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Abstract

Nonlinear spatial transforms are established in feature
extraction and pattern recognition. This paper describes
a method for calculating the cyclic crosscorrelation with
the help of generalized circular transforms. Based on
the crosscorrelation property, a nonlinear trandation
invariant autocorrelation and a complete set of
smplified trandation invariants, called G-spectrum, can
be deduced. Moreover, the generalized circular
transforms can now be interpreted as signal dependent
transforms. In addition we will demonstrate how the G
-spectrum can dignificantly extend the pattern
separability properties for transforms with low
computeral complexity.

1. List of Acronyms

CT A class of nonlinear translation
invariant transforms.

FPGA Field Programmable Gate Array.

GT Generdized Transforms. Members are
the Walsh transform and the Fourier
Transform.

MGT Modified Generalized Transforms

GCT Generadized Circular Transform. A
classof nonlinear trandation
invariant transforms.

GCTn A member of the GCT.

MWHT Modified Walsh Hadamard Transform.

RMWHT Rationalized Modified Walsh
Hadamard Transform.

RT Rapid Transform. A member of CT.

SWT Square Wave Transform.

WHT Walsh Hadamard Transform.

2. Introduction

Nonlinear spatial transforms are established in signa
processing. They have proved to be helpful tools in
feature extraction and pattern recognition. Well known
members of the above mentioned nonlinear transforms
are the CT-transforms (e.g. Rapid transform), the power
spectrum of the Fourier transform, invariant integration
and others; sf. [4,5,7,10,11,12]. Our approach is based
on nonlinear trandation invariant transforms. In [7,8]
classes of one- and two-dimensional transforms are
described which can be easily calculated. The class of the
transform is based on a general concept. This concept
uses the so called generalized characteristic and
generalized circular matrices. Therefore they are caled
generalized circular transforms. All transforms have in
common that they use an amplitude spectrum G with
Id(N)+1 coefficients (1D-case). The coefficients are

ordered in period groups, similar to the power spectrum
of the Walsh Hadamard transform [2][3]. In opposite to
the power spectrum of the WHT, we have developed an
interesting property which holds for all the generalized
circular transforms. An absolute value spectrum G is
defined, which operates with sums of ordered period
groups. Absolute values of spectral coefficients are
summed up periodwise. This property is not valid for the
WHT and the generalized transforms (GT, MGT) [3].



An interesting fact is that the modified Walsh Hadamard
transform (MWHT) [3] and the Square Wave transform
(SWT) recently proposed by Pender and Covey [6], have
also this above mentioned property. This paper describes
a method to calculate the cyclic crosscorrelation with
the help of generalized circular transforms (GCT)[8].
Based on the crosscorrelation property, a trandation
invariant autocorrelation and a complete set of
simplified trandation invariants, called extended
absolute value spectrum G-spectrum, can be deduced.
Implementation in radix-2-structure is possible with a
computational complexity of O(N) up to O(NIA(N)),
where N is the length of the input data vector in the
1D-case. Hence, a hardware implementation on FPGA is
easy to achieve [8,9]. This paper focuses on the general
concept of the cyclic correlation property in the 1D-case.
The 2D-case can be deduced accordingly. Introducing
the correlation property of the GCT, we can give a new
interpretation for the transform matrix coefficients.
Moreover, the generalized circular transforms can now
be interpreted as signal dependent transforms. In
addition we compared different pattern separability
properties of the G-, and G-spectrum as well as the
autocorrelation for binary pattern.

The separability properties can be drastically extended.
Moreover, the separability properties of the Fourier
power spectrum can be determined with the transform
coefficients{+1,-1}.

3. Circular Transforms

In this section we sum up the major properties of the
generalized circular transforms [8]. Let x;<R and
XT = {X0 X1, s X1 ) be an  input  vector
(one-dimensional) and  XT={Xg,X1,..,Xn-1} its
transformed output vector. With Ay and By we denote
the spatial circular transform and its inverse (A and B
are quadratic (N xN)-transform matrices). The transform
matrices define a biorthogonal basis set.

X=Ay-xand x=+-BJ-X. (1)

Given a (2x2)-Hadamard matrix K =

+1 -1

I ] [1]. The
transform matrices can be expressed and evaluated
recursively as:
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AN:diag(fT%,A%)-[K(X)I
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BN:diag(rT%,B%)-[K(X)I
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The generalized characteristic matrices 'T and 'T are
defined for the dimension (5x%). The characteristic
matrices are calculated recursvely. For 3 the

characteristic matrix is defined as follows:
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The coefficient matrix A can now be defined in a sparse
matrix form:

Id(N)-1
| 11 diag(IN_z,K®I21)]-[K®Ig]. @

The last two matrices represent the rationalized MWHT
[7]. Eq.(4) shows that it is possible to characterize the
generalized circular transforms, with al the above
mentioned properties, with only one characteristic
coefficient vector:

-
Cﬂ:{ﬁ%_laﬁ%_za---aﬁO,ﬁ%N_l,...,ﬁ%,...,ﬂN_l} . (5)

Using different transform kernels T, it is possible to
generate various properties for the transforms. The
spectral coefficients of al A and B transforms are
grouped in the same way: Begining with the first N/2
spectral coefficients with the period N, N/4 coefficients
with the period N/2 following. The last two coefficient
vectors are the vectors with the shortest possible period 2
and the vector with the period 0. The last vector denotes
the average value of the input vector.

3.1 Shift Matrix and Absolute Value Spectrum G

With G we denote the trandation invariant absolute
value spectrum. It is defined by the above mentioned
period groups, nearly the same way as the power
spectrum of the WHT. We have used the well known
concept of  calculating the  shift  matrix
Sy = -An-SIN-BJ, -(N—1)<s<(N-1) [2] of a
transform. It can be shown for al circular transforms

that the addition of all absolute values of the spectra
vector leads to a trandation invariant spectrum G. [7,8].



4. The Cyclic Correlation Property

The general ideais based on the calculation of the cyclic
spectral crosss and auto- correlation of the circular
transforms. Let x;,yi € R and xT = {xo X1, ..., Xn_1}, resp.
y' ={y0,¥1,...Yn-1} bethe input vectors. If x and y are
two real N-periodic signals, then the 1D-discrete cyclic
crosscorrdation in the spatial domain is defined as
follows[3]:

Yo Y1 0 YN Xo
~1 | Yn1 Yo YN-2 X1
ENT S N
Yi Y2 0 Yo XN-1
1o g | 4 P
:N.y.x,y: D% C% (6)

In the spectral domain the cyclic crosscorrelation can be
written as Ryy = An - 'y= 77 - An - §- B - X. The matrix

y can be divided into submatrices, called C and D.
Applying eg.(2) to Ry, resultsin

_L MA 0
Ry=re| "2 | x.
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AN
MA::Z‘fTﬁ‘(Cﬁ—Dﬁ)‘rTL,
2 2 2 2

ME::Z.fT%-(C%ﬁ'D%)‘rTL- (7)
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With A% =(C%—D%) andE% Z(C%+D%) we denote
a difference matrix and a sum matrix which combines
the yi values in a particular way. Analyzing eq.(7) and
the above mentioned matrices leads to the following
Statements:
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I1. The matrix Ay has block-diagonal structure and can
be created in a recursion process.

I1l. Thefirst rows of each block A; of the matrix Ay can
be determined by the calculation of the rationalizied
MWHT (RMWHT): Y = RMWHT-y.

IV. The generalized characteristic matrix T is signd
dependent and can be determined via the matrix Ay.

The cyclic crosscorrelation in the spectral domain can
now be written as:

Ryy = ‘o X (8)

To get afurther insight, we compared the result of eq.(8)
with the generalized characteristic matrix T and the
characteristic coefficient vector cz. It follows, that the
edements of the block-diagonal T matrix can be
determined by the A matrix. Each block is calculated
independently.Hence, {Bi-1,Bx2,.Bo} =—{Yo,Y1,.... Yica},
the coefficients of the T matrix can be calculated via the
RMWHT. Until now, no constraints were defined for the
spectral coefficients X. It is evident (s. f. eqg.(4)) to
calculate the coefficients X with the RMWHT, because
the computeral complexity is extremely low. Of course
any other transform is applicable. The result in the
spectral domain can be written in a compact expression.
Here is the result for the first block {Xo, ..., X(ng)-1} Of

the A matrix.. The results for the other blocks can be
determined accordingly.

N

31
2
R =+ X Xi-Yi, p=0,

(N2) _ 1 Ly =
Riye = N2 2;4) Xi+ Yiep — Z;l) xi+%—p i,

p=1,2,...5 -1 9)

Remark. The cyclic convolution is obtained by applying
the shift matrix sS for s=1 to the spectral coefficients for

each period group{ fo, f1, ..} ' = 1S - {Yo, Y1, ..} ".
4.1 The Trandation Invariant Autocorrelation

A complete set of trandation invariants can be obtained
by using the discrete cyclic autocorrelation [3]
Rxx = ny|chxq ,0=0,1,..,N-1 of a data sequence.
Again, we used the well known concept of calculating
the shift matrix sSy of a transform. If the data sequence
in the spatial domain is permuted cyclicly, then the
submatrices A; contain all shift combinations of the
spectral vector X. It should be noted, that the spectrum
Rw« contains N spectral coefficients, but only (3 +1)



coefficients are needed to represent the cyclic trandation
invariant autocorrelation. The other coefficients are
redundant. The autocorreation sequence possesses odd
symmetry of the coefficients in each period group. In
particular, each coefficient group is odd around its
midpoint. The midpoint is always zero. Therefore it is
only necessary to compute the first half of the
coefficientsin each group.

4.2 The Extended Absolute Value Spectrum G

Based on the cyclic autocorrelation we introduce a
trandation invariant spectrum with reduced computera
complexity. The spectrum G can favourably be utilized
in pattern recognition. The ideaisto substitute one of the
spectral  coefficient vectors in each term of the
autocorrelation function by its binarized value +1 or -1.
This is achieved by introducing the signum function to
the elements of the A matrix. Hence:

éz ny|chsg1(Xq) ,q:O, 1,...,N-1. (10)

From eq.(10) it follows that {GO,G%,...,G,\H}
represents the known G-spectrum.

5. Results

In this section we present some experimental results
using the transforms for pattern separability tests. We
used binary test patterns as input vectors. Binary
numbers can be interpreted as patterns under cyclic
permutation. If a left (or right) shift is used on a
particular number, a new number in the particular class
is generated (e.g. N = 16; number of separable patterns =
4116). We compared our results with the results given by
the well known Fourier transform power spectrum and
the Rapid transform spectrum. In addition, we used four
circular transforms G (GCT1, GCT2, GCT3 [8], SWT
[6]).

The circular transforms are defined (example for N = 16)
asfollows:

1. GCT1L: cpy = {27,25,..,20,23,22, . ,20,0,-1,-1,1}"

This circular transform has a computational complexity
of NId(N). All computations can be calculated with
integers.

m(i+3)

2. GCT2: cpp=-k-cos(——) with i=1,2,.. ,N-1.

A radix-2-structure is not possible. The factor k is
chosen in a way that the last spectral coefficient
representsthe average value of the input vector.

3. GCT3: Cpz=1{ro,r1,....'n1}

The GCT3 coefficients are defined as a Gaussian noise
signal with variance g = 1 and average = 0. Calculations
in radix-2-structure are not possible.

4. SWT: ¢ =11,1,...,1,1,1,...,1,1,-1,-1,1} ",

This circular transform has a computational complexity
of NId(N). All computations can be calculated with
binary integers (here: +1,-1).

It is evident that the autocorrelation coefficients of all
the above mentioned transforms separate the same
amount (1876) of binary patterns as the Fourier power
spectrum. The proposed circular transforms G-, and G
-spectrum are superior in comparison to the Fourier
power spectrum and the Rapid transform for N > 4. In
general, the separability properties of the G-spectrum of
the GCT1, GCT2 and GCT3 are some what better than
those of the G-spectrum. The separability properties of
the SWT s increased significantly, where as the
computeral complexity of the SWT is low compared to
that of GCT1, GCT2 and GCT3. On the other hand, the
G-spectrum can be determined with Id(N)+1 coefficients,

where as the G-spectrum needs N coefficients (1D case).
Table 1 and 2 shows the results of the separability tests.

Table 1. G-spectrum: Amount of separable binary
patterns

N[ 2" Number of Rapid Fourier Power
Sep. Patterns Transform Spectrum
4 16 6 6 6
256 36 21 31
16 | 65536 4116 225 1876
N N GCT1 GCT2 GCT3 SWT [6]
4 16 6 6 6 6
256 31 31 33 29
16 | 65536 3245 3496 3527 668




Table 2. G-spectrum: Amount of separable binary
patterns

N 2V Number of Rapid Fourier Power
Sep. Patterns | Transform. Spectrum
4 16 6 6 6
256 36 21 31
16 | 65536 4116 225 1876
N N GCT1 GCT2 GCT3 SWT [6]
4 16 6 6 6 6
256 33 33 33 33
16 | 65536 3527 3527 3527 3527

6. Conclusion

Based on the cyclic correlation property of the signa
dependend generalized circular transforms, we have
presented an extended trandation invariant spectrum G,
which can be calculated with ssmple operations, such as
addition, subtraction and some absolute value
calculations. Furthermore, since no transcedental
functions appear in the GCT correlation method, thereis
no round-off error in these agorithms. Unlike the
Fourier transform, no complex calculations are needed.
The proposed concept leads to a significant increased
separability property for the SWT. The computeral
complexity is low compared to other transforms.
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