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Abstract 
 
In this paper, numerical exemplars are used in a 

training method to find the structure of a fuzzy-neural 
network. After this structure learning, a genetic algorithm 
is applied to determine the initial weights of the neural 
network, thereby guiding the neural network to a near-
optimal initialization. These well-initialized networks are 
then trained with backpropagation algorithm. Using this 
proposed approach, the local minimum phenomenon, 
which may cause the learning process to stagnate, can be 
avoided.  Overall learning performance is, thus, 
significantly improved.  The proposed method has been 
implemented and tested on the Thematic Mapper sensor 
system (TM) data to get the fractional representation of 
each class within a pixel.  Results show the potential of 
the proposed method for this kind of applications. 
 
 
1. Introduction 
 

In recent years, several fuzzy-neuron systems have 
been proposed, and their applications cover a broad range, 
including pattern classification [1][2][3]. The concepts 
and techniques of fuzzy-set theory are uniquely helpful in 
the practice of pattern recognition.  One of these concepts 
is at the class-membership level, where in the fuzzy set 
approach, a pattern does not necessarily belong to just one 
class. There is a certain degree of possibility that the 
pattern might belong to each one of the classes, and the 
membership functions supply values for these various 
possibilities [4]. 

The aim of this paper is to build a fuzzy classifier 
model with three significant goals. Firstly, the model 
should take the input pattern in a numeric form and 
converts it to linguistic form to feed into a fuzzy rule-
base, and then outputs the identification vector 
corresponding to the input. Secondly, the fuzzy rules 
should be adapted during learning to improve the effect of 
the input variables on the output. The last objective is 
during the processing where the fuzzy rules should be 
matched in parallel to give the consequences due to the 
applied pattern, thus saving the rules matching time in a 

traditional fuzzy logic system. These goals can be 
achieved by combining the properties of artificial neural 
networks (ANN) with that of a fuzzy-set theory. 

In fact, there are many systems that combine the 
properties of fuzzy set theory and that of ANN 
[1][2][5][6][7].  Most of these models are based on the 
multi-layer perceptron structure and the back-propagation 
learning scheme. However, the most important limitation 
of the backpropagation training method is that it does not 
ensure convergence to the global minimum of the error 
function. It has been shown that the genetic algorithm 
(GA) [6] with its global optimization capability can solve 
this problem. The GA is used to determine the link 
weights of the ANN and then the best resulting weights 
are used to find a solution via backpropagation. In this 
way, each algorithm is used to its greatest advantage: the 
GA -with its global search- determines a sub-optimal 
weights to solve the problem, and backpropagation -with 
its local search- seeks the best solution in the area of the 
weight spaces found by GA. 

Also, in this paper, the initial structure of the ANN is 
built by using an unsupervised algorithm. This algorithm 
optimizes the number of fuzzy rules necessary for the 
classification process. Thus avoiding network growth 
when the fuzzy terms of the input pattern is large in 
number. In addition, the idea of elastic fuzzy logic (EFL) 
[8] is used to get adaptable parameters during the learning 
phase of the ANN. This approach overcomes the 
problems associated with the most common method 
which adapts the membership functions of a fuzzy-neuron 
system. When adapting the membership functions, the 
purpose is to improve the overall performance of the 
system. But one of the problems associated with this 
approach is that if an expert supplies the fuzzy rules, then 
communication back to the expert is impaired when the 
definitions of the linguistic variables are changed so that 
they mean something else from what the expert intended. 

The reminder of this paper is organized as follows: in 
section 2, the proposed fuzzy-neural model is introduced. 
Then, the learning algorithms are presented in section 3. 
The application of this model to a multispectral data is 
given in section 4.  Finally, the conclusions are the subject 
of section 5. 

  



2 

2. A fuzzy neural network system 
 
A fuzzy logic system consists of a set of rules in a 

simple if-then form. Each rule takes the form, "if x1 is 

Tx1 and x2 is Tx2 ... then y is Ty."  A membership 

function µTx(xi) is used to indicate the degree of 

applicability of term set Tx to the input linguistic variable 
xi. Also a membership function µTy(y), may be supplied 

to describe how well a given value y fits the output term 
Ty in rule number r; however, in practice only the center 
value yr of the term Ty is sufficient to be supplied. With 

fuzzy inference and centroid-defuzzification, the rules and 
the output of the system can be defined as follows 
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where p is the number of input variables, NR is the total 

number of fuzzy rules, m is number of membership 
functions for each input, n

R
 is the number of input rules to 

an output term node, ŷ  is the crisp output, and q is the 

number of output variables . Intuitively, Rr represents the 

degree to which rule number r applies in the current 
situation x. To adapt the system defined by (1) and (2), 
Eq. (1) is replaced by: 
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where ω and γ parameters are called elasticities (hence 
the term elastic fuzzy logic) and can be adapted by the 
ANN. They represent the degree of strength of validity of 
the rule. This is important in practical applications 
because real numerical data have different reliabilities. 
For example, bad data will be assigned low elasticities 
during adaptation, so that its rule could be deleted without 
affecting the performance of the system. 

Figure 1 shows an ANN model which can perform the 
classification process based on fuzzy logic. Nodes at 
layers one and three are term nodes which act as 
membership functions to represent the terms of the 
respective linguistic variables. Each node at layer two is a 
rule node which represents one fuzzy rule. Thus, all layer-
two nodes form a fuzzy rule base. Links at layers two and 
three function as connections inference engine that 
simulate the rule-matching process [9]. For each node in 
the network, we can write the output of the node as 

 

 
Figure 1. Configuration of fuzzy neural network 

model. 
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where U is the input vector to the node, the function f 
represents what the node does, and W is an adjustable 
weight vector. The previous equation is defined at each 
layer as follows: 

Layer 1: Each node performs a membership function, 
then the output of this node should be this membership 
function. We assign to each term node a bell shape 
membership function, 
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where m and σ are the center and width of the 
membership function respectively. From (4), the node 
function is given by 
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In this study, we consider the nodes in this layer as 
radial basis function (RBF) which output the membership 
degree for the input linguistic variables, thus the weight is 
unity. 

Layer 2: The outputs of this layer are the precondition 
matching of fuzzy logic rules. Hence, 
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where uj is the output of the preceding layer, and wj is a 

training parameters which can be used as elasticities to 
reflect the importance of a term in a rule. In this study wj 

is put to unity.  
Layer 3: the links at this layer represents the elasticities 

wr (the degree of importance of the rule), and the function 

of each node in this layer perform fuzzy OR operation to 
integrate the fired rules which have the same 
consequences, thus 
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where n
R
 is the number of input rules to the node, wj is 

the elasticities, and uj is the output from the preceding 

rule nodes. 
Layer 4: This layer simulates the defuzzifier. If mj and 

σj are the center and width of membership function of 

term j for an output variable, then the following functions 
can be used to compute the center of area defuzzification 
method [9]: 
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Here the wj is (mjσj), and uj is the output from the 

preceding layer. The f values of this layer represent the 
crisp values of the classification process. 

 
 3. Generating and tuning fuzzy neural 
     network 

 
Three steps are established in this study to generate the 

fuzzy rules. The first step finds the parameters of 
membership function by unsupervised clustering 
algorithm. The second generates the fuzzy rules from a 
number of training samples, while the last step trains the 
ANN in a supervised manner to estimate the elasticities of 
the fuzzy rules. The following subsections illustrate the 
function of each step extensively. 

 
3.1 Finding membership function parameters 

 
Before the training of the ANN, the membership 

functions and fuzzy rules must be known, so the structure 
of the ANN can be constructed. The centers and widths of 
the membership functions are determined by unsupervised 
learning algorithm.  The input in this learning phase is the 
training data xi, i=1,2,...,n, and the number of fuzzy 

partitions )x(T  with their initial centers. The output is 

the optimal representation of the input data through the 
learned centers. This places the domains of membership 
functions to cover only those regions of the input /output 
spaces where the data are present. Kohonen's feature-
maps algorithm [10] is used here to find the center mi of 

the membership function: 
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where α(k) is a monotonically decreasing scalar learning 
rate. This adaptive formulation runs independently for 

each input and output linguistic variable. Once the centers 
of membership functions are found, their width can be 
simply found by first-nearest-neighbor as 
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where a is an overlap parameter. 
 
3.2 Generating fuzzy rules from numerical data 

 
After the parameters of membership functions have 

been found, the fuzzy rules can also be generated from the 
numerical data [11]. Suppose we are given a set of desired 

input-output data pairs )y;x,x( i
1

i
2

i
1 , i=1,2,...,n. the 

following two subsections  generate the fuzzy rules. 
 

3.2.1 Generate fuzzy rules from given data pairs. First, 

determine the degrees of a given i
1x , i

2x , and i
1y  in 

different terms. Second, assign the given i
1x , i

2x , and 
i
1y  to the region with maximum degree. Finally, obtain 

one rule from one pair of desired input-output data. 
 
 3.2.2 Assign a degree to each rule. Since there are 
usually lots of data pairs, and each data pair generates one 
rule, it is highly probable that there will be some 
conflicting rules, i.e. rules that have the same IF part but a 
different THEN part. One way to solve this conflict is to 
assign a degree to each rule, and accept only the rule from 
the conflict group that has maximum degree. In this way 
not only the conflict is resolved, but also the number of 
rules is greatly reduced. The degree of the rules is 
computed as in (1). 
 
3.3 Adapting the elasticities of the fuzzy rules 

 
After the fuzzy rules have been identified, the network 

structure is established, and a supervised training is 
applied to adapt the elasticities of the fuzzy rules. The 
purpose of this phase is the changing of the elasticity 
parameters to minimize the error between the actual 
output of the ANN and the desired output over the 
training set. First a GA is used to determine sub-optimal 
elasticities. Then, the best elasticities developed by the 
GA are used to find a solution via backpropagation. In 
this way, the algorithm avoids the local minima 
convergence of the backpropagation. 

 
3.3.1 Genetic algorithm.  In GA [11] the search space of 
the problem is represented as a collection of individuals. 
The individuals are represented by character strings, 
which are often referred to as chromosomes. The purpose 
of the use of GA is to find the individual from the search 
space with the best genetic material. The quality of an 
individual is measured with an objective function.  
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Various schemes for augmenting GAs and ANNs have 
been proposed in recent years. The simplest scheme uses 
a GA as a stand-alone learning algorithm for ANN [12].  
Another scheme where a network is represented as a 
genotype that has six kinds of genes was proposed in [13]. 
The genes are a learning rate, a slant of sigmoid function, 
a coefficient of momentum term, an initializing weights 
range, the number of layers and the unit numbers of each 
layer. Genetic operators affect populations of these 
genotypes to produce adaptive networks with higher 
fitness values. Ignizio [15] proposed other genotype 
ANN. He used a GA for simultaneous design and training 
of an ANN classifier. To do so, a GA which codes both 
the weights as well as the number of masks that separate 
the different categories was used. A small-space problem 
was tested by this model and a pleasing results were 
obtained. Larranga et al.  [15] presented an approach to 
structure learning in the field of Bayesian networks. They 
tackled the problem of the search for the best Bayesian 
network structure, given a database of cases, using a GA 
philosophy for searching among alternative structure. 
Another idea of augmenting GA with ANN was presented 
in [16] where a GA searches among candidate solutions 
of the problem, while the ANN provides the objective 
function value of each candidate solution. This method is 
suitable for problems where the evaluation of the 
objective function is computationally time consuming and 
may seem ill-fitted. Still another method which presented 
in [6] is a hybrid algorithm that combines the modified 
quasi-Newton method and the GA. It exploits the high 
convergence rate of the quasi-Newton method in the trust 
region to obtain a local minimum, and it uses the GA to 
search for a better offspring from the local minimum 
point.  

In this paper, instead of finding a local minimum and 
ensure that it is a global minimum or to find offspring 
from a local point, the GA is used as an initial learning 
algorithm for the ANN. It searches the error-space to find 
a near-optimum value which is then considered a seed for 
the backpropogation algorithm. This is accomplished by 
means of a chromosome of the following form: 

n321 γγγγ �      (14) 

where γi represent the elasticities of the fired rule number 

i (the weights of layer three), and n is the number of rule 
nodes. It should be noted that a floating-point numbers are 
employed rather than binary strings for the representation 
of each element of the chromosome. The mutation 
method applied in this work is to add a delta to the genes 
by means of a mutation probability. The other operators 
are employed as in conventional GA. The goal is to 
minimize the classification error of the system so that the 
function which measures the fitness of a chromosome is 
the squared error function of the ANN defined by: 
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where iy  is the desired output, and iŷ  is the actual 

output of training sample number i. 
 
3.3.2 Application of backpropagation algorithm.  After 
the best-GA elasticities have been found, the 
backpropagation algorithm is used to find the optimum 
elasticity values. The goal is to minimize the error 
function defined in (15). For each training data set, 
starting at the input nodes, a forward pass is used to 
compute the activity levels of all the nodes in the 
network. Then starting at the output nodes, a backward 

pass is used to compute 
y

E

∂
∂

for layer three nodes which 

contains the adaptable weights or the elasticity 
parameters. The general learning rule used is 
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where η is the learning rate, and from which we get: 
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4. Application to multispectral image  
    classification 

 
In remote sensing images most pixel reflectance value 

results from the spectral mixture of a number of classes 
that constituting the sensed surface area. However, in 
most studies, classification algorithms are used to assign a 
pixel to a unique ground cover class.  An alternative is to 
unmix the pixel to get the fractional representation of 
each class within the pixel. The applicability of the 
proposed system in unmixing pixels is tested using data 
taken from the image of Landsat-5, TM for path (165) and 
row (045) for al-Kharj area, south east of Riyadh, Saudi 
Arabia of (1990). The data used for training and test 
consist of 50 pixels of pure vegetation, 50 pixels of soil, 
and another 50 pixels of water from other area. These 
pixels were used to create a 1000 mixed-pixel for training 
the system and to test the ability of the system in the 
classification. Since the TM system has 6 usable bands 
[17], there are six input linguistic variables representing 
these bands. While the output linguistic variables 
represent the fractional representation of each category in 
a pixel. 

Figure 2 shows the learned membership functions for 
the six bands. Note that each band (variable) associates 
with three terms only. More terms produce more fuzzy 
rules but in our problem, we found that three terms were 
adequate.  Note also that the membership functions cover 
only the usable range of each band, thus ensuring the 
resolution of the fuzzy rules. 
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Figure 2. Learned membership functions for Band-1to 
Band-6. 

 
Figure 3 shows the minimization of the error function. 

It can be seen from figure 3-a that GA does the most 
work, while the backpropagation (figure 3-b) improves 
the result. Note that in the GA, the offspring do not 
necessary better than their parent, this can be seen from 
the wiggling of the curve. But to overcome this problem, 
our method selects the better chromosome from the entire 
generations. 

 

 
(a) 

 
(b) 

Figure 3. The minimization of error function (a) with 
genetic algorithm, (b) with backpropagation 
algorithm. 

 
Table (1) shows the result of classification for some 

pixels. The first six rows of the table contain pure pixels 
for three different categories.  These are two rows of 
vegetation, two of soil, and the last two of water. 

The target data columns are computed by using a linear 
unmixing model, while the proposed model computes the 
output columns. The classification process for these pixels 
performed very well, although there is a small fraction of 
error in some rows. This may be happened if the selected 
pixel is on the border between two different categories. 
As can be seen from the table for other pixels, the biggest 
RMS (root mean square) error is found in row number 
seventeen, and is less than 0.09. 

Comparing these results with that of the neuro-fuzzy 
system reported in [3], we find that the results of the 
classification are agreed. However, the result of proposed 
model is accepted because each band is partitioned into 
three terms only, while in [3] each band is associated with 
ten terms. Thus the result is satisfied and can be improved 
if we increase the number of partitions for each input 
variable. But this increasing is proportional with the 
training time which is already large. 

 
Table 1. Representative results from the fuzzy-neural 

model. 
Contents 

Vegetation Soil Water 
 
P# 
 T A T A T A 

RMS 

1 1.00 1.00 0.00 0.00 0.00 0.00 0.0000 
2 1.00 0.99 0.00 0.00 0.00 0.01 0.0082 
3 0.00 0.00 1.00 1.00 0.00 0.00 0.0000 
4 0.01 0.00 0.99 1.00 0.00 0.00 0.0082 
5 0.01 0.02 0.00 0.00 0.99 0.98 0.0082 
6 0.00 0.03 0.00 0.00 1.00 0.97 0.0024 
7 0.12 0.16 0.83 0.82 0.05 0.02 0.0294 
8 0.01 0.09 0.14 0.00 0.85 0.90 0.0097 
9 0.51 0.57 0.49 0.43 0.00 0.00 0.0490 
10 0.60 0.56 0.38 0.37 0.02 0.07 0.0374 
11 0.32 0.34 0.28 0.25 0.40 0.41 0.0216 
12 0.05 0.18 0.70 0.66 0.25 0.17 0.0911 
13 0.46 0.47 0.54 0.53 0.00 0.00 0.0082 
14 0.91 0.96 0.09 0.03 0.00 0.01 0.0455 
15 0.64 0.66 0.36 0.32 0.00 0.02 0.0283 
16 0.74 0.73 0.10 0.09 0.16 0.18 0.0141 
17 0.64 0.53 0.36 0.47 0.00 0.00 0.0898 
18 0.29 0.30 0.54 0.52 0.17 0.18 0.0141 
19 0.07 0.16 0.70 0.67 0.22 0.17 0.0619 
20 0.40 0.35 0.48 0.52 0.12 0.13 0.0374 

P#: Pixel number  T: target A: Actual 
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5. Conclusions 
 
A general neural network based on a fuzzy logic model 

was proposed. The model is trained by genetic algorithm 
in the first phase and then by backpropagation algorithm 
in the second phase to avoid the local minimum 
convergence.  The proposed model uses the idea of elastic 
fuzzy logic to adapt the fuzzy rules during the supervised 
learning of the neural network. Thus making the whole 
data more effective in computing the consequences of the 
fuzzy rules. It is noted that the number of fuzzy rules 
depends on the number of terms of both the input and 
output linguistic variables. In other words, as the number 
of terms increase, the number of generated fuzzy rules is 
also increased, so the performance in the classification is 
enhanced. The method of generating fuzzy rules which 
used in this study reduces the number of rules during 
generation, thus avoiding the large memory requirement 
before learning as in other methods.  Although the use of 
genetic algorithm in training the system avoid the local 
minima problem, the genetic algorithm performance is 
sensitive to its parameters especially the mutation and 
crossover probabilities. The result of the proposed system 
is satisfied and can be improved by increasing the number 
of terms for each variable.  
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