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Abstract

The Gabor filter is a valuable tool in computer vision,
however, its high computational load precludes its use in
many applications. This paper presents a novel method
for approximating Gabor wavelets with a function that can
be convolved more efficiently in the spatial domain. The
method extends the well known separable nature of the Ga-
bor filter, and demonstrates a means for reducing the com-
putation required when determining the separable 1D con-
volutions. Experimental results are presented showing the
performance of the new method. It is demonstrated that the
new method provides an accurate approximation to the con-
volution with the 1D separated wavelet component of the
Gabor kernel, while requiring only60% of the computation
normally required for this operation.

1 Introduction

Gabor filters allow local frequency information to be ex-
tracted from an image. Unlike Fourier analysis that deter-
mines a global frequency domain representation of the en-
tire image, Gabor filters estimate the strength of certain fre-
quency bands and orientations at each location in the image,
giving a result in the spatial domain.

Gabor filters are a popular tool for image analysis, and
have found widespread use in computer vision. Applica-
tions have included face tracking [5], face and object recog-
nition [9, 8], and texture analysis [4, 1, 2]. The use of Gabor
filters is supported by neurophysical studies that have sug-
gested the behaviour of receptive fields of the simple cells
in the primary visual cortex can be well approximated by
Gabor filters [6, 3]. Accordingly Gabor filters have also
found applications in biologically inspired early vision sys-
tems [7].

The drawback to Gabor filtering in computer vision is
the high computational load required. Applying a Gabor
filter to an image involves convolution with a set (or jet) of

Gabor wavelets consisting of numerous wavelet kernels of
different wavelengths and orientations. While the cost of
performing these convolutions can be significantly reduced
by determining them separably, the total computation is of-
ten still prohibitively high.

In this paper an accurate approximation to the Gabor
wavelet is presented that facilitates significant increases in
the efficiency of the separable convolutions. Section 2 of
this paper reviews Gabor wavelets and examines their sepa-
rable structure. Section 3 describes how these wavelets can
be accurately approximated by a new wavelet that can be
convolved with an image significantly more efficiently than
a standard Gabor wavelet. Section 4 shows the results of
this technique applied to real images, and Section 5 con-
cludes with a discussion of further work.

2 Background

2.1 Gabor Wavelets and Jets

A Gabor wavelet is a complex planar wave restricted by
a two-dimensional Gaussian envelope. Figure 1 shows the
real and imaginary components of a Gabor wavelet. Aside
from scale and orientation, the only thing that can make two
Gabor wavelets differ is the ratio between wavelength and
the width of the Gaussian envelope.

Every Gabor wavelet has a certain wavelength and orien-
tation, and can be convolved with an image to estimate the
magnitude of local frequencies of that approximate wave-
length and orientation in the image.

A jet of Gabor wavelets consists of numerous wavelets
of different wavelengths and orientations. By convolving
an image with a full jet of filters it is possible to quantify
the magnitude and phase of the local frequency information
within the bandwidths of the jet. All wavelets in a jet are
typically identical apart from their size and shape.
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Figure 1. Quadrature components of a Gabor wavelet kernel, a. real (symmetric) component, b. imag-
inary (asymmetric) component.

2.2 Separable Formulation

The 2D Gabor wavelet kernel is separable, that is, it can
be represented as a convolution of two orthogonal 1D com-
ponents. These components are: a gaussiang(x), and a
waveletw(x) (a complex wave enveloped by a Gaussian),
defined respectively by

g(x) =
1√

2πσ2
exp(− x2

2σ2
) (1)

and
w(x) = g(x)ejωx (2)

wherej =
√
−1 and ω is the frequency of the wavelet.

These functions describe the separable components of a Ga-
bor filter kernel, and are illustrated in Figure 2.

It follows that convolution of a Gabor kernel with an im-
age can be calculated separably. For example, a horizontally
alignedn× n Gabor kernelK can be written as

K = g ∗w> (3)

whereg andw aren × 1 vectors whose elements are de-
fine by regularly samplingg(x) andw(x) across intervals
centred atx = 0. The convolution ofK with an imageI is
then

I ∗K = I ∗ (g ∗w>) = (I ∗ g) ∗w> (4)

By separating the 2D convolution into two 1D convolutions
the computation is reduced fromO(pn2) to O(2np) for an
n × n kernel and an image withp pixels. Note thatw is
complex, so theI ∗g convolution is performed first in order
that only the last convolution require complex arithmetic.

This separable formulation can be applied to any Gabor
kernel. It is less straightforward to implement for filter ori-
entations where the separable components of the kernel are

not aligned with the vertical or horizontal pixel axes, how-
ever, it is feasible to separably determine a convolution with
an arbitrarily aligned kernel.

3 A Faster Wavelet

In Section 2 it was demonstrated how a convolution with
a separable 2D kernel can be performed more efficiently by
serial calculation of two orthogonal 1D convolutions. In
this section it will be shown how the 1D convolution with
the complex wavelet component (w in Equation 4) can be
performed more efficiently by approximating the wavelet
cross-section with a function that can be further separated
into a convolution involving a sparse component.

Section 3.1 introduces thesparse convolution, this is the
device that delivers the computational savings when calcu-
lating the wavelet transform. Section 3.2 presents an ap-
proximation to the 1D Gabor wavelet function that can be
applied using the sparse convolution. Section 3.3 describes
the potential benefits in terms of reduced computation.

3.1 Sparse Convolution

The termsparse convolutionis introduced to describe
convolutions involving sparse matrices, that is, matrices
most of whose elements are zero. In general, calculating
the convolution of ann × m kernelK at a single pixel lo-
cation in an image requiresnm products andnm− 1 sums.
However, ifK is sparse, with a known sparse representation
andp non-zero elements, it is only necessary to computep
products andp− 1 sums. Forp << nm this offers a signif-
icant computational saving.

In this paper sparse convolutions are denoted by? to dis-
tinguish them from the standard convolution, denoted by∗.
While convolution and sparse convolution are mathemati-
cally equivalent, using the sparse convolution when numer-
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Figure 2. Separable components of a Gabor kernel, a. Gaussian envelope, b. Real (symmetric) part
of w(x), c. Imaginary (asymmetric) part of w(x).

ically determining a convolution involving a sparse matrix
drastically reduces the computation.

3.2 A Sparse Approximation to the Gabor
Wavelet

An approximation to the cross-section of the Gabor
wavelet is developed that can be constructed using a sparse
convolution of two parallel components. That is,w(x) in
Equation 2 is replaced by

ŵ(x) = c(x) ? q(x) (5)

where

c(x) =
{

cos(x) for π
2 ≤ x ≤ π

2
0 otherwise

,

q(x) =


g(x) for x

π mod4 = 0
jg(x) for x

π mod4 = 1
−g(x) for x

π mod4 = 2
−jg(x) for x

π mod4 = 3
0 otherwise

,

andj =
√
−1. Figure 3 illustrates these functions, and it

is clear thatŵ(x) can be constructed from a sparse convo-
lution of c(x) andq(x). The functionc(x) is half a wave-
length of a cosine wave, andq(x) is zero everywhere except
for a small number of control points corresponding to the
turning points ofw(x). Figure 4 demonstrates how closely
ŵ(x) approximatesw(x).

The new wavelet̂K is defined analogously to the separa-
ble formulation of the standard Gabor wavelet (Equation 3)

K̂ = g ? ŵ>

where the elements of̂w are defined by regularly sampling
the functionŵ(x) across an interval centred atx = 0.

As with the standard Gabor wavelet, when̂K is con-
volved separably with an imageI it is resolved into two
1D convolutions of orthogonal components

I ∗ K̂ = (I ∗ g) ∗ ŵ>

However, the second of these convolutions can be further
separated by using the separable nature ofŵ

(I ∗ g) ∗ ŵ> = (I ∗ g) ∗ (c ? q)> =
(
(I ∗ g) ∗ c>

)
? q>)

The result is that the convolution witĥw> is reduced from
O(pn) to O(p(k + s)) for an image withp pixels, whereŵ
is n× 1, c is k × 1 andq hass non-zero elements. Clearly
k + s < n for all practically scaled digital Gabor kernels.

At first it may appear that all control points (the non-
zero elements ofq(x)) must be located at integer pixel lo-
cations, however, this is not the case. A control point at a
non-integer pixel location can be precisely represented by
fractionally weighted control points at both adjacent inte-
ger pixel locations. To emulate the placement of a con-
trol point q(x) at a non-integer pixel locationx two con-
trol points are placed at adjacent integer locationsx0 and
x1 (x0 < x < x1). The heights of these control points are
determined linearly as

q(x0) = (x1 − x)q(x)

q(x1) = (x− x0)q(x)

In general all control points bar the central one may re-
quire sub-pixel placement (the central pixel is always lo-
cated directly over the pixel about which the filter is cen-
tred).

3.3 Required Computation

To perform a convolution of ann × 1 complex vector
w at a single location in an image is an orderO(2n) oper-
ation (the 2 is due to the real and imaginary components).
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Figure 3. a. Half a wavelength of a cosine wave c(x), b. Sparse function q(x) consisting of discrete
control points, real part shown solid, imaginary part shown dashed, c. The sparse approximation to
the 1D wavelet ŵ(x), real part shown solid, imaginary part shown dased,

a b

Figure 4. Symmetric (a) and asymmetric (b) quadrature components of a 1D wavelet function w(x)
(solid line), and the approximation ŵ(x) (dashed)
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Performing the same convolution with a vectorŵ can be
reduced to orderO(k + s) if ŵ is written as a sparse convo-
lution

ŵ = c ? q (6)

andk ands are the length ofc and the number of non-zero
control points inq respectively.

The potential computational savings can be quantified by
determining the appropriate values ofk ands for a given
wavelet.

An n × 1 complex wavelet vector witht turning points
in the real (symmetric) part of its cross-section can be ap-
proximated by Equation 6, where the length ofc is given
by

k = 2bn− 1
2t

c+ 1

and the number of control points inq is

s ≤ 4b− 1.

These values are determined as follows:c is defined so it
has a centre pixel, meaning its length must be an odd num-
ber of pixels, and it should be as close as possible to – but
not greater than – half a wavelength of the wavelet function
w(x). The maximum number of control points inq is de-
termined from the case where every point that could require
sub-pixel placement does so. There aret real turning points,
one of which is at the central pixel, so there can be at most
2t−1 real control points. There areb+1 imaginary control
points, but the outer-most two are on the edge of the wavelet
so cannot be given sub-pixel accurate placement, therefore
there can be at most2b imaginary integer control points.

In summary, for a complexn × 1 wavelet vector witht
turning points a direct computation of the convolution will
be an orderO(n) operation, whereas if it is calculated using
the sparse convolution it will be an orderO(bn−1

2t c + 2t)
operation.

Figure 5 illustrates how these orders increase as func-
tions of wavelet sizen and number of turning pointst, and
convincingly shows that the sparse approximation is more
efficient to compute for all realistic values ofn andt.

4 Evaluation of Performance

This section presents results of applying the sparse ap-
proximation of the Gabor wavelet to images, and compar-
ing both the visual results and the time required to perform
the computations.

Figure 6 shows the results of convolving an image with
a standard 1D Gabor wavelet, and a sparse approximation
of the same 1D wavelet. Visually the two resulting images

Figure 5. Computational order as a function of
wavelet size n and number of turning points
t for direct convolution (top surface) and
sparse convolution (lower surface).

appear identical, and analysis shows that the power of the
two images differs by only1.55%.

The CPU time required to determine the convolution
with the real component of a25 × 1 Gabor wavelet (with
2.5 wavelengths contained within the Gaussian envelope)
was timed over fifty iterations on a large image, and com-
pared with the time required to perform the same operation
using a sparse approximation and the sparse convolution.
The standard method took120 seconds in Visual C++ on
a 750 MHz Pentium III compared to72 seconds using the
sparse convolution.

Thus a significant increase in efficiency can be obtained
whilst providing an accurate approximation to the convolu-
tion with a true Gabor wavelet.

5 Conclusions and Future Work

A method has been shown that offers significant in-
creases in performance of computing one half of the sep-
arable convolution of a Gabor wavelet with an image.

It remains to increase the efficiency of the second half of
this convolution, namely the separable convolution with a
1D Gaussian. Two main avenues towards this goal are cur-
rently under investigation. The first is to approximate the
Gaussian by a piecewise linear function allowing succes-
sive convolutions to be calculated iteratively. The second is
to approximate it as a sparse convolution of B-splines and a
number of control points. Both these approaches potentially
offer significant increases in efficiency with nominal degra-
dation in performance, and in combination with the efficient
method for convolving the 1D wavelet presented herein of-
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Figure 6. a. Original image, b. Real component of response from standard horizontally aligned
Gabor filter, c. Real component of response from sparse approximation of a horizontally aligned
Gabor filter.

fer a significantly more efficient alternative to the standard
implementation of the digital Gabor wavelet.

References

[1] A. C. Boviak, M. Clark, and W. S. Geisler. Multichannel
texture analysising using localized spatial filters.IEEE Tran-
sations on Pattern Analysis and Machine Intelligence, 12:55–
73, 1990.

[2] A. K. Jain and F. Farrokhnia. Unsupervised texture segmenta-
tion using gabor filters.Pattern Recognition, 24:1167–1186,
1991.

[3] J. P. Jones and L. A. Palmer. An evaluation of the two-
dimensional gabor filter model of simple receptive fields in
cat striate cortex.Journal of Neurophysiology, 58(6):1233–
1258, 1987.

[4] M. Lades, J. C. Vorbr̈uggen, J. Buhmann, J. Lange, C. von der
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Tracking facial feature points with gabor wavelets and shape
models. InProc 1st International Conference on Audio- and
Video-based Biometric Person Authentication, 1997.

[6] D. A. P. S. F. Ronner. Visual cortical neurons as localized spa-
tial frequency filters.IEEE Trans on Systems, Man, Machines
and Cybernetics, 13(5):907–916, 1983.

[7] J. Thiem and G. Hartmann. Biologically-inspired design of
digital gabor filters upon a hexagonal sampling scheme. In

Proceedings of International Conference on Pattern Recogni-
tion, 2000.

[8] L. Wiskott, J.-M. Fellous, N. Kr̈uger, and C. von der Mals-
burg. Face recognition by elastic bunch graph matching. In
L. C. J.et al, editor,Intelligent Biometric Techniques for Fin-
gerprint and Face Recoginition. Springer Verlag, 1999.
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