
Abstract

Nonlinear spatial transforms are established in feature
extraction and pattern recognition. This paper describes
a method for calculating the cyclic crosscorrelation with
the help of generalized circular transforms. Based on
the crosscorrelation property, a nonlinear translation
invariant autocorrelation and a complete set of
simplified translation invariants, called -spectrum, canG̃
be deduced. Moreover, the generalized circular
transforms can now be interpreted as signal dependent
transforms. In addition we will demonstrate how the G̃
-spectrum can significantly extend the pattern
separability properties for transforms with low
computeral complexity.

1. List of Acronyms 

T A class of nonlinear translation n

invariant transforms.

FPGA Field Programmable Gate Array.

GT Generalized Transforms. Members are 
the Walsh transform and  the Fourier 
Transform.

MGT Modified Generalized Transforms

GCT Generalized Circular Transform. A 
class of nonlinear translation 
invariant transforms.

GCTn A member of the GCT.

MWHT Modified Walsh Hadamard Transform.

RMWHT Rationalized Modified Walsh 
Hadamard Transform.

RT Rapid Transform. A member of T.n

SWT Square Wave Transform. 

WHT Walsh Hadamard Transform.

2. Introduction

Nonlinear spatial transforms are established in signal
processing. They have proved to be helpful tools in
feature extraction and pattern recognition. Well known
members of the above mentioned nonlinear transforms
are the T-transforms (e.g. Rapid transform), the powern

spectrum of the Fourier transform, invariant integration
and others; s.f. [4,5,7,10,11,12]. Our approach is based
on nonlinear translation invariant transforms. In [7,8]
classes of one- and two-dimensional transforms are
described which can be easily calculated. The class of the
transform is based on a general concept. This concept
uses the so called generalized characteristic and
generalized circular matrices. Therefore they are called
generalized circular transforms. All transforms have in
common that they use an amplitude spectrum G with
ld(N)+1 coefficients (1D-case). The coefficients are

ordered in period groups, similar to the power spectrum
of the Walsh Hadamard transform [2][3]. In opposite to
the power spectrum of the WHT, we have developed an
interesting property which holds for all the generalized
circular transforms. An absolute value spectrum G is
defined, which operates with sums of ordered period
groups. Absolute values of spectral coefficients are
summed up periodwise. This property is not valid for the
WHT and the generalized transforms (GT, MGT) [3].
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An interesting fact is that the modified Walsh Hadamard
transform (MWHT) [3] and the Square Wave transform
(SWT) recently proposed by Pender and Covey [6], have
also this above mentioned property. This paper describes
a method to calculate the cyclic crosscorrelation with
the help of generalized circular transforms (GCT)[8].
Based on the crosscorrelation property, a translation
invariant autocorrelation and a complete set of
simplified translation invariants, called extended
absolute value spectrum -spectrum, can be deduced.G̃
Implementation in radix-2-structure is possible with a
computational complexity of O(N) up to O(Nld(N)),
where N is the length of the input data vector in the
1D-case. Hence, a hardware implementation on FPGA is
easy to achieve [8,9]. This paper focuses on the general
concept of the cyclic correlation property in the 1D-case.
The 2D-case can be deduced accordingly. Introducing
the correlation property of the GCT, we can give a new
interpretation for the transform matrix coefficients.
Moreover, the generalized circular transforms can now
be interpreted as signal dependent transforms. In
addition we compared different pattern separability
properties of the G-, and -spectrum as well as theG̃
autocorrelation for binary pattern.
The separability properties can be  drastically extended.
Moreover, the separability properties of the Fourier
power spectrum can be determined with the transform
coefficients {+1,-1}.

3. Circular Transforms

In this section we sum up the major properties of the
generalized circular transforms [8]. Let  andxi c g

 be an input vectorxT = x0,x1, ..., xN−1

(one-dimensional) and  itsXT = X0, X1, ..., XN−1

transformed output vector. With AN and BN we denote
the spatial circular transform and its inverse (A and B
are quadratic (N xN)-transform matrices). The transform
matrices define a biorthogonal basis set.

 and   .              (1)X = AN $ x x = 1
N $BN

T
$X

Given a (2x2)-Hadamard matrix K =  [1]. The+1 −1
+1 +1

transform matrices can be expressed and evaluated
recursively as:

,               AN = diag( fT N
2

, A N
2

) $ K1 I N
2

.           (2)BN = diag(rT N
2

, B N
2

) $ K1 I N
2

The generalized characteristic matrices  and  arefT rT
defined for the dimension . The characteristic( N

2 x N
2 )

matrices are calculated recursively. For  theN
2

characteristic matrix is defined as follows:

.                   (3)fT N
2

:=
−b N

2 −1 � −b0

� � �

b N
2 −2 � −b N

2 −1

The coefficient matrix A can now be defined in a sparse
matrix form:

     AN :=

fT N
2

0

�

0 1

$ ...

.      (4)... $ P
i=1

ld(N)−1

diag(IN−2i , K1 I2i−1 ) $ K1 I N
2

The last two matrices represent the rationalized MWHT
[7]. Eq.(4) shows that it is possible to characterize the
generalized circular transforms, with all the above
mentioned properties, with only one characteristic
coefficient vector:

.   (5)cb = b N
2 −1, b N

2 −2, ...,b0,b 3$N
4 −1, ...,b N

2
, ...,bN−1

T

Using different transform kernels T, it is possible to
generate various properties for the transforms. The
spectral coefficients of all A and B transforms are
grouped in the same way: Begining with the first N/2
spectral coefficients with the period N, N/4 coefficients
with the period N/2 following. The last two coefficient
vectors are the vectors with the shortest possible period 2
and the vector with the period 0. The last vector denotes
the average value of the input vector.

3.1 Shift Matrix and Absolute Value Spectrum G

With G we denote the translation invariant absolute
value spectrum. It is defined by the above mentioned
period groups, nearly the same way as the power
spectrum of the WHT. We have used the well known
concept of calculating the shift matrix

,  [2] of asSN := 1
N $AN $

sIN $BN
T −(N − 1) [ s [ (N − 1)

transform. It can be shown for all circular transforms  
that the addition of all absolute values of the spectral
vector leads to a translation invariant spectrum G. [7,8].
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4. The Cyclic Correlation Property

The general idea is based on the calculation of the cyclic  
spectral cross- and auto- correlation of the circular
transforms. Let  and , resp.xi , yi c g xT = x0,x1, ..., xN−1

 be the input vectors. If x and y areyT = y0, y1, ..., yN−1

two real N-periodic signals, then the 1D-discrete cyclic
crosscorrelation in the spatial domain is defined as
follows [3]:

 rxy := 1
N $

y0 y1 � yN−1

yN−1 y0 yN−2

� � �

y1 y2 � y0

$

x0

x1

�

xN−1

 .           (6)= 1
N $ ŷ $ x, ŷ =

C N
2

D N
2

D N
2

C N
2

In the spectral domain the cyclic crosscorrelation can be
written as . The matrix R xy = AN $ rxy= 1

N2 $AN $ ŷ $BN
T
$X

 can be divided into submatrices, called C and D.ŷ
Applying eq.(2) to Rxy results in

 .                      Rxy = 1
N2 $

MD 0
0 MS

$X

          DN

,MD := 2 $ fT N
2
$ (C N

2
− D N

2
) $ rT N

2

T

.             (7)MS := 2 $ fT N
2
$ (C N

2
+ D N

2
) $ rT N

2

T

With  and  we denoteD N
2

= (C N
2

− D N
2

) S N
2

= (C N
2

+ D N
2

)
a difference matrix and a sum matrix which combines
the yi values in a particular way. Analyzing eq.(7) and
the above mentioned matrices leads to the following
statements:

I.  and  .2 $

fT N
2
$ (C N

2
− D N

2
) $ rT N

2

T
h D N

2
S N

2
h Rxy N

2

II. The matrix  has block-diagonal structure and canDN

be created in a recursion process.

III. The first rows of each block  of the matrix  canD i DN

be determined by the calculation of the rationalizied
MWHT (RMWHT):  . Y = RMWHT$y

IV. The generalized characteristic matrix T is signal
dependent and can be determined via the matrix .DN

The cyclic crosscorrelation in the spectral domain can
now be written as:

 .      (8)Rxy =

D N
2

0

D N
4

�

0 1

$X

To get a further insight, we compared the result of eq.(8)
with the generalized characteristic matrix T and the
characteristic coefficient vector . It follows, that thecb

elements of the block-diagonal T matrix can be
determined by the  matrix. Each block is calculatedD

independently.Hence, bk−1,bk−2, ...,b0 = − Y0, Y1, ..., Yk−1 ,
the coefficients of the T matrix can be calculated via the
RMWHT. Until now, no constraints were defined for the
spectral coefficients X. It is evident (s. f. eq.(4)) to
calculate the coefficients X with the RMWHT, because
the computeral complexity is extremely low. Of course
any other transform is applicable. The result in the
spectral domain can be written in a compact expression.
Here is the result for  the first block  of  X0, ..., X (N/2)−1

the  matrix.. The results for the other blocks can beD

determined accordingly.

,Rxy0

(N/2) = 1
N2 S

i=0

N
2 −1

Xi $ Yi, p = 0

       Rxyp

(N/2) = 1
N2 S

i=0

N
2 −1−p

Xi $ Yi+p − S
i=0

p−1

Xi+ N
2 −p $ Yi ,

          (9)p = 1, 2, ..., N
2 − 1.

Remark. The cyclic convolution is obtained by applying
the shift matrix sSi for s=1 to the spectral coefficients for
each period group .b0,b1, ... T = 1Si $ Y0,Y1, ... T

4.1 The Translation Invariant Autocorrelation

A complete set of translation invariants can be obtained
by using the discrete cyclic autocorrelation [3]

 of a data sequence.Rxx = Rxy Yqc Xq , q = 0, 1, ..., N − 1
Again, we used the well known concept of calculating
the shift matrix  of a transform. If the data sequencesSN

in the spatial domain is permuted cyclicly, then the
submatrices  contain all shift combinations of theD i

spectral vector X. It should be noted, that the spectrum
Rxx contains N spectral coefficients, but only ( N

2 + 1)
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coefficients are needed to represent the cyclic translation
invariant autocorrelation. The other coefficients are
redundant. The autocorrelation sequence possesses odd
symmetry of the coefficients in each period group. In
particular, each coefficient group is odd around its
midpoint. The midpoint is always  zero. Therefore it is
only necessary to compute the first half of the
coefficients in each group.

4.2 The Extended  Absolute Value Spectrum  G̃

Based on the cyclic autocorrelation we introduce a
translation invariant spectrum with reduced computeral
complexity. The spectrum  can favourably be utilizedG̃
in pattern recognition. The idea is to substitute one of the
spectral coefficient vectors in each term of the
autocorrelation function by its binarized value +1 or -1.
This is achieved by introducing the signum function to
the elements of the   matrix. Hence:D

.           (10)G̃ = Rxy Yqc sgn(Xq) , q = 0, 1, ..., N − 1

From eq.(10) it follows that G̃0, G̃ N
4

, ..., G̃N−1

represents the known G-spectrum.

5. Results

In this section we present some experimental results
using the transforms for pattern separability tests. We
used binary test patterns as input vectors. Binary
numbers can be interpreted as patterns under cyclic
permutation. If a left (or right) shift is used on a
particular number, a new number in the particular class
is generated (e.g. N = 16; number of separable patterns =
4116). We compared our results with the results given by
the well known Fourier transform power spectrum and
the Rapid transform spectrum. In addition, we used four
circular transforms   (GCT1, GCT2, GCT3 [8], SWTG̃
[6]). 
The circular transforms are defined (example for N = 16)
as follows:

1. GCT1: cb1 = 27, 26,�, 20, 23, 22,�, 20, 0, −1, −1, 1 T

This circular transform has a computational complexity
of Nld(N). All computations can be calculated with
integers.

2. GCT2:   with  .cb2 = −k $ cos(
o$ i+ 1

2

N ) i = 1, 2,�, N − 1

A radix-2-structure is not possible. The factor k is
chosen in a way that the last spectral coefficient
represents the average value of the input vector.

3. GCT3:  .cb3 = r0, r1, ..., rN−1
T

The GCT3 coefficients are defined as a Gaussian noise
signal with variance  and average = 0. Calculationsr = 1
in radix-2-structure are not possible. 

4. SWT:   .cb4 = 1, 1,�, 1, 1, 1,�, 1, 1, −1, −1, 1 T

This circular transform has a computational complexity
of Nld(N). All computations can be calculated with
binary integers (here: +1,-1).
It is evident that the autocorrelation coefficients of all
the above mentioned transforms separate the same
amount (1876) of binary patterns as the Fourier power
spectrum. The proposed circular transforms G-, and G̃
-spectrum are superior in comparison to the Fourier
power spectrum and the Rapid transform for N  > 4. In
general, the separability properties of the -spectrum ofG̃
the GCT1, GCT2 and GCT3 are some what better than
those of the G-spectrum. The separability properties of
the SWT is increased significantly, where as the
computeral complexity of the SWT is low compared to
that of GCT1, GCT2 and GCT3. On the other hand, the
G-spectrum can be determined with ld(N)+1 coefficients,
where as the -spectrum needs N coefficients (1D case).G̃
Table 1 and 2 shows the results of the separability tests.

Table 1. G-spectrum: Amount of separable binary
patterns

187622541166553616

3121362568

666164

Fourier Power
Spectrum

Rapid
Transform

Number of  
Sep. Patterns

2N N

6683527349632456553616

293331312568

6666164

SWT [6]GCT3GCT2GCT12N N
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Table 2. -spectrum: Amount of separable binaryG̃
patterns

187622541166553616

3121362568

666164

Fourier Power
Spectrum

Rapid  
Transform.

Number of
Sep. Patterns

2N N

35273527352735276553616

333333332568

6666164

SWT [6]GCT3GCT2GCT12N N

6. Conclusion

Based on the cyclic correlation property of the signal
dependend generalized circular transforms, we have
presented an extended translation invariant spectrum ,G̃
which can be calculated with simple operations, such as
addition, subtraction and some absolute value
calculations. Furthermore, since no transcedental
functions appear in the GCT correlation method, there is
no round-off error in these algorithms. Unlike the
Fourier transform, no complex calculations are needed.
The proposed concept leads to a significant increased
separability property for the SWT. The computeral
complexity is low compared to other transforms.
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