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Abstract ASMs (also knwn as point distribtion models) are
Thi intod bust | & | statistical models of the shapes of objects which itera-
ith 'E pa%er Into uce; aohust r:p trR m(;:; ?gz} tively deform to lock on an instance of an object in an
.”t M based on imjve aCt'Ve_S ape models. tefmage. Here it is important to note that the ledk
mtroduc_mg the prlnC|pIe_ of active shgpe_mod_els, OWstance may not necessarily be the real shape of the
two main abéevgme_ntshm d?ﬁhl’lg Wéﬂ] :cl_p_acklng current object. Havever, all the resultant shapes are
are presented. One Is that abust model itting - . irained by statistical shape modelsaxyonly in

cedue substantially dfering from the original wa L o -
: ys occurring in the training set. The training set has
active shape model apmach has been deloped. previously been manually labelled.

The other is that &icking on eab new frame is based This paper presents ourdwnain achigements in
on a priori knowledg about lip appeance and the VIS paper presents oul ) S
- : dealing with lip tracking with ASMs. Firstlya rolust
resultant position and shape of thepous flame as . . iy
well as the curent imaye structue. This combina- model ftting procedure substantially ééfring from
i the original approach has beenvdoped. In our

tion has sectd a consistent and acate global lip model ftting, a pattern matching criteria, instead of
tracking. The algorithm has been tested on various . 9.ap 9 '

real video sequences and has consistently dem?nﬁfgr'gvaél (i\gzgalzggebIasngIztcirlzcet’:sheacsor?c;ele;a%i?d to
strated obust performance onarcking deformable . P 9 . d y .
shapes. ing on each ne frame is based on both the statistics

of the training set and the resultant position and shape
of the pre&ious frame. This combination has secured a
consistent and practical object tracking.

_ . o This paper is @anized as follos. Section 2 intro-

L'_p tracking in \{l(j_eo SEquences IS aﬁdﬂilj[ pf,‘?b' duces the aate shape models. Section 3 describes our
lem in computer vision due to the inhereatiability efforts on impraing the performance of original
between indiiduals and non-rigid nature of the "pASMs Section 4 gies details of the raist lip track-
contour Here the lip contour means the outer Cofliy o gorithm. Experiment results on lip tracking are

tou_r of the “P- The appearance of a lip in an ima en in Section 5. Conclusions are made in Section 6.
varies with diferent subject, content of speech an

lighting conditions. Substantial research has begn  Active Shape Models

done on lip tracking recentifMajor reported tech- o

niques for lip tracking are avé contour [1], snak 21 Statistical shape models

models [2] and deformable templates [3]. The essentials of agé shape models are statistical
We use a top-den strat@y in developing a shape models (SSMs) which angilbfrom analyzing

model-based lip tracking algorithm. Thest step is the structures of labellexamples. & learn what are

to build models describing non-rigid shapes of lipg&ind what are not plausible structu@iations with

Secondly fitting these models to images to locatthese statistical shape models,italfthe best plausi-

lips. Among \arious model-based image interpretale structure in a test image.

tion algorithms [1, 2, 3, 4, 5], the astishape model  Following three stages are needed tild SSMs

(ASM) approach introduced by Cootes et al. prevhen a set of shapaamples is gien.

vides more &vorable shape description properties.

1. Introduction



Stege 1 Suppose there akeimages in the training vary only in ways seen in the training set. Another is
set, then each shape in the training set is represeiibetl a model instance and a reagj&drare matched or
by n labelled landmark points. Here the landmarfiited in an optimal ay.
points are so selected thatyrere consistent from one  |n dealing with matching or fitting a model instance
image to anothefThis selection guarantees that gx) and a real tget (7 ), both the shape paramete) (
given landmark point corresponds to a particular paid the pose parameters, ¢, 6.s) are irvolved.
of the object. Br example, the left-most corner pointunder the assumption that a rough starting position is
is selected as a landmark in lip tracking. known, ASMs proceed in follwing three steps to iter-

Stage 2 All the labelled trackingxamples are atively fit to an image.

aligned into common coordinates in suchaywhat (1) finding local matching to model points: for each
the sum of the distance of each shape to the meap@iht (x = (x,y,)) on current shape, find its best

the training set is minimized. The alignment opergycal matchx; = (x, y) . These locally matched points
tion, symbolized as\, , o, includes translating form a nev shapex .

(%, Y,), rotating _@) and_ scaling ). After the align- (2) updating the shape and pose parameters
ment, a shape in 2D image can be represented l@é, &.v,6,s) to best fit the model instance to thevhe

2*n element @ctor ask = (x;, ..., X Y1, s Yp) - found shape .

_ Stege 3 $|nce t_he training set forms a dl_suﬂmn (3) repeating (1) and (2) until ceargence is

in the 2*n dimensional space, a parameterized modglhiaed.

of the formx = F(6) can represent the trainingaam-
ples and generate plausibleasnexamples similar to
training set. Herer is a function ofo, ands is the
shape parameteevtor of the model. The model can

be simply formulated by applying the principal com- (1) finding local matiing to model points

ponent analysis (PCA) [6] on the training data. The For ary intermediate outcome of shajieding, the

The details of steps (1) and (2) areegi belov.
2.2.2 algorithm

resultant shape model can bgeessed as next possible position of each model poititcan be
deduced from its local statistical structure in the train-
x=x+®b 1) ing set. A practical ay of selecting the local structure

is to consider the gyescale alues on the proé nor-
mal to the shape boundary on the model point. Figure

wherex is the mean of the, @ is a2*n*t dimen- . : . ’ .
1. illustrates the consideration, where a profile consist-

sion vector containing eigemwectors of the caariance
of x. The selectedl eigervectors correspond to the
largest eigevalues of the omriance matrix.t(can be intermediate
considered as the number of models to be retained.) shape model

) g O model point
is at element ector of shape parametersen by , © o 5
/\/\

Q target
e
b=3"(x-x (2) W

a profile normal
to model boundary

WhereT represents transpose operation.

It can be seen thatweshapes can be generated by ~ Figure 1. illustration of a shape model
varying the shape parameters. and a profile on a model point

22 Active shape models ing of five points (solid circles) is dna perpendicular

2.2.1 definition to the shape boundary

When the statistical shape models describedebo In the actve shape models introduced by Cootes et
are deformed iterately to ft the shape of an object,al. [4, 5, 7], grayscale dedtives at one centre point
they are considered agt shape models. There arand k points either side of a model point are sampled
two essential components in the ruleseyming the along its prafe. For each training image, thik+1
deformation. One is that shapes are constrainedgtay scale devatives on théth model point can be
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represented with aectord,. The distrilution of the structured. and its statistical pri& structure which
grayscale devatives on theth model point for all the is specified bys ands, . In the approach described by
training images can be loe# upon as a mwriate Cootes et al., Mahalanobis distance is adopted to
Gaussian with meam and c@ariances,. This gves judge the goodness of fit.

a statistical profile model for the model point. In test- Through a detailed study on the performance of
ing, the ftness of the prafie structure on théth the MD, we hae found that it does not\@ consis-
model point to the statistical profile model isen by tent goodness oftfon two shapes. This can be illus-

the Mahalanobis distance (MD) [8] as trated by a simplexample. For two vectors
a = (12345 andp = (54,321), though thg both

f(@) = @-a)'s, (@ -d) (3) have d = 3 ands, = 25, they are tvo different struc-

tures when representing sampidues in a 2D image.
To find the best fitting (i.e., minimal@) ), the fitt !N order to introduce a more accuraiting

ness test along the pilefis done2(m-k)+1 times scheme, we consider. the lociilifig as a process of
with the centre ofi shifted one pil for every fol- Profile pattern matching. Suppose functiem and
lowing test. Heran ( which is avays greater thak) 9() are tvo discrete fu_nctlons 'representmg the profllie
decides the range of sampling along the profile. of a current model point and its corresponding statis-

After the aboe matching process has been dorgigal profle respectiely. Then their dgree of match-

for all the model points, the weposition of the shapemg M(f,9) is defined as
model X' = {X;,i=1,...,n}) iS given.
M(f.0) = 3 f(t+i)+ o(i) (4)

(2) updating shape and pose parameters _ .

With a nev model positionx , the procedure of ~ FOr the illustrated gctors « and ¢ , we hae
updating the current shape parametesd the pose M(@B) = 35 and M, a) = 55. This illustrates that
parametersx, v, 6,s) to match a model instance td¥(f-9) gives a good indication of goodness of match.
the model position can be described aswelo To further illustrate the performance impement

« generate current model instancexas+ b . py introqlucingM(f,g) ,_two real &amples of locating

« find the pose parameters,(,6,s) that best !IpS using the original ASM appr_ogch_and our
align X to x by minimizing the sum of their |mproved_ac1ve shape models arevghn in Figure 2
square distances. (a) and Figure 2(b) respegtiy.

e projectx' into the model coordinates by using
the inversion alignment ag= A, y ¢™"(X).
« update the shape parameters ass' (y-x).

* apply plausible constraints om as p(b) > p,,
wherep, is a suitable threshold on the probabi
ity distribution function.

(3) repeating of steps (1) and (2) (@) (b)

Steps (1) and (2) are repeated untilvesgence is Figure 2. Lip locating performance comparison
achieved or some pre-digfed times of iteration is between (a) original ASM approach and (b) our
reached. This will result a model instangethat is improved ASM approach

the best match or fit to the test image. _ _ _
In Figure 2 (a), the white cuavis the located shape

3. Improved Active Shape Models after 15 iterations, and the dark cemns that of the
14th iteration. It is apparent thatvéirgence gists on
model points. Hoever, when the impreed ASM
approach ws applied (see Figure 2 (b)), ergence
was achieed after 3 iterations. Ceargence can be

3

As discussed in the abe section, inifting a
model to a test image, the local fithesswafrg model
point is judged by the matching between its peof



seen by thedct that the white cuevof the 3rd itera-
tion overlaps with the black cuevof the 2nd iteration. (input video sequence
Because it has coerged, the improged ASM

approach yields a more reasonable and correct

shape. v
A—» END

4. Robust Lip Tracking

To develop a rolst lip tracking algorithm, we ka
considered making use of both a priori Wiedge of
lip appearance and the resultant position and shap:
previous frame. The a priori kmdedge is reflected by
the statistics of the training set. The use of the sta
tics of the training set results in a shape that is plat
ble to the shapes seen in the training set. T
consideration of the resultant position and shape of
previous frame will compensate for the lack of glc
bally optimized itting of ASMs. This combination
results in a consistent and practical object tracking.

The tracking algorithm starts with an input vide | VY
sequence and ASMs corresponding to a spatif
training set. Based on the assumption that the lip cen- Figure 3. Block diagram of the proposed lip
tre of the irst frame is knan (which is done manu- tracking algorithm
ally), the algorithmifst creates a model instance for

every frame. Br each framexcept the ifst one, the aration has been chosen. More spieally, 12
algorithm adapts the instansehitial position accord- S€duénces of 3 subjects were chosen as the training

ing to the located lip on the piieus frame. The 3-stepSel: 4 sequences of the fourth subject were chosen as
ASM fitting process is then iteragly applied to (he test set. Figure 4 illustrates some mouth area
locate current lip contoviThe iteration will stop either Mmages of the subjects. It can be seen that the appear-
when corergence is reached or when a maximal iter:
ation operation has been done. Figure 3 is the bloc .
diagram of the algorithm.

| roughly locate lip on the 1st frame

| create a model instance |

| adapt mode$ initial position to preious result|

ind focal matching to g
,—d_l_TL&—l_\up ate shape & pose parameters

iS model fitting
onvergent? or has reached
maximal iteration ?

5. Experimentsand Results

5.1 datacoallecting

In our lip tracking &periments, dce-and-shoulder
video sequences of multiple subjectsddeen pro-
cessed. There were altogether 16 video sequences ¢ °
responding to 4 subjectsoF each subject, 4
sequences were recorded corresponding tofdrelift
scenes. In scene one, the subject did not speak a ©
barely m@ed; in scene tw, the subject barely maed
head It talked naturally; in scene three, the subjec. ™ = = =« &% W
naturally talled and meed; in scene fouthe subject Figure 4. Examples of mouth areaimages
kept silent lnt the head mwed naturally Each
sequence contains about 33 frame image®rog ances of indiidual frames are diérent and the
about 6 second period. Each image contains 240*32@nge of lip shape is non-rigid.

pixels. All the lip contours in the training images were
In selecting the training and test sets, complete saepanually labelled. Model parameters were dedli

4



from these images.
5.2 performance

Subjective evaluation has been chosen to investi-
gate the performance of the algorithm. For all the test
sequences the algorithm tracked the lip correctly from
the first frame up to the last frame. Figure 5 shows
results of lip tracking on scene three, where both the

framei

framei+3
Figure 5. Results of lip tracking on 4 consec-
utive frames

framei+2

head motion and lip motion took place. In the figure,
the change of lip shape is apparent. The existence of
head motion can be seen by changesin the dark back-
ground.

From Figure 5 it can be seen that the lip tracking is
robust and accurate. Other examples have shown sim-
ilar results. Thereis no restriction on lip shape dueto
speech or head motion.

6. Conclusions

This paper introduces a robust lip tracking algo-
rithm. Two major contributions have been discussed
in detail. Oneisthat arobust model fitting procedure
substantially differing from the original active shape
model approach has been developed. The other isthat
tracking on each new frame is based on a priori
knowledge about lip appearance and the resultant
position and shape of the previous frame as well as
the current image. This combination has secured a
consistent and accurate global lip tracking. Experi-
ments have shown that the proposed algorithm per-
formed well with no restriction on lip shape due to

speech or head motion.

Possible future work and improvements may
include the introduction of an automatic lip locator on
theinitial frame, more complicated performance eval-
uation and its application on other non-rigid shape
anaysis.
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