
DICTA2002: Digital Image Computing Techniques and Applications, 21--22 January 2002, Melbourne, Australia.

1

An Evolutionary Connectionist Fuzzy System for Multispectral Data Classification

Khaled M. Mahar
Computer Engineering Department, P.O.Box 1029, AASTMT, Alexandria, Egypt,

Email: khmahar@aast.edu

Abstract

In this paper, numerical exemplars are used in a

training method to find the structure of a fuzzy-neural
network. After this structure learning, a genetic algorithm
is applied to determine the initial weights of the neural
network, thereby guiding the neural network to a near-
optimal initialization. These well-initialized networks are
then trained with backpropagation algorithm. Using this
proposed approach, the local minimum phenomenon,
which may cause the learning process to stagnate, can be
avoided. Overall learning performance is, thus,
significantly improved. The proposed method has been
implemented and tested on the Thematic Mapper sensor
system (TM) data to get the fractional representation of
each class within a pixel. Results show the potential of
the proposed method for this kind of applications.

1. Introduction

In recent years, several fuzzy-neuron systems have
been proposed, and their applications cover a broad range,
including pattern classification [1][2][3]. The concepts
and techniques of fuzzy-set theory are uniquely helpful in
the practice of pattern recognition. One of these concepts
is at the class-membership level, where in the fuzzy set
approach, a pattern does not necessarily belong to just one
class. There is a certain degree of possibility that the
pattern might belong to each one of the classes, and the
membership functions supply values for these various
possibilities [4].

The aim of this paper is to build a fuzzy classifier
model with three significant goals. Firstly, the model
should take the input pattern in a numeric form and
converts it to linguistic form to feed into a fuzzy rule-
base, and then outputs the identification vector
corresponding to the input. Secondly, the fuzzy rules
should be adapted during learning to improve the effect of
the input variables on the output. The last objective is
during the processing where the fuzzy rules should be
matched in parallel to give the consequences due to the
applied pattern, thus saving the rules matching time in a

traditional fuzzy logic system. These goals can be
achieved by combining the properties of artificial neural
networks (ANN) with that of a fuzzy-set theory.

In fact, there are many systems that combine the
properties of fuzzy set theory and that of ANN
[1][2][5][6][7]. Most of these models are based on the
multi-layer perceptron structure and the back-propagation
learning scheme. However, the most important limitation
of the backpropagation training method is that it does not
ensure convergence to the global minimum of the error
function. It has been shown that the genetic algorithm
(GA) [6] with its global optimization capability can solve
this problem. The GA is used to determine the link
weights of the ANN and then the best resulting weights
are used to find a solution via backpropagation. In this
way, each algorithm is used to its greatest advantage: the
GA -with its global search- determines a sub-optimal
weights to solve the problem, and backpropagation -with
its local search- seeks the best solution in the area of the
weight spaces found by GA.

Also, in this paper, the initial structure of the ANN is
built by using an unsupervised algorithm. This algorithm
optimizes the number of fuzzy rules necessary for the
classification process. Thus avoiding network growth
when the fuzzy terms of the input pattern is large in
number. In addition, the idea of elastic fuzzy logic (EFL)
[8] is used to get adaptable parameters during the learning
phase of the ANN. This approach overcomes the
problems associated with the most common method
which adapts the membership functions of a fuzzy-neuron
system. When adapting the membership functions, the
purpose is to improve the overall performance of the
system. But one of the problems associated with this
approach is that if an expert supplies the fuzzy rules, then
communication back to the expert is impaired when the
definitions of the linguistic variables are changed so that
they mean something else from what the expert intended.

The reminder of this paper is organized as follows: in
section 2, the proposed fuzzy-neural model is introduced.
Then, the learning algorithms are presented in section 3.
The application of this model to a multispectral data is
given in section 4. Finally, the conclusions are the subject
of section 5.

2

2. A fuzzy neural network system

A fuzzy logic system consists of a set of rules in a

simple if-then form. Each rule takes the form, "if x1 is

Tx1 and x2 is Tx2 ... then y is Ty." A membership

function µTx(xi) is used to indicate the degree of

applicability of term set Tx to the input linguistic variable
xi. Also a membership function µTy(y), may be supplied

to describe how well a given value y fits the output term
Ty in rule number r; however, in practice only the center
value yr of the term Ty is sufficient to be supplied. With

fuzzy inference and centroid-defuzzification, the rules and
the output of the system can be defined as follows

m,,1i&N,1,=r

)x()x()x(R

R

pT2T1Tr i
xn

i
2x

i
1x

��

�

=

µµµ=
 (1)

q1,2,...,=j

R

yR
ŷ

R

R

n

1i
r

n

1r
rr

j

�

�

=

== (2)

where p is the number of input variables, NR is the total

number of fuzzy rules, m is number of membership
functions for each input, n

R
 is the number of input rules to

an output term node, ŷ is the crisp output, and q is the

number of output variables . Intuitively, Rr represents the

degree to which rule number r applies in the current
situation x. To adapt the system defined by (1) and (2),
Eq. (1) is replaced by:

.m,,1i&n,1,=r

)x()x()x(R

R

nT
m

2T
2

1T
1

rr A
i
xn

i
2x

i
1x

��

�

=

µµµω= γγγ

. (3)

where ω and γ parameters are called elasticities (hence
the term elastic fuzzy logic) and can be adapted by the
ANN. They represent the degree of strength of validity of
the rule. This is important in practical applications
because real numerical data have different reliabilities.
For example, bad data will be assigned low elasticities
during adaptation, so that its rule could be deleted without
affecting the performance of the system.

Figure 1 shows an ANN model which can perform the
classification process based on fuzzy logic. Nodes at
layers one and three are term nodes which act as
membership functions to represent the terms of the
respective linguistic variables. Each node at layer two is a
rule node which represents one fuzzy rule. Thus, all layer-
two nodes form a fuzzy rule base. Links at layers two and
three function as connections inference engine that
simulate the rule-matching process [9]. For each node in
the network, we can write the output of the node as

Figure 1. Configuration of fuzzy neural network

model.

)W,U(f)net(fô == (4)

where U is the input vector to the node, the function f
represents what the node does, and W is an adjustable
weight vector. The previous equation is defined at each
layer as follows:

Layer 1: Each node performs a membership function,
then the output of this node should be this membership
function. We assign to each term node a bell shape
membership function,

e)u(2

2)mu(

=µ σ
−

−
 (5)

where m and σ are the center and width of the
membership function respectively. From (4), the node
function is given by

1net

2

2

1 ef ,
)mu(

net =
σ
−−= . (6)

In this study, we consider the nodes in this layer as
radial basis function (RBF) which output the membership
degree for the input linguistic variables, thus the weight is
unity.

Layer 2: The outputs of this layer are the precondition
matching of fuzzy logic rules. Hence,

2

p

1j
jj2 netf ,uwnet == ∏

=

 (7)

where uj is the output of the preceding layer, and wj is a

training parameters which can be used as elasticities to
reflect the importance of a term in a rule. In this study wj

is put to unity.
Layer 3: the links at this layer represents the elasticities

wr (the degree of importance of the rule), and the function

of each node in this layer perform fuzzy OR operation to
integrate the fired rules which have the same
consequences, thus

3

)net,1min(f ,uwnet 3

n

1j
jj3

R

== �
=

 (8)

where n
R
 is the number of input rules to the node, wj is

the elasticities, and uj is the output from the preceding

rule nodes.
Layer 4: This layer simulates the defuzzifier. If mj and

σj are the center and width of membership function of

term j for an output variable, then the following functions
can be used to compute the center of area defuzzification
method [9]:

)net,1min(f ,uwnet 3

n

1j
jj3

R

== �
=

. (9)

Here the wj is (mjσj), and uj is the output from the

preceding layer. The f values of this layer represent the
crisp values of the classification process.

 3. Generating and tuning fuzzy neural
 network

Three steps are established in this study to generate the

fuzzy rules. The first step finds the parameters of
membership function by unsupervised clustering
algorithm. The second generates the fuzzy rules from a
number of training samples, while the last step trains the
ANN in a supervised manner to estimate the elasticities of
the fuzzy rules. The following subsections illustrate the
function of each step extensively.

3.1 Finding membership function parameters

Before the training of the ANN, the membership

functions and fuzzy rules must be known, so the structure
of the ANN can be constructed. The centers and widths of
the membership functions are determined by unsupervised
learning algorithm. The input in this learning phase is the
training data xi, i=1,2,...,n, and the number of fuzzy

partitions)x(T with their initial centers. The output is

the optimal representation of the input data through the
learned centers. This places the domains of membership
functions to cover only those regions of the input /output
spaces where the data are present. Kohonen's feature-
maps algorithm [10] is used here to find the center mi of

the membership function:

{ })k(m)k(xmin)k(m)k(x i
ki1

closest −=−
≤≤

 (10)

[])k(m)k(x)k()k(m)1k(m closestclosestclosest −α+=+
 (11)

closestiii mmfor)k(m)1k(m ≠=+ (12)

where α(k) is a monotonically decreasing scalar learning
rate. This adaptive formulation runs independently for

each input and output linguistic variable. Once the centers
of membership functions are found, their width can be
simply found by first-nearest-neighbor as

a

mm closesti
i

−
=σ (13)

where a is an overlap parameter.

3.2 Generating fuzzy rules from numerical data

After the parameters of membership functions have

been found, the fuzzy rules can also be generated from the
numerical data [11]. Suppose we are given a set of desired

input-output data pairs)y;x,x(i
1

i
2

i
1 , i=1,2,...,n. the

following two subsections generate the fuzzy rules.

3.2.1 Generate fuzzy rules from given data pairs. First,

determine the degrees of a given i
1x , i

2x , and i
1y in

different terms. Second, assign the given i
1x , i

2x , and
i
1y to the region with maximum degree. Finally, obtain

one rule from one pair of desired input-output data.

 3.2.2 Assign a degree to each rule. Since there are
usually lots of data pairs, and each data pair generates one
rule, it is highly probable that there will be some
conflicting rules, i.e. rules that have the same IF part but a
different THEN part. One way to solve this conflict is to
assign a degree to each rule, and accept only the rule from
the conflict group that has maximum degree. In this way
not only the conflict is resolved, but also the number of
rules is greatly reduced. The degree of the rules is
computed as in (1).

3.3 Adapting the elasticities of the fuzzy rules

After the fuzzy rules have been identified, the network

structure is established, and a supervised training is
applied to adapt the elasticities of the fuzzy rules. The
purpose of this phase is the changing of the elasticity
parameters to minimize the error between the actual
output of the ANN and the desired output over the
training set. First a GA is used to determine sub-optimal
elasticities. Then, the best elasticities developed by the
GA are used to find a solution via backpropagation. In
this way, the algorithm avoids the local minima
convergence of the backpropagation.

3.3.1 Genetic algorithm. In GA [11] the search space of
the problem is represented as a collection of individuals.
The individuals are represented by character strings,
which are often referred to as chromosomes. The purpose
of the use of GA is to find the individual from the search
space with the best genetic material. The quality of an
individual is measured with an objective function.

4

Various schemes for augmenting GAs and ANNs have
been proposed in recent years. The simplest scheme uses
a GA as a stand-alone learning algorithm for ANN [12].
Another scheme where a network is represented as a
genotype that has six kinds of genes was proposed in [13].
The genes are a learning rate, a slant of sigmoid function,
a coefficient of momentum term, an initializing weights
range, the number of layers and the unit numbers of each
layer. Genetic operators affect populations of these
genotypes to produce adaptive networks with higher
fitness values. Ignizio [15] proposed other genotype
ANN. He used a GA for simultaneous design and training
of an ANN classifier. To do so, a GA which codes both
the weights as well as the number of masks that separate
the different categories was used. A small-space problem
was tested by this model and a pleasing results were
obtained. Larranga et al. [15] presented an approach to
structure learning in the field of Bayesian networks. They
tackled the problem of the search for the best Bayesian
network structure, given a database of cases, using a GA
philosophy for searching among alternative structure.
Another idea of augmenting GA with ANN was presented
in [16] where a GA searches among candidate solutions
of the problem, while the ANN provides the objective
function value of each candidate solution. This method is
suitable for problems where the evaluation of the
objective function is computationally time consuming and
may seem ill-fitted. Still another method which presented
in [6] is a hybrid algorithm that combines the modified
quasi-Newton method and the GA. It exploits the high
convergence rate of the quasi-Newton method in the trust
region to obtain a local minimum, and it uses the GA to
search for a better offspring from the local minimum
point.

In this paper, instead of finding a local minimum and
ensure that it is a global minimum or to find offspring
from a local point, the GA is used as an initial learning
algorithm for the ANN. It searches the error-space to find
a near-optimum value which is then considered a seed for
the backpropogation algorithm. This is accomplished by
means of a chromosome of the following form:

n321 γγγγ � (14)

where γi represent the elasticities of the fired rule number

i (the weights of layer three), and n is the number of rule
nodes. It should be noted that a floating-point numbers are
employed rather than binary strings for the representation
of each element of the chromosome. The mutation
method applied in this work is to add a delta to the genes
by means of a mutation probability. The other operators
are employed as in conventional GA. The goal is to
minimize the classification error of the system so that the
function which measures the fitness of a chromosome is
the squared error function of the ANN defined by:

� −=
i

2
ii)ŷy(

2

1
E (15)

where iy is the desired output, and iŷ is the actual

output of training sample number i.

3.3.2 Application of backpropagation algorithm. After
the best-GA elasticities have been found, the
backpropagation algorithm is used to find the optimum
elasticity values. The goal is to minimize the error
function defined in (15). For each training data set,
starting at the input nodes, a forward pass is used to
compute the activity levels of all the nodes in the
network. Then starting at the output nodes, a backward

pass is used to compute
y

E

∂
∂

for layer three nodes which

contains the adaptable weights or the elasticity
parameters. The general learning rule used is

)
w

E
(ww k1k ∂

∂−η+=+ (16)

where η is the learning rate, and from which we get:

()�
�

��

= σ

σσ−σσ
−−=

∂
∂ K

1k
2

kk

jkkkkkkjkjk

kk3i
3ij)u(

)um()u(m
ŷyu

w

E

�

��

�

���

�

��

 (17)
4. Application to multispectral image
 classification

In remote sensing images most pixel reflectance value

results from the spectral mixture of a number of classes
that constituting the sensed surface area. However, in
most studies, classification algorithms are used to assign a
pixel to a unique ground cover class. An alternative is to
unmix the pixel to get the fractional representation of
each class within the pixel. The applicability of the
proposed system in unmixing pixels is tested using data
taken from the image of Landsat-5, TM for path (165) and
row (045) for al-Kharj area, south east of Riyadh, Saudi
Arabia of (1990). The data used for training and test
consist of 50 pixels of pure vegetation, 50 pixels of soil,
and another 50 pixels of water from other area. These
pixels were used to create a 1000 mixed-pixel for training
the system and to test the ability of the system in the
classification. Since the TM system has 6 usable bands
[17], there are six input linguistic variables representing
these bands. While the output linguistic variables
represent the fractional representation of each category in
a pixel.

Figure 2 shows the learned membership functions for
the six bands. Note that each band (variable) associates
with three terms only. More terms produce more fuzzy
rules but in our problem, we found that three terms were
adequate. Note also that the membership functions cover
only the usable range of each band, thus ensuring the
resolution of the fuzzy rules.

5

Figure 2. Learned membership functions for Band-1to
Band-6.

Figure 3 shows the minimization of the error function.

It can be seen from figure 3-a that GA does the most
work, while the backpropagation (figure 3-b) improves
the result. Note that in the GA, the offspring do not
necessary better than their parent, this can be seen from
the wiggling of the curve. But to overcome this problem,
our method selects the better chromosome from the entire
generations.

(a)

(b)

Figure 3. The minimization of error function (a) with
genetic algorithm, (b) with backpropagation
algorithm.

Table (1) shows the result of classification for some

pixels. The first six rows of the table contain pure pixels
for three different categories. These are two rows of
vegetation, two of soil, and the last two of water.

The target data columns are computed by using a linear
unmixing model, while the proposed model computes the
output columns. The classification process for these pixels
performed very well, although there is a small fraction of
error in some rows. This may be happened if the selected
pixel is on the border between two different categories.
As can be seen from the table for other pixels, the biggest
RMS (root mean square) error is found in row number
seventeen, and is less than 0.09.

Comparing these results with that of the neuro-fuzzy
system reported in [3], we find that the results of the
classification are agreed. However, the result of proposed
model is accepted because each band is partitioned into
three terms only, while in [3] each band is associated with
ten terms. Thus the result is satisfied and can be improved
if we increase the number of partitions for each input
variable. But this increasing is proportional with the
training time which is already large.

Table 1. Representative results from the fuzzy-neural

model.
Contents

Vegetation Soil Water

P#
 T A T A T A

RMS

1 1.00 1.00 0.00 0.00 0.00 0.00 0.0000
2 1.00 0.99 0.00 0.00 0.00 0.01 0.0082
3 0.00 0.00 1.00 1.00 0.00 0.00 0.0000
4 0.01 0.00 0.99 1.00 0.00 0.00 0.0082
5 0.01 0.02 0.00 0.00 0.99 0.98 0.0082
6 0.00 0.03 0.00 0.00 1.00 0.97 0.0024
7 0.12 0.16 0.83 0.82 0.05 0.02 0.0294
8 0.01 0.09 0.14 0.00 0.85 0.90 0.0097
9 0.51 0.57 0.49 0.43 0.00 0.00 0.0490
10 0.60 0.56 0.38 0.37 0.02 0.07 0.0374
11 0.32 0.34 0.28 0.25 0.40 0.41 0.0216
12 0.05 0.18 0.70 0.66 0.25 0.17 0.0911
13 0.46 0.47 0.54 0.53 0.00 0.00 0.0082
14 0.91 0.96 0.09 0.03 0.00 0.01 0.0455
15 0.64 0.66 0.36 0.32 0.00 0.02 0.0283
16 0.74 0.73 0.10 0.09 0.16 0.18 0.0141
17 0.64 0.53 0.36 0.47 0.00 0.00 0.0898
18 0.29 0.30 0.54 0.52 0.17 0.18 0.0141
19 0.07 0.16 0.70 0.67 0.22 0.17 0.0619
20 0.40 0.35 0.48 0.52 0.12 0.13 0.0374

P#: Pixel number T: target A: Actual

6

5. Conclusions

A general neural network based on a fuzzy logic model

was proposed. The model is trained by genetic algorithm
in the first phase and then by backpropagation algorithm
in the second phase to avoid the local minimum
convergence. The proposed model uses the idea of elastic
fuzzy logic to adapt the fuzzy rules during the supervised
learning of the neural network. Thus making the whole
data more effective in computing the consequences of the
fuzzy rules. It is noted that the number of fuzzy rules
depends on the number of terms of both the input and
output linguistic variables. In other words, as the number
of terms increase, the number of generated fuzzy rules is
also increased, so the performance in the classification is
enhanced. The method of generating fuzzy rules which
used in this study reduces the number of rules during
generation, thus avoiding the large memory requirement
before learning as in other methods. Although the use of
genetic algorithm in training the system avoid the local
minima problem, the genetic algorithm performance is
sensitive to its parameters especially the mutation and
crossover probabilities. The result of the proposed system
is satisfied and can be improved by increasing the number
of terms for each variable.

References
[1] Pal, S. K., and Mitra, S., “Multilayer perceptron,
fuzzy set, and classification,” IEEE Transactions on
Neural Networks, vol. 3, 1992, pp. 683-697.

[2] Pedrycz, W., “Fuzzy neural networks with reference
neurons as pattern classifiers,” IEEE Transactions on
Neural Networks, vol. 3, 1992, pp. 770-775.

[3] Mahar K., Multispectral image identification using
clustering, linear analysis, and neural- network-based
fuzzy logic system, Ph.D. Thesis, Electrical Engineering
Department, Cairo University, Giza, Egypt. 1996.

[4] Pao, Y., H., Adaptive pattern recognition and neural
networks, (MA:Addison-Wesley), 1989.

[5] Kuo, Y., Kao, C., and Chen, J., “ A fuzzy neural
network model and its hardware implementation,” IEEE
Transactions on Fuzzy Systems, vol 1, 1993, pp. 171-183.

[6] L. Zhang, Y. Li, and H Chen, “A new global
optimization algorithm for fuzzy neural networks,” Int. J.
electronics, vol. 80, No. 3, 1996, pp. 393-403.

[7] Detlef N., Radolf K., “How the learning of rule
weights affects the interpretability of fuzzy system,”
Proceeding IEEE international conference on fuzzy
systems, Anchorage, Ak, May 1998, pp. 1235-1240.

[8] Werbos, P., “Neurocontrol and Elastic fuzzy logic:
capabilities, concepts, and applications,” IEEE
Transactions on Industrial Electronics, vol 40, 1993, pp.
170-180.

[9] Lin, C. T., and Lee, C. S. G., “Neural-network-based
fuzzy logic control and decision system,” IEEE
Transactions on Computer, vol 40, 1991, pp. 1320-1336.

[10] Kohonen T., self-Organization and Associative
Memory. Berlin, Germany: Springer-Verlag, 1988.

[11] Holland, J. H., Adaptation in N natural and Artificial
Systems, Ann Arbor, Mich.: The University or Michaigan
press, 1975.

[12] Janson D.J. and Frenzel J.F., "Application of genetic
algorithms to the training of higher order neural
networks," Journal of Systems Engineering, vol. 2, no. 4,
pp. 272-276, 1992.

[13] Takahashi, H., Agui, T., and Nagahashi, H.D, 1993
Designing adaptive neural network architectures and their
learning parameters using genetic algorithms. Proceedings
of the SPIE - The International Society for Optical
engineering, no. 1966, 1993, pp. 208-215.

[14] Ignizio, J. P. and Soltys J. R., Simultaneous design
and training of ontogenic neural network classifiers.
Computer Ops Res., vol 23, 1996, pp. 535-546.

[15] Larranaga P., Poza M., Yurramendi Y., Murga R.,
and Kuijpers C., “Structure Learning of Bayesian
Networks by Genetic Alorithms: A performance analysis
of control parameters,” IEEE Transaction on pattern
analysis and Machine intelligence, vol 18, 1996, pp. 912-
925.

[16] Coit D., W. and Smith A. E., “Solving the
redundancy allocation problem using a combined neural
network/genetic algorithm approach. Computer Ops Res.,
vol 23, 1996, pp. 515-526.

[17] Lillesand T. M. and Kiefer R. W., Remote sensing
and image interpretation, New York: Wiley, 1987, pp.
570-580.

