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Abstract

This paper introduces a robust lip tracking algo-
rithm based on improved active shape models. After
introducing the principle of active shape models, our
two main achievements in dealing with lip tracking
are presented. One is that a robust model fitting pro-
cedure substantially differing from the original
active shape model approach has been developed.
The other is that tracking on each new frame is based
on a priori knowledge about lip appearance and the
resultant position and shape of the previous frame as
well as the current image structure. This combina-
tion has secured a consistent and accurate global lip
tracking. The algorithm has been tested on various
real video sequences and has consistently demon-
strated robust performance on tracking deformable
shapes.

1. Introduction

Lip tracking in video sequences is a difficult prob-
lem in computer vision due to the inherent variability
between individuals and non-rigid nature of the lip
contour. Here the lip contour means the outer con-
tour of the lip. The appearance of a lip in an image
varies with different subject, content of speech and
lighting conditions. Substantial research has been
done on lip tracking recently. Major reported tech-
niques for lip tracking are active contour [1], snake
models [2] and deformable templates [3].

We use a top-down strategy in developing a
model-based lip tracking algorithm. The first step is
to build models describing non-rigid shapes of lips.
Secondly, fitting these models to images to locate
lips. Among various model-based image interpreta-
tion algorithms [1, 2, 3, 4, 5], the active shape model
(ASM) approach introduced by Cootes et al. pro-
vides more favorable shape description properties.

ASMs (also known as point distribution models) are
statistical models of the shapes of objects which itera-
tively deform to lock on an instance of an object in an
image. Here it is important to note that the locked
instance may not necessarily be the real shape of the
current object. However, all the resultant shapes are
constrained by statistical shape models to vary only in
ways occurring in the training set. The training set has
previously been manually labelled.

This paper presents our two main achievements in
dealing with lip tracking with ASMs. Firstly, a robust
model fitting procedure substantially differing from
the original approach has been developed. In our
model fitting, a pattern matching criteria, instead of
original Mahalanobis distance, has been used to
improve convergence and accuracy. Secondly, track-
ing on each new frame is based on both the statistics
of the training set and the resultant position and shape
of the previous frame. This combination has secured a
consistent and practical object tracking.

This paper is organized as follows. Section 2 intro-
duces the active shape models. Section 3 describes our
efforts on improving the performance of original
ASMs. Section 4 gives details of the robust lip track-
ing algorithm. Experiment results on lip tracking are
given in Section 5. Conclusions are made in Section 6.

2. Active Shape Models

2.1 Statistical shape models

The essentials of active shape models are statistical
shape models (SSMs) which are built from analyzing
the structures of labelled examples. We learn what are
and what are not plausible structure variations with
these statistical shape models, to find the best plausi-
ble structure in a test image.

Following three stages are needed to build SSMs
when a set of shape examples is given.
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Stage 1: Suppose there arek images in the training
set, then each shape in the training set is represented
by n labelled landmark points. Here the landmark
points are so selected that they are consistent from one
image to another. This selection guarantees that a
given landmark point corresponds to a particular part
of the object. For example, the left-most corner point
is selected as a landmark in lip tracking.

Stage 2: All the labelled tracking examples are
aligned into common coordinates in such a way that
the sum of the distance of each shape to the mean of
the training set is minimized. The alignment opera-
tion, symbolized as , includes translating
( ), rotating ( ) and scaling (). After the align-
ment, a shape in 2D image can be represented by a
2*n element vector as .

Stage 3: Since the training set forms a distribution
in the2*n dimensional space, a parameterized model
of the form  can represent the training exam-
ples and generate plausible new examples similar to
training set. Here  is a function of , and  is the
shape parameter vector of the model. The model can
be simply formulated by applying the principal com-
ponent analysis (PCA) [6] on the training data. The
resultant shape model can be expressed as

 (1)

where  is the mean of the,  is a2*n*t  dimen-
sion vector containingt eigenvectors of the covariance
of . The selectedt eigenvectors correspond to thet
largest eigenvalues of the covariance matrix. (t can be
considered as the number of models to be retained.)
is at element vector of shape parameters given by

 (2)

WhereT represents transpose operation.
It can be seen that new shapes can be generated by

varying the shape parameters.

2.2 Active shape models

2.2.1 definition

When the statistical shape models described above
are deformed iteratively to fit the shape of an object,
they are considered active shape models. There are
two essential components in the rules governing the
deformation. One is that shapes are constrained to

vary only in ways seen in the training set. Another is
that a model instance and a real target are matched or
fitted in an optimal way.

In dealing with matching or fitting a model instance
( ) and a real target ( ), both the shape parameter ()
and the pose parameters ( ) are involved.
Under the assumption that a rough starting position is
known, ASMs proceed in following three steps to iter-
atively fit to an image.

(1) finding local matching to model points: for each
point ( ) on current shape , find its best
local match . These locally matched points
form a new shape .

(2) updating the shape and pose parameters
( ) to best fit the model instance to the newly
found shape .

(3) repeating (1) and (2) until convergence is
achieved.

The details of steps (1) and (2) are given below.
2.2.2 algorithm

(1) finding local matching to model points
For any intermediate outcome of shape finding, the

next possible position of each model point can be
deduced from its local statistical structure in the train-
ing set. A practical way of selecting the local structure
is to consider the grey-scale values on the profile nor-
mal to the shape boundary on the model point. Figure
1. illustrates the consideration, where a profile consist-

ing of five points (solid circles) is drawn perpendicular
to the shape boundary.

In the active shape models introduced by Cootes et
al. [4, 5, 7], grayscale derivatives at one centre point
and k points either side of a model point are sampled
along its profile. For each training image, the2k+1
gray scale derivatives on theith model point can be
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represented with a vector . The distribution of the
grayscale derivatives on theith model point for all the
training images can be looked upon as a multivariate
Gaussian with mean and covariance . This gives
a statistical profile model for the model point. In test-
ing, the fitness of the profile structure on theith
model point to the statistical profile model is given by
the Mahalanobis distance (MD) [8] as

 (3)

To find the best fitting (i.e., minimal ), the fit-
ness test along the profile is done2(m-k)+1 times
with the centre of  shifted one pixel for every fol-
lowing test. Herem ( which is always greater thank)
decides the range of sampling along the profile.

After the above matching process has been done
for all the model points, the new position of the shape
model ( ) is given.

(2) updating shape and pose parameters
With a new model position , the procedure of

updating the current shape parameters and the pose
parameters ( ) to match a model instance to
the model position can be described as below.

• generate current model instance as .
• find the pose parameters ( ) that best
align  to  by minimizing the sum of their
square distances.

• project  into the model coordinates by using
the inversion alignment as .

• update the shape parameters as .
• apply plausible constraints on  as ,
where  is a suitable threshold on the probabil-
ity distribution function.

(3) repeating of steps (1) and (2)
Steps (1) and (2) are repeated until convergence is

achieved or some pre-defined times of iteration is
reached. This will result a model instance that is
the best match or fit to the test image.

3. Improved Active Shape Models

As discussed in the above section, in fitting a
model to a test image, the local fitness of every model
point is judged by the matching between its profile

structure  and its statistical profile structure which
is specified by  and . In the approach described by
Cootes et al., Mahalanobis distance is adopted to
judge the goodness of fit.

Through a detailed study on the performance of
the MD, we have found that it does not give consis-
tent goodness of fit on two shapes. This can be illus-
trated by a simple example. For two vectors

 and , though they both
have  and , they are two different struc-
tures when representing sample values in a 2D image.

In order to introduce a more accurate fitting
scheme, we consider the local fitting as a process of
profile pattern matching. Suppose function and

 are two discrete functions representing the profile
of a current model point and its corresponding statis-
tical profile respectively. Then their degree of match-
ing  is defined as

 (4)

For the illustrated vectors  and , we have
 and . This illustrates that

 gives a good indication of goodness of match.
To further illustrate the performance improvement

by introducing , two real examples of locating
lips using the original ASM approach and our
improved active shape models are given in Figure 2
(a) and Figure 2(b) respectively.

In Figure 2 (a), the white curve is the located shape
after 15 iterations, and the dark curve is that of the
14th iteration. It is apparent that divergence exists on
model points. However, when the improved ASM
approach was applied (see Figure 2 (b)), convergence
was achieved after 3 iterations. Convergence can be
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seen by the fact that the white curve of the 3rd itera-
tion overlaps with the black curve of the 2nd iteration.
Because it has converged, the improved ASM
approach yields a more reasonable and correct lip
shape.

4. Robust Lip Tracking

To develop a robust lip tracking algorithm, we have
considered making use of both a priori knowledge of
lip appearance and the resultant position and shape of
previous frame. The a priori knowledge is reflected by
the statistics of the training set. The use of the statis-
tics of the training set results in a shape that is plausi-
ble to the shapes seen in the training set. The
consideration of the resultant position and shape of the
previous frame will compensate for the lack of glo-
bally optimized fitting of ASMs. This combination
results in a consistent and practical object tracking.

The tracking algorithm starts with an input video
sequence and ASMs corresponding to a specified
training set. Based on the assumption that the lip cen-
tre of the first frame is known (which is done manu-
ally), the algorithm first creates a model instance for
every frame. For each frame except the first one, the
algorithm adapts the instance’s initial position accord-
ing to the located lip on the previous frame. The 3-step
ASM fitting process is then iteratively applied to
locate current lip contour. The iteration will stop either
when convergence is reached or when a maximal iter-
ation operation has been done. Figure 3 is the block
diagram of the algorithm.

5. Experiments and Results

5.1 data collecting

In our lip tracking experiments, face-and-shoulder
video sequences of multiple subjects have been pro-
cessed. There were altogether 16 video sequences cor-
responding to 4 subjects. For each subject, 4
sequences were recorded corresponding to 4 different
scenes. In scene one, the subject did not speak and
barely moved; in scene two, the subject barely moved
head but talked naturally; in scene three, the subject
naturally talked and moved; in scene four, the subject
kept silent but the head moved naturally. Each
sequence contains about 33 frame images covering
about 6 second period. Each image contains 240*320
pixels.

In selecting the training and test sets, complete sep-

aration has been chosen. More specifically, 12
sequences of 3 subjects were chosen as the training
set, 4 sequences of the fourth subject were chosen as
the test set. Figure 4 illustrates some mouth area
images of the subjects. It can be seen that the appear-

ances of individual frames are different and the
change of lip shape is non-rigid.

All the lip contours in the training images were
manually labelled. Model parameters were derived

roughly locate lip on the 1st frame

input video sequence

last frame ? END

create a model instance

adapt model’s initial position to previous result

find local matching to model points

update shape & pose parameters

is model fitting
convergent? or has reached

maximal iteration ?
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Y

Figure 3. Block diagram of the proposed lip
tracking algorithm

Figure 4. Examples of mouth area images
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from these images.

5.2 performance

Subjective evaluation has been chosen to investi-
gate the performance of the algorithm. For all the test
sequences the algorithm tracked the lip correctly from
the first frame up to the last frame. Figure 5 shows
results of lip tracking on scene three, where both the

head motion and lip motion took place. In the figure,
the change of lip shape is apparent. The existence of
head motion can be seen by changes in the dark back-
ground.

From Figure 5 it can be seen that the lip tracking is
robust and accurate. Other examples have shown sim-
ilar results. There is no restriction on lip shape due to
speech or head motion.

6. Conclusions

This paper introduces a robust lip tracking algo-
rithm. Two major contributions have been discussed
in detail. One is that a robust model fitting procedure
substantially differing from the original active shape
model approach has been developed. The other is that
tracking on each new frame is based on a priori
knowledge about lip appearance and the resultant
position and shape of the previous frame as well as
the current image. This combination has secured a
consistent and accurate global lip tracking. Experi-
ments have shown that the proposed algorithm per-
formed well with no restriction on lip shape due to

speech or head motion.
Possible future work and improvements may

include the introduction of an automatic lip locator on
the initial frame, more complicated performance eval-
uation and its application on other non-rigid shape
analysis.
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