�

�

�

�

�

�

�

�

��

	�

��

��

��

	
���

	
���

�
�

��������	����

Figure 2. NN search in K-d tree

For example, in Fig 2, we first calculate the

distance between Q and p1 as d4, and the distance

between Q and p2 as d2. Then we can get the nearest

distance in this leaf node as d2. Secondly we

compare the nearest distance we have got so far with

the distance between Q and split boundary as d3 to

see if we need to visit to the sibling node. Obviously

d3 is less than d2, so we have to visit left node to

check whether the nearest neighbor is in left node.

4. Application of VAM -D Tree to Image
Retrieval

� � One of the most common content-based image

retrieval techniques is based on colour histograms. A

histogram can be considered as an n-dimensional

vector, n being the number of bins of the histogram.

To test retrieval efficiency using K-D tree, three

histograms with bin number 64, 512 and 4096 are

created for each image. A total of 10,115 images are

used in the text database. For each group of

histograms (corresponding to three different bin

number), a K-d tree is created for the test image

database.

4.1. Optimal bucket size

� � Bucket size (the maximum number of vectors in

each leaf nodes) is an important parameter we have

to decide before building a VAM KD Tree. The K-D

Tree with the best bucket size is the k-d tree, which

finds the best K-NN (K � nearest neighbor)

matches in the least time.

� � The time cost in K-NN search mainly includes

distance calculation time and node visiting time.

When bucket size grows large, the distance

calculation time increases but the nodes visiting time

decrease.

� � We study the CPU Time cost when bucket size

grows up for 64, 512, 4096 dimension histogram

data respectively.

� � Our experimental results show that when bucket

DICTA2002: Digital Image Computing Techniques and Application, 21--22 January 2002, Melbourne, Australia.

4

size is too small, the time cost by nodes visiting is

dominant. On the other hand when bucket size is too

large, the time cost on distance calculation is very

expensive. The results shows, there is a compromise

between nodes visiting time and distance calculation

time, the bucket size from 20 to 40 can achieve the

least CPU time cost for all the three dimensions.

4.2. Retrieval efficiency

� � Table 1 shows the percentage of nodes visited

by using the VAM k-d tree (bucket size 20) to find

the 1-NN match for the three dimensions (assume

the traditional linear search will visit all (100%)

nodes). The results show that the average leaf nodes

visited for 64 dimension data of 100 queries is about

17%. And even dimension grows as high as 4096,

there are still about 40% of nodes not visited by

1-NN search algorithm.

Table 1. Average Percentage of Nodes visited

by 1- NN Algorithms

Dimension 64 512 4096

VAM k-d tree 12% 45.22% 59.44%

4.3. K-NN Search efficiency

� � In many cases of image retrieval, we wish to

find a ranked list of K nearest neighbor. A priority

queue is created to keep the K nearest neighbor

found so far in the searching process. We use the

bucket size of 20 to perform the K-NN test. Table 2

summarizes the K-NN search performance.

Table 2. Average Percentage of Nodes visited

by K- NN Algorithms

Number

of NN 1 10 20 40 80

64 12% 30.14% 34.48% 39.61% 45.96%

512 45.2% 73.23% 75.47% 76.92% 78.46%

4096 59.4% 79.15% 79.61% 80.13% 80.58%

� �

The results show that the number of visited

nodes increases quickly when K varies from 1 to 10.

The number of visited nodes increases steadily when

K varies from 10 to 160.

4.4. Discussion

� � Other researchers found that when the vector

dimension is higher than 30 for uniformly distributed

data set, the use of data structures will not be able to

improve search efficiency over the linear search

[13][14][15]. To test this finding, we randomly

generated 10000 data (ie, they are uniformly

distributed in the multi-dimensional space). By

applying the K-d tree, we found that the percentage

of node visited grows exponentially as dimension

increases for NN search (Figure 3). Before the

dimension reaches 30, all the nodes of the VAM K-D

tree have been visited, which means that there are no

improvement of VAM K-D tree on high dimension

(>30) uniform distributed data sets. Then why did

we observe significant performance by using the K-d

tree even when the dimension is equal to 512

�

���

���

���

���

���

���

��	

��

���

�

� �� �� ��

Dimension

P
e

rc
e

n
ta

g
e

 o
f N

o
d

e
 v

is
ite

d

Figure 3. Percentage of Nodes visited grows

exponentially as dimension increase

DICTA2002: Digital Image Computing Techniques and Application, 21--22 January 2002, Melbourne, Australia.

5

� � The answer lies in the type of data distribution

and effective (intrinsic) dimension. Image feature

vectors (eg colour histograms) are often correlated

and clustered and often have dependencies between

attributes. Therefore there effective dimension is low.

For example if we divide the 64, 512, 4096

dimension space by splitting in middle of every side

of space. We can get 264, 2512, 24096 hypercube

respectively. But when we put the 64, 512, 4096

dimension histogram data of 10115 photos into these

hypercube, they only occupy 40, 74, 31 of them,

� � The intrinsic dimensionality of a real data set is

significantly lower than its embedding dimension.

Pagel et al [16] show both analytically and

experimentally that the fractal dimension, rather than

the dimension of space containing the data set, is the

real determinant of performance.

The Hausdorff fractal dimension is defined as

below:

For a point-set that has the self-similarity

property in the range of scales (r1, r2), its Hausdorff

fractal dimension D0 for this range is measured as:

c
r

rN
D =

∂
∂−=

)log(

))(log(
0

for),(21 rrr ∈

We plot log (N (r)) vs. log (r). If the point –set

is self-similar for),(21 rrr ∈ then its plot will be

a straight line for this range. The slope of this line is

the Hausdorff fractal dimension D0 of the point-set

for the range of scales (r1, r2).

� � We calculated fractal dimensions of the 10,115

vectors for the three dimensions of 64, 512 and 4096.

We found that their corresponding fractal dimensions

are 5.35, 6.23, and 4.97 respectively. (One possible

reason that the fractal dimension of the data set of

4096-dimension is lower than the other two is that

the calculation of the fractal dimension is an

approximation.)

� � From the above, we can conclude that the

intrinsic dimension for color histogram is much

lower than the bin numbers. This explains why the

K-d tree can improve the K-NN search efficiency.

� �

5. Conclusions

� � Solution of the find the similar image problem

requires solving the nearest neighbor problem in

vector space. VAM K-D Tree is an efficient method

for finding nearest neighbors in high dimensional

search problem. In this paper, we have adapted the

VAM K-D trees to the problem of image retrieval

and found the suitable bucket size regarding

minimizing the access time. Tests on 64, 512, 4096

dimension histogram data of 10115 image data sets

showed that though the dimension is very high, we

still achieve some improvement compared with

linear search. For dimension is as high as 64, which

shows no improvement for uniform distribution data,

the VAM K-D tree still gives an improvement for

more than 3 times for color histogram data compared

with linear search because of the correlation in the

real data sets.

References

[1] C. Faloutsos et al., “Efficient and Effective

Querying by Image Content,” J. Intelligent

Information Systems, vol. 3, pp. 231-262, 1994.

[2] H.V. Jagadish, “A Retrieval Technique for

Similar Shapes,” Proc. ACM SIGMOD Int'l Conf.

Management of Data, pp. 208-217, 1991.

[3] R. Mehrotra and J.E. Gary, “Feature-Based

Retrieval of Similar Shapes,” Proc. Ninth Int'l Conf.

Data Eng., pp. 108-115, 1993.

[4] H. Sawhney and J. Hafner, “Efficient Color

Histogram Indexing,” Proc. Int'l Conf. Image

Processing, pp. 66-70, 1994.

[5] Wallace T., Wintz P. “An Efficient

Three-Dimensional Aircraft Recognition Algorithm

Using Normalized Fourier Descriptors”, Computer

Graphics and Image Processing, Vol. 13, pp. 99-126,

DICTA2002: Digital Image Computing Techniques and Application, 21--22 January 2002, Melbourne, Australia.

6

1980

[6] Mehrotra R., Gary J. “Feature-Index-Based

Similar Shape retrieval”, Proc. of the 3rd Working

Conf. On Visual Database Systems, March 1995

[7] BENTLEY,J.L.AND FRIEDMAN, J. H.. Data

structures for range searching. ACM Comput. Surv.

11, 4, 397–409, 1979

[8] SAMET, H. “The quadtree and related

hierarchical data structure”. ACM Comput. Surv.16,

2, 187–260, 1984

[9] HENRICH, A., SIX, H., AND WIDMAYER, P.

“The LSD tree: Spatial access to multidimensional

point and non-point objects”. In Proceedings of the

Fifteenth International Conference on Very Large

Data Bases, 45–53, 1989.

[10] A. Guttman. “R-trees: A dynamic index

structure for spatial searching”. In Proc. of the ACM

SIGMOD Int. Conf. on Management of Data, pages

47-57, Boston, MA, June 1984.

[11] T. Sellis, N. Roussopoulos, and C. Faloustos.

“The R+-tree: A dynamic index for multi-

dimensional objects”. In Proc. Of the Int. Conference

on Very Large Databases, pages 507-518, Brighton,

England, 1987.

[12] N. Beckmann, H.-P. Kriegel, R. Schneider, and

B. Seeger. “The R*-tree: An efficient and robust

access method for points and rectangles”. In

Proceedings of the 1990 ACM SIGMOD

International Conference on Management of Data,

pages 322-331, Atlantic City, NJ, 23-25 May 1990.

[13] S. Berchtold, D. Keim, and H.-P. Kriegel. “The

X-tree: An index structure for high-dimensional

data”. In Proc. Of the Int. Conference on Very Large

Databases, pages 28-39 1996.

[14] N. Katayama and S. Satoh. “The SR-tree: An

index structure for high-dimensional nearest

neighbor queries”. In Proc. of the ACM SIGMOD

Int. Conj. on Management of Data, pages 369-380,

Tucson, Arizona USA, 1997.

[15] S. Berchtold, C. BBhm, B. Braunmiiller, D.

Keim, and H.-P. Kriegel. “Fast parallel similarity

search in multimedia databases”. In Proc. of the

ACM SIGMOD Int. Conf. On Management of Data,

pages 1-12, Tucson, USA, 1997.

[16] A. Belussi and C. Faloutsos. “Estimating the

selectivity of spatial queries using the ‘correlation’

fractal dimension”. In Proc. 21st Intl. Conf. on

VLDB, pages 299-310, Zurich, 1995

[17] R. Sproull. “Refinements to nearest- neighbor

searching in k-dimensional trees”. Algorithmica,

6(4): 579-589, 1991

[18] D.A White and R. Jain, “Similarity Indexing:

Algorithms and Performance”, Visual Computing

Laboratory, University of California, San Diego,

1997

[19] J.H. Friedman, J.L. Bentley, and R.A. Finkel,

“An Algorithm for Finding Best Matches in

Logarithmic Expected Time”, ACM Fransactions on

mathematical Software, 3(3), p.209-226, Sep. 1977

