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Abstract

The densityprofile of a vibrating surfacecan be es-
timated from interferometric observation of the surface
modes. This paper evaluates the effectsof digital quanti-
sation,in both intensityandspace, on theprecisionof the
reconstructedsurfacedensityprofile, found usingthedigi-
tal samplesof an interferogram.Thesurfacedetermination
is shownto be more robust, for a givennumberof modes,
if the observedintensitiesare smoothed, at the expenseof
losingfinedensityvariations.

1. Intr oduction

We considervibrationsof a surface, whosemasssurface
density is inhomogeneousin space.Wedemonstratethatthe
surfacedensityof theobjectmaybedeterminedindirectly
by experimentalobservationof its vibrational modes. Sec-
tion 2 providesthemathematicaldefinitionof thephysical
system.Section3 describesanexperimentaimedatobserv-
ing theobjectin vibrationusinganinterferometerequipped
with aphoto-detector array, whichis interfacedwith acom-
puter. A methodfor estimatingthe surfacedensityof the
object from the experimentaldatais outlined in section4.
Method for computing error estimatesdue to signal level
quantisationare discussed.Simulatedresultsfor a mem-
brane surfaceareprovidedin section5. Theuseof filtering
aimedat reducing theeffectsof signalquantisationnoiseis
alsodiscussed.In section6 thekey resultspresentedin the
paper aresummarised.

2. Vibrations of an InhomogeneousSurface

Transverselinearvibrationsof asurfaceobject
�

arede-
scribedby anequation of theform�������	��
���

on
���

(1)

where
�

is a linearstiffnessoperator, suchthat
���

is the
transverseforceperunit surfaceareadueto surfacedefor-
mationspecifiedby transversedisplacement

����� ������������
;
�

is the masssurfacedensityor massper unit surface
area;and

�
is thefrequency of vibration. Solutions

� � �
of

equation (1) arereferredto asnatural modesandfrequen-
ciesof thesystemrespectively. Physicalsystemsdescribed
by anequation of theform givenin (1) includemembranes,
platesandcurvedsurfacesor shells[1].

Our proposedmethodfor indirect measurement of the
unknowndensityof asurfaceobject is basedonthefactthat
equation (1) canbe rearrangedto expressthe surfaceden-
sity
�

in termsof operatorK, modeshapeu andfrequency�
: ��� � ���� 
 � � when

�"!�$#�%
(2)

Henceif K is known, thedensityof thesurfacecanbede-
terminedfrom oneor morevibrationalmodesandfrequen-
cies. Thepurposeof thework presentedhereis to demon-
stratehow thismight bedonein practice,from

�
and
�

that
arefound experimentallyusingholographicinterferometry.
Specificresultsarepresentedin this paper for a membrane
with
�&�$' 


, howeverthemethodis applicable to any sur-
facewhosemotion is governedby anequation of theform
(1).

3. Experimental Observation of Modeshapes

Holographicinterferometryhasprovento bea powerful
tool over the pastfour decadesfor studying vibrations of



solid objects[4-8]. Figure1 shows a schematicdepicting a
possibleexperimentalsetup.Light from a monochromatic
source (SRC)is split (BS( ) in spaceinto two components,
oneof which, the reference wave, is directedtowards the
observationplaneby suitableoptics(M

�
BS 
 ). Theother,

which passesthrough BS( , is usedilluminatethevibrating
surfaceat S. The light scatteredby thesurfaceis collected
anddirectedtowards beamsplitterBS
 , whereit is recom-
binedwith the reference wave to producean interference
patternat the detector D. Thedetectoris interfacedwith a
computer for displaying andstoringthe interferograms as
greyscaleimages.A variable phaseshifterPS(for example
a rotatableglassslide) placedin the pathof the reference
beamcanbeemployedto changethephaseof thewave be-
fore it is recombinedwith wavesscatteredfrom

�
.
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Figure 1. Schematic diagram depicting an exper -
imental setup with an interf erometer used to ob-
serve vibrations of a surface object

�
.

A techniquesuitedto digital imageprocessingemploys
stroboscopicillumination [6-8]. The surfaceis excited by
harmonic forcing at resonance, and madeto vibrate in a
pure mode

�
. Thestrobeis synchronisedto theexcitation

mechanism,sothatonepulsedilluminationpercycleof os-
cillation is produced,illuminating the surfaceat the same
phasein eachcycle. Theinterferencepatternat thedetector
correspondsto oneduetoastaticdisplacement proportional
to thevibrationamplitude

����� �-���
. For planarsurface

�
and

monochromaticillumination, theintensityat thedetectoris,
within anadditive constant,./�0�/1 ��� 1 �32�465�78:9<; =?>:@ �A�0� ����� �CBED �

(3)

wherea is thenumber of fringesperunit increment in dis-
placement

�
(a constantdetermined by specificsof theex-

perimentalsetup[5]), and
B

is a constant phase term, as-
sumingproper alignment of the apparatus[2, p.112]. The
value of

B
may be alteredat the phaseshifter PS (Figure

1). For eachvibrationalmode
�

, at leasttwo interferograms
areneededin orderto determinethephaseF � =G@H> � of the

wave at thedetector. Let usassumethattwo intensitiesare
recorded,onewith

B��$#
andanotherwith

B�� @JI?=
:. 1( �0� 1 ��� 1 ��2 . ( ��� ����� � 4= � 465�78:9 F �K� (4). 1
 �0� 1 ��� 1 �32 . 
 ��� ����� � 4= � 4L5�9-MON F � % (5)

Assumingthattheoutput of thedetector arrayis calibrated
togivehighcontrastin therecordedimages,andthatthede-
tectorsamplesthelight intensityatsitesof a PRQTS square
latticein theobservationplane,theresultsof theexperiment
aretwo P"QUS greyscaleimagesV ( and V 
 corresponding
to intensities

. ( and
. 
 respectively:VXW �ZY �-[?� �]\ 8_^�NE`a; �0b 5dce� . W �ZYgf �-[ f �H5Rh D � (6)

where i � 4j�k= ; Y and
[

are integers in
;Z4j� P D and

;O4_� S D
respectively;

b 5]4
is thenumberof shadesof greys in the

image;
f

is thesamplinginterval at
�

;
c

and
h

areerrors
in calibratingthedetectoroutput; and‘

\ 8_^�NE`
’ is a function

which gives theintegerclosestto its argument.Ideally two
furtherarrays,

h V ( and
h V 
 , would beusedto specifythe

combinedeffectof experimentalandquantisationerrors,inV ( and V 
 respectively, suchthatbl. W �ZYgf �-[ f � � VXW �ZY �-[?�JmRh VXW �ZY �-[?� % (7)

Expressingthe sampledphase,F �nY�f �k[ f �poe8�`q=G@�r F�sut ,
corresponding to sampledintensities

. W �nY�f �k[ f � of (4,5),in
termsof pixel values V W , andconsideringrelation(7), the
errors

h FJsut in thephase,F �ZYgf �-[ f � mod
=?@ � Fvsut m"h Fwsut ,

canbeestimatedbyh Fwsut � oxMyN�z h V ({ V 
 �"b I?= { � h V 
{ V ( �"b I_= {}| � (8)

which is correct to first order in the errors
h V W . For the

sake of definiteness,we assumein what follows that cali-
bration errors

c
and
h

areat mosthalf onegreylevel, and
thattheerrorsintroducedby thequantisationof thesignals. W aremuchgreaterthanall otherexperimentalerrors com-
bined. Then,by allowing for roundingerrorsin (6) wehaveh VXW �]#E% ~ VXW I b 5�4 , sowecanestimateerrors in thephase
from greyvaluesV�W alone,usingequation (8).

Onceestimatesfor the phaseF oe8�`q=G@ have beende-
duced from the two interferograms V (�� 
 , estimatesfor the
truephaseof the wave F �nYgf �-[ f � � =G@H> ���nY�f �k[ f � canbe
can be obtainedby unwrappingthe mod

=?@
phase. For

resultspresentedin section5, phaseunwrapping wasper-
formedusinga simplesequentiallinearscanning algorithm
due to Takeda [4, p.204-5]. For the algorithm to work,
the samplingdensitymustbe sufficiently large so that no
fringesaremissed(phasechangesmustbe lessthan

@
be-

tweennearestneighbourpixels),andthedatamustbe free
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of excessive noise(speckle,for example). More sophisti-
catedalgorithmsareavailablefor unwrappingnoisyand/or
undersampleddata[3].

As theunwrappedphaseF sut is proportional to the am-
plitude of vibration at grid-points

��� ����� ���nY�f �k[ f �
, it is

alsoa sampledsolution
� s<t � F sut r ���nY�f �k[ f � of equa-

tion (1), within known experimentalerrors
h � sut � h F sut .

With
�

measuredastheresonancefrequency for displace-
mentamplitude

�
, a sampledsolution

��� � � sut � of equation
(1) is obtained by the experiment described above. Ex-
amplesof simulatedinterferogramdatafor

b�� = ~j~
andP � S �l�_# areshown in Figure2.

a e

b c d

Figure 2. (a) Sixth vibrational mode of a membrane
with non-u nif orm surface density; (b) correspond-
ing cos fring es; (c) sin fring es; (d) wrapped phase;
(e) unwrapped phase .

4. Density fr om SampledModeshapes

By approximating thebehaviour of thedisplacement
�
,

atsamplinglocations
��� ����� � �nYgf �-[ f �

, usinglocalpolyno-
mial interpolation on thesampleddata,thetransverseforce
perunit surfaceareamaybeapproximatedas������� ����� {n�O� � ���� � su�_� t���� r��0�k� � sut�� ��� � ��� � (9)

wherefor amembranewith surfacetensionof unitywehave����' 
 �]� 
� 5 � 
�
and� sut�� ��� ���� ��� sG�

� I f 
 �
if
[ �$�

and
{ Y���� {���� �� t�� � I f 
 � if

Y��]�
and
{ [ �"� {p��� �# �

otherwise
�

(10)
wherecoefficients �q  only dependon theorder

= �
of the

interpolatingpolynomial. Thevaluesof coefficients �¡  for
interpolationof up to ¢ th order up aresummarisedin Table
1.

Table 1. Coefficients used to estimate 2nd or-
der deriv atives for various order interpolation
schemes as discussed in the text.� �6£ � ( � 
 �L¤ �6¥

1 -2 1
2 -5/2 4/3 -1/12
3 -49/18 3/2 -3/20 1/90
4 -205/72 8/5 -1/5 8/315 -1/560

Using relation (9), the equationof motion (1) may be
approximatedby� ��� � s<tK� �k� � ��� � �	��
� sut � sut � (11)

where
� s<t and

� sut are the sampledvalues of functions�
and
�

respectively. The matrix of coefficients ¦ �; � sut�� ��� D , thestiffnessmatrix, is thediscretecounterpartof
thestiffnessoperator

�
. Fromequation(11) we obtainthe

following expressionfor thesampleddensity:� sut � ��§ ��� � s<tK� �k� � ���� 
 � s<t � � sut !�l# � (12)

which is a discreteapproximationto equation(2).
Let us supposethat a sampledmodeshape

� sut andthe
associatednatural frequency

�
have beendeducedexperi-

mentally within
m¨h � sut and

m¨h �
errors respectively. As-

sumingthat theseerrors dominateover thosearisingfrom
discreteapproximation(11) of theequationof motion (1),
the errors

h � sut in the computed valuesof
�

, such that�v�nY�f �k[ f � �©� sut m�h � sut , maybeestimatedfrom equation
(12) ash � sut � z § ��� { � s<tK� �k� { h � ���{ § ��� � sut�� ��� � ��� { 5 h � sut{ � sut { 5�= h �� | � sut � (13)

which is correctto first orderin
h �Aª W and

h �
. Whenseveral

modesandfrequenciesareknown, equation(12) will pro-
videseveralcorrespondingestimatesfor thesurfacedensity.
By comparingtheerror estimatesgivenby (13), we canse-
lect the

� sut with thesmallesterrorsto combinetheresults
from all observedmodes.

5. Resultsfor SimulatedData

Herewe present resultsof simulationsof thesurfacere-
constructionmethodfor two membraneswith inhomoge-
neoussurfacedensities,anda surfacetensionof unity. The
membraneswereassumedfixedto a rigid squareboundary.
Thefirst stepin simulatingtheexperimentaldatainvolved
solutionof theequations of motion(1) for thefirst 20natu-
ral frequenciesandmodes,by discretisationon a high res-
olution,

=G« # Q =G« # , grid, asdiscussedin section4. ¢E¬® or-
derpolynomialinterpolationswereusedto approximatethe
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Laplacian. Theresultingmatrixequations(11)weresolved
usingtheLanczosalgorithm [9].

Thehigh resolutionmodeshape datawasdown-sampled
ontoa

�j# Q �_# grid toobtainassumedexact values
���nYgf �-[ f �

of displacement amplitude
�A�0� �-���

at grid points
��� ����� �f Q �nY �k[?� . Corresponding exact intensities

. (�� 
 ��� ����� in
thedetectorplaneof the interferometerwerecomputedus-
ing equations (4,5), with constant

>
adjustedto give sim-

ilar fringe densitiesfor all modes,keeping fringe spacing
greater thantwo grid spacingsin order to ensurereliabil-
ity of subsequent phaseunwrapping. (In an actualexper-
iment this would involve adjustingthe amplitude of the
applied harmonic force until the desiredfringe spacingis
attained.) Using relation (6), the two greyscale imagesV�(�� 
 were generated from the computed intensities

. (�� 
 ,
with calibration errors

c
and
h

chosenat random from the
interval

; �q#�%¯~ � #�%¯~°D
for eachset of modeshapes.

b
was

set to 15, 63 or 255, which correspondto 16-, 64- and
256-greylevel imagesrespectively. Thequantisedinterfer-
ograms,andassociatederrorestimatesgiven by (8), whereh VXW �±#�%¯~ VXW I b 5�4 , weretreatedasthe resultof an ex-
perimentdescribedin section3. Thus,approximations

� sut
to thesampledmodesalongwith errorestimates

h � s<t were
obtainedfrom thesimulatedexperimentaldata.For sakeof
simplicity, frequencies

�
wereassumedexactwith

h �R�$#
,

asthis makesno differenceto theensuingdiscussion.The
surfacereconstructionmethod described in section4 was
applied to the simulatedexperimental data in an attempt
to recover the masssurface densitiesof the membranes.
Fourth order interpolationswereusedin thesolutionof the
inverseproblem.

5.1. TestDensities

The two density functions usedin the simulationsare
shown asgreyscaleplots in Figure3a andb. The density
of system1,plottedin Figure3a,comprisesof four regions,
within eachof whichits valueis aconstantequalto 1,2 or 3
(lightershadesof grey representlargervalues).Thedensity
changesabruptly at the boundariesbetweenhomogeneous
regions. Theimageshown in Figure 3b representstheden-
sity of system2, which is a continuousfunction of

��� �����
,

and is a superposition of planewaves with randomly gen-
eratedrelativephases,whichamountsto bandwidth-limited
white-noise.Theglobal extremafor thedensityfunctionare
0.25 and2.0. In theFigure3b blackandwhite correspond
to 0 and2.05respectively. The reasonour two choicesof�

consideredhereis thattogether they illustrateall key fea-
turesof thesurfacereconstructionmethod.

a b

Figure 3. Greyscale plots of membrane surface
density test functions, sampled on a

�j# Q �j# grid:
(a) composite of four well defined homog eneou s
regions where densities are equal to 1 (darkest),
2 (medium grey), 3 (lightest); (b) Low-pass filtered
white noise .

5.2. Reconstruction fr om High Depth Resolution
Data

Figure 4 shows the densitiesreconstructed from inter-
ferogramsof thefirst five andthefirst twentymodesof the
membranes,with simulateddetectordepthresolutionof 256
intensitylevels.Pixelsin blackrepresentgrid-pointswhere
theestimatederrors in thecomputeddensityis greaterthan~?#p²

. Bothreconstructionsshow considerablespecklenoise
andsomeblurring or lossof contrast. However, theseare
within estimatederrors,which haveprovedto beconserva-
tive, typically lessthan20%of the trueerror, exceptat in-
ternalboundariessharedby

��� 4j�k=
and
��� 4j�-³

constant
density regionsof system1. Here,theblurrededgesaredue
to errors introducedby discretisationof thestiffnessopera-
tor, andarepresentfor all

b
, asconfirmedby simulations

with
b

up to
4 #p´

. For bothsystems,thedensity computa-
tionsshow poor accuracy nearnodal lines

���µ#
, aswould

beexpectedfrom (13).
Reconstructions from lower depth resolutioninterfero-

gramimageshave failed,with no computeddensityvalues
with errorestimatesbelow 50%for 16 greylevel interfero-
grams,andonly about 10%of thesampleddensityarrayre-
coveredfrom thefirst 20modesof thetwo membraneswith
64greylevels.Sinceweareassumingthaterrors introduced
by thequantisationof the light intensityat thedetectorare
muchgreater thanotherexperimentalerrors, resultsof the
simulationswould imply arequirementfor accuracy signif-
icantlybetterthan

43¶C= ~_�
in theexperimentaldatafor it to

beuseful, which is unacceptable.Fortunately, this is notre-
quired,andlow depthinterferogramscanbeusedto obtain
good estimatesfor the surfacedensity, aswe shall discuss
in thefollowing sections.

a b c d

Figure 4. Reconstructed membrane surface densi-
ties computed from 256-greylevel interf erograms
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of modes 1 to 5 (a,b) and modes 1 to 20 (c,d).

5.3. Down-sampledLow Depth Data

The large errorestimatesin thedensitycomputedfrom
low depthresolution interferogramsis dueto theinaccuracy
of theapproximationontheleft handsideof (11), involving
thestiffnessmatrix ¦ , to

' 
 �
. Sincecoefficients

� sut�� ��� ,
given by (10), areproportional to

f � 
 , the error in the re-
constructeddensity, asgivenby (13), divergeswith increas-
ing spatialresolutionas

f � 
 . We cancompensatefor this
by increasingthe accuracy of the data,which would im-
ply thatwe needto increasethedepthof the interferogram
imageswith

b¸·¹f � 
 . Alternatively, the samplingreso-
lution canbe reducedfor the low depthdata,increasing

f
as
4GI_º b

. For the16-greylevel interferogramsobtainedin
our simulations, this would imply that in order to to attain
estimatedaccuracies in the reconstructeddensitiessimilar
to thoseobtained for the256-greylevel images,theresolu-
tion should be reduced from

�_# Q �j# to
4 ~ Q 4 ~ . Results

of simulations for
b&� 4 ~

, usingreducedresolutionphase
arrays areshown in Figure5. Thereconstructions compare
favourablywith correspondingresultsshown in Figure4.

a b c d

Figure 5. Reconstructed membrane surface den-
sities computed from 16-greylevel interf erograms
of modes 1 to 5 (a,b) and modes 1 to 20 (c,d) with
down-sampling used to reduce errors.

5.4. Useof Filters with Low Depth Data

Themaindrawbackof reducingspatialresolution is that
it introducesfurthererrorsin thediscreteapproximation (9)
of thestiffnessoperator. This problem canbeovercomeby
appropriatepre-processingof thefull resolution unwrapped
phasedatabefore applying the transformation (12) to ob-
tain thesurfacedensity. This maybeachievedby applying
a low-passfilter data,letting� sut � § ª WJ» ª �Es°� W �¼t � ª W§ ª W » ª W �

(14)

wherethesumis over theentirearray( ½ � 4 %y% P � i � 4 %y% S ),
andtheGaussianblur window, definedby coefficients » sut ,
is given by » s<t �$¾ � � s<¿-ÀwtÁ¿k�0ÂkÃ¼¿ �
whereÄ is theradiusof thefilter.

If we usethefilteredphaseto calculatethedensity from
equation(2), weget� sut � ��§ ª W � ��� � s<tK� �k� » ª � � � W � � �gª W� 
 § ª W » ª �Es°� W �Es � ª W �
where

� ª W correspondto theunfiltereddata.Relative errors
for thedensities

� s<t computedfrom thefilteredphasemay
now beestimated,to first orderin errors

h �3ª W and
h �

, ash � s<t� s<t � § ª W { §
��� � sut�� ��� » ª � � � W � � { h ��ª W{ § ª W � ��� � sut�� ��� » ª � � � W � � ��ª W {5 § ª W { » ª � � � W � � { h ��ª W{ § ª W » ª � � � W � � ��ª W { 5�= h �� % (15)

Filtering works becausein the first term on the right hand
sideof (15), which is therelative error in

���
, it is theco-

efficients
� s<tK� �k� that arebeingblurred andnot the errors

themselves(asis the casefor the secondterm, which will
remainsimilar in magnitudebefore andafterfiltering). As� sut�� ��� alternatein sign with increments in

�
or
�
, andthe

filter givesa weighted averageover these,the magnitude
of this average is going to be smallerthanthe sumof the
magnitudesof

� s<tK� �k� in (13). Hencetheerror estimatesas
given by (15) are generally reduced by filtering. We can
checkwhetherwe have chosena reasonablevaluefor the
filter radiusby comparingfilteredandunfiltereddata.If the
former is not within estimatederror of the latter, the filter
radius needsto bedecreased.

While theexpressiongivenin (15) canbeusedto com-
putethereducederrorestimatesfor

� s<t , thecomputationof
thefirst sumontheright handsideof (15) for each

�ZY �k[?�
is

excessively time consuming. However, insteadof comput-
ing theerrorsdirectly, wecanestimatetheratio Å of filtered
andraw dataerrors in

���
by comparingthemagnitude of

coefficientsof
h �Hª W in thecorrespondingtermsof (13) and

(15):Å r � ª W { � ��� � s<tK� �k� » ª � � � W � � { I � ª W { � sut�� ª W { % (16)

Since the summations involve all
� ½ � i � and

��� � � �
, and� sut�� ��� only depend on the differencesbetweenindeces,YC�$�

and
[ ���

, Å is independentof
�ZY �k[?�

. Once Å is
computed,the reduced errorestimatesfor

� sut maybe ob-
tainedfrom (13), except thatthefirst terminsidethebrack-
etsshould bemultipliedby Å .

In our experience, the error reduction factor Å given
by (16) is overly conservative, especiallywhen starting
with low depth resolution interferograms,which require
stronger filtering (larger Ä ). More reasonable error esti-
matesare obtained if we assumethe applicability of the
central limit theorem to the sumof the actualerrors

c � ª W
in
��ª W , which givesthe error

c �0��� �
in
���

as
c �0��� � �§ ª W { § ��� � s<tK� �k� » ª � � � W � � { c �gª W . Thus
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Å r�Æ o�ÇGÈª W � { � ��� � s<tK� �k� » ª � � � W � � { �
Q Æ � ª W { � ���T� s<tK� �k� » ª � � � W � � { I � ª W { � sut�� ª W { %

Reconstructions computed from low-pass filtered, low
depth resolutionphasedataare shown in Figure 6. Blur
filter of radius Ä � = wasappliedto phasearrayscomputed
from 16-greylevel interferograms. On inspection, recon-
structions appearto have recoveredmoredetail in thesur-
facedensitiesthanthoseobtainedfrom thereducedresolu-
tion phasearrays(Figure5). However, for system1 (Figure
6a,c)theresultsillustratethatsuppressinghigh spatialfre-
quenciesin thephaseresultsin a similar reduction in high
spatialfrequency componentsof thereconstructeddensity,
seenhereasablurring of boundariesbetweenconstantden-
sity regions. Reconstructions neartheedgesof thesystem
(where blur filter windows were symmetrically cropped),
are adversely effected, and computed error estimatesfor
densitieswithin onefilter radius of the system’s boundary
aregenerallynot within estimatederrorof the truevalues.
(Modification of thefilter nearboundarieswasnot consid-
eredin errorcalculations, however.) For system2 (Figure
6b,d), filtering resultedin a loss of contrastin the recon-
structeddensityimages.

a b c d

Figure 6. Reconstructed membrane surface den-
sities computed from 16-greylevel interf erograms
of modes 1 to 5 (a,b) and modes 1 to 20 (c,d) with
low pass filtering used to reduce errors.

6. Conclusions

We have demonstratedthrough computer simulations
thataninterferometercanbeusedto measure themassden-

sity of aplanarsurfaceobjectby observing interferencepat-
ternsassociatedwith its vibrational modes.We have anal-
ysederrors arisingdueto finite spatialsamplingandsignal
quantisationin theinterferograms,anddiscussedtwostrate-
giesfor reducingsucherrors,oneinvolving down-sampling
andanother spatialfiltering. Quantitativeanalysisof theer-
ror reductionmethodsshow good agreementwith simulated
datafor membraneswith inhomogeneousdensities.
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