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Abstract 
 

Fractal image compression is a class of image 
compression techniques that offer the advantages of high 
compression ratio and fast decoding. But the major 
obstacle of these techniques is the relatively long time 
needed for encoding the image due to the requirement of 
search for the best fitting domain block for each range 
block. Various methods have been suggested to 
overcome this problem without much loss of image 
quality. In this paper, such methods are reviewed and a 
coding scheme is suggested in which multiple domain 
blocks are used to approximate each range block. These 
domain blocks are around the range block and hence a 
reduction in search-overhead is achieved in the encoding 
process. A comparative study between our approach and 
other fractal coding techniques is also presented. 

 
 
1. Introduction 
 
Image data compression has become an important 

issue for the purpose of storage and transmission of 
images or sequence of images due to their large memory 
requirements. Most of the methods in use can be 
classified under the head of lossy compression. This 
implies that the reconstructed image is always an 
approximation of the original image. This to be effective, 
one should take the human visual system into account 
when designing the compression algorithm. 

The most popular among these methods is the discrete 
cosine transform (DCT) which is the JPEG standard for 
still image compression [1]. However in the recent past 
some new methods have been investigated which 
perform as well or better than the DCT in most cases. 
Notable among them are the wavelet transform [2], and 
fractal image compression [3]. 

Fractal, or iterated function system (IFS), image 
compression was first suggested by Barnsley [4] in 1988. 
However the first automated compression scheme for 
real world images using IFS was developed by Jacquin 
[3] in 1990. During the last decade immerse research 

activity has taken place in this field. As a result, 
currently IFS image compression is considered to be 
comparable to the existing methods at high and moderate 
bit rates (0.5 to 1 bpp) and superior to most methods at 
low bit rate (<0.25 bpp). 

Although decoding is simple and fast, the main 
disadvantage of the IFS scheme is that the encoding 
process is computationally very intensive. In the 
encoding step the image is partitioned into disjoint 
blocks (range blocks). For each range block, another 
block (domain block) is selected from the same image. 
The goal is to approximate the pixel intensities of the 
range block with those of a domain block. Because good 
approximations are obtained when many domain blocks 
are allowed, searching the pool of domain blocks is time-
consuming. This problem has attracted a degree of 
attention and many methods are investigated to speed up 
the encoding process while retain a good image fidelity. 

In this paper, a new encoding scheme is proposed to 
accelerate the image encoding process. It tries only 
searching the nearest domain blocks which contain the 
range block. However if the required fitted domain block 
can not be found, the algorithm generates a new block 
from the searched domain blocks. The contribution of 
each domain block to the new block is confined by the 
approximation error between it and the encoded range 
block. 

The proposed process can be regarded as a fuzzy 
aggregation where each domain block contributes to the 
fractal code by a degree derived from a membership 
function. This membership function is generated to 
represent the approximation error between a range block 
and a candidate domain block. 

This paper is organized as follows: section 2 
introduces the mathematical principle of fractal coding. 
It also reviews some of the algorithms concerned by the 
reduction of the encoding complexity. Section 3 outlines 
the proposed coding scheme used in this paper and it also 
presents the coding results. In section 4, a comparative 
study between the suggested approach and other fractal 
coding techniques is presented. Finally section 5 
concludes the paper. 
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2. The mathematical principle of fractal 
     coding 

  
There are four main mathematical concepts [5] 

underlying IFS image compressions: metric spaces, 
contractive maps, the contractive mapping fixed point 
theorem, and the collage theorem. In a metric space 
(χ,d), χ is the set of M×N matrices whose elements 
correspond to pixel values of images, and d is a distance 
measure or metric. The most used metric is the squared 
error. For example if A=<aij>, B=<bij> ∈χ then 
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A map ω: χ→χ is said to be contractive with 
contractivity s if it satisfies 
d(ω(A),ω(B)) ≤ s d(A,B) ∀ A,B ∈ χ, where 0≤s<1. (2) 

The contractive mapping fixed point theorem ensures 
that ω has a unique fixed point -called the attractor of ω- 
and this fixed point can be found by iterations of ω. That 
is, there exist a unique fixed point F∈χ such that for any 
initial point P∈χ 
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The collection ω1,ω2…ωn of contractive maps on a 
metric space (χ,d) is called iterated function system 
(IFS). The role of IFS in image encoding can be 
explained as follows: Consider an image matrix A∈χ 
and let 

χ,)(lim)(
n

∈∀ω=ω=
∞→

PPAA    ˆˆ n
0   (4) 

where ω is a contractive transformation, and )ˆ( AA ,d is 

small. Thus if ω can be determined and represented more 
compactly than A, then it is called the compressed data 
for A. Therefore A is compressed. Unfortunately, it is 
difficult to construct ω directly but the collage theorem 
simplifies this problem to a large extent.  It states that if 

d(A,ω(A)) < ε then )ˆ( AA ,d is also bounded, where 

Â is the fixed point of ω. Usually ω is of the form 
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where N is the number of range blocks and ωi is a 
contractive mapping for the range block i. We use the 
collage theorem to optimize the parameters of the 
mapping for each ωi separately. Without the collage 
theorem we would have to do a simultaneous 
optimization for all the mappings, which would be 
impractical. 

 
2.1 Fractal image compression 

 
The basic idea of fractal image compression is to find 

self-similarity between larger parts of an image and its 

smaller parts. This is accomplished by partitioning the 
original image into non-overlapping small portions 
(range blocks). Then trying to find various, at least very 
similar, matching from the larger parts (domain blocks) 
of an image.  

Assume that the image is scaled to the unit square Ι2 = 
[0,1] × [0,1] and the dynamic range of the gray level is 
contained in the interval I=[0,1]. The parametric form of 
the transformation ωi: I

3→I3, i=1…Nr is chosen as 
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where (x,y) denotes the coordinates of a point in I2 and 
z= g(x,y) denotes the intensity or grey level at (x,y). 
Associated with each ωi is a range block Ri∈I2 and a 
domain block Di ∈I2. The Nr range blocks are non-
overlapping and tile the unit square I2 completely. The 
transformation ωi and the domain blocks Di are chosen to 
satisfy the following conditions: 
- ωi maps Di into Ri, 
- the size of each Di is larger than that of the 

corresponding Ri to ensure contractivity, and 
- the collage error, or the squared error, between the 

Di and the corresponding Ri is minimum. 
The parameters ai, bi, ci, and di, determine the spatial 

contraction factor and the isometric operation performed 
on the block. The parameters ei and fi give the address of 
the domain block with reference to the range block. The 
parameters si and oi are the intensity scaling factor and 
the offset respectively. This collection of parameters is 
called the IFS code for the image and if it is applied 
iteratively on any arbitrary initial image, the image 
converges to the fixed point, which is an approximation 
of the encoded image. The closeness of the reconstructed 
image to the original image is usually represented by the 

peak signal to noise ratio (PSNR). The PSNR of Â , the 
approximation of A, is given by 
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where b is the number of bits used to code the pixel 
values of A, M and N define the image size,  and the 
metric d is the squared error defined in (1). 

 
3. Reduction of the encoding complexity 

 
Due to the unacceptably high complexity of encoding 

of the FIC scheme, a lot of work has been directed at 
reducing the encoding complexity [6]. The methods 
suggested may be classified as  
- Domain pool restrictions, 
- Categorized search, 
- Adaptive clustering, 
- 1-D function methods, 
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 - Feature vectors, and
 - Transform Domain Block Matching.

3.1 Domain pool restriction

The first step in the reduction of computational
complexity of the encoding process is to restrict the
domain pool. Not all possible domain blocks are
searched. Jacobs et [7] suggested restriction of the
domain pool to blocks twice the size of the range blocks,
with adjacent blocks overlapping one another by the size
of the range blocks. Doing so brings the search time
within reasonable bounds. But because not every domain
block is under consideration, the optimal pairing for a
given range block may be overlooked.  Consequently,
image quality suffers.

Another approach is to restrict the search to nearby
area [8]. For example, the source image may be
sectioned into four quadrants. For a range block in one
quadrant, only domain blocks in that same quadrant are
searched. As a result, the time complexity is reduced but
this restricted area search depends on an image
possessing locality of similar form but this cannot be
guaranteed.  

Beaumont suggested an outward spiral originating
from the current-range-block position [9]. But instead of
examining all candidate domain blocks for the best
match, search halts as soon as a sufficiently good match
is found. In many cases the search time is dramatically
reduced, albeit with some loss of image fidelity.

3.2 Categorized search

Taking a different approach Jacquin [3] used a
classification scheme to classify the domain and range
blocks as shade, edge and mixed blocks. Edge blocks are
further classified as simple and mixed edge blocks. For a
range block from any one of the above categories, only
domain blocks from the same category are searched.

A more elaborate classification scheme was proposed
by Fisher and Boss [7]. In their approach, each domain
block is inserted into one of 72 categories. To do so, a
block is first divided into four quadrants and oriented
(by flipping or rotation) so that the block falls into one of
three major classes. If Ai, i=1 4  are mean pixel
intensities of the four quadrants of a block, then the three
major classes are:

Class 1: A1≥ A2≥ A3≥ A4

Class 2: A1≥ A2≥ A4≥ A3

Class 3: A1≥ A4≥ A2≥ A3

The ordering of brightness of the quadrants for the
three major classes is illustrated in figure 1. Once
divided into these three major classes, the quadrants of
each square are ordered from highest variance to lowest,
for 4!  =24 possibilities within each class. A range block
is also categorized in this manner. When seeking a

matching domain block, only the corresponding category
is searched.

Figure 1. The three major classes of Fisher s
classification scheme

Boss and Jacobs [10] developed an archetype
classification scheme. In this scheme, the archetype form
for a particular codebook block is given by the block that
can best cover all others having the same archetype.
Starting from an arbitrary classification using codebook
blocks from a library made from many images, the
classification scheme is iterated till the best archetype
form for each block is determined. The iteration is
stopped when there is no more change in the selection of
archetype blocks in further iterations. These archetype
blocks, derived from training images are used for
classification of the range and domain blocks of image.

3.3 Adaptive clustering

In the three methods described earlier, the
classification scheme is decided upon before it is applied
to any image. On the other hand in the adaptive
clustering scheme proposed by Oien and Lepsoy [11],
the classification is image dependent. In this method, the
range and codebook blocks are divided into disjoint sets

iteratively updated if any block does not fit into any
particular cluster, at the same time satisfying some
conditions.

3.4 1-D functional methods

Bedford et al [12] proposed a method, in which the
range and domain blocks are compared by projecting
each of them on a common, fixed unit vector. A
particular range block is compared only with domain
blocks whose result of comparison with the unit vector is
close to that of the result of comparison of the range
block. This method has further extended in [6] to include
more such vectors.

3.5 Feature vectors

This method was first proposed by Saupe [13]. In this
method, small sets of d real-valued keys are assigned to
each range and domain block, which make up the d-
dimensional feature vector. These keys are constructed
such that searching in the domain pool is restricted to a



4

small neighborhood around the d-dimensional key
corresponding to a particular range block. Thus the
sequential search of the domain block is substituted by a
nearest neighbor search.

Kominek [14] used a much simpler scheme for
arriving at the feature vector, but used the r-tree
algorithm for searching. In this algorithm the d-
dimensional space of the feature vector is divided into d-
dimensional rectangles. For a range block with its feature
vector located in one rectangle, only domain blocks with
feature vectors in the same rectangle are searched.

3.6 Transform domain block matching

Wohlberg et al [15] proposed a scheme where block
matching is done in the DCT domain. Here they make
use of the well-known energy compaction property of the
DCT to reduce the number of dimensions of the feature
vector space, where a nearest neighbor search is
performed. Also the fact that the DCT of the transformed
blocks can be obtained from the DCT of the original
block with just multiplication by ± 1 is put in use. Saup
et al proposed a similar method where a fast search is
performed via fast convolution [16]. The goal was to
reduce the computational costs of the calculation of the
inner products between the range blocks and codebook
blocks (blocks formed from the domain blocks). This
calculation can be carried out more efficiently in the
frequency domain when the range block is not too small.

4. The proposed method

The proposed method starts with the partitioning of
the entire image into a set of mutually disjoint range
blocks. For each range block we consider a pool of
domain blocks twice the linear size. These domain
blocks are shrunken by pixel averaging to match the
range block size. To speed up the encoding process the
proposed method reduces the searched space by
restricting the pool of domain blocks to the 4 domain
blocks encompassing the range block. These domain
blocks contain the range block as one of their quadrant as
shown in figure 2. Hence this method generate a self-
affine system.

Figure 2. The relation between a range block (black
boxes) and its four encompassing domain blocks.

The motivation for selecting this scheme is that a
suitable fitted domain block may not be found even if we
search anywhere in the image. To overcome this problem
the algorithm tries to generate an appropriate block from
the best-fitted domain blocks. The contribution of each
domain block to the new block is confined by the
approximation error between it and the encoded range
block. This process can be regarded as a fuzzy
aggregation where each domain block contributes to the
fractal code by a degree derived from a membership
function given by:

( )2err1−=µ (8)

where err is a normalized error between a range block R
and a domain block D.

The pool of domain blocks is enlarged before
searching by including all 8 isometric versions (rotations
and flips) of a block. This gives a pool of domain blocks
D1 DND. Assume that the blocks have been adjusted to
zero-mean intensity level, and the decoding process
starts from a low-resolution version of the original image
derived from the range block averages. Then, the
transformation used to approximate a range block R by a
multiple domain blocks is given by:

∑
=

µ=
n

1i
iii )s(ˆ DR  (9)

where n is the number of best-fitted domain blocks used
in the approximation, s i is the intensity scaling factor,
and µi is as specified in (8).

Before computing the compression ratio we should
emphasize that the bit allocations in the fractal code for
the position of the domain blocks are excluded.  This is
because the positions of the domain blocks can be
concluded from the position of the range block as shown
in figure 2.  Also, there is no need to store the scale
factor that transforms a domain block to a range block
since the domain blocks are twice the linear size of the
range blocks. Let the range block averages represent the
offset parameters oi, and  mi denotes the 8 isometric
operations applied, then the compression ratio can be
derived from (9) using the following bit allocations:

mi 3 bits- 8 isometric operations
s i 5 bits- sufficient from empirical tests [17]
oi 6 bits- sufficient from empirical tests.
Only the 8 bits of mi and s i are replicated for each

domain block used in (9). For example, if we use 8×8
range blocks and four domain blocks to approximate
each range block then we need 32 bits for mi and s i plus
6 bits for oi. By this way we achieve a respectable degree
of compression ratio of 16:1.15.

 5. Experimental results

A number of standard images have been used for the
test of the proposed method. One of these images is the
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256×256×8 standard image “Pepper” which is shown in 
figure 3(a). We have compressed the image by using 
one-level partitioning. The size of the range block is 8×8, 
and the domain block size is 16×16. The decoded image 
with its compression ratio and the PSNR is shown in 
figure 3(b).  The experiment shows two facts. First the 
encoding time is greatly reduced by the proposed method 
due to the local search around the range blocks. 
However, this local search limits the fidelity of the 
reconstructed images as inferred from the PSNR. Second 
although the compression ratio is comparable to the 
recent reported one, the image fidelity suffers from this 
high compression and the quality of the image can be 
enhanced to some magnitude if we consider smaller 
range block sizes. 

 

(a) Original image 
 

(b) Reconstructed image. 
 
Figure 3. (a) The original 256××××256××××8 standard Pepper 
image, (b) Reconstructed image with compression 
ratio of 16:1.15 and PSNR equal to 22.6 

6. Conclusions 
 
We have presented a framework for fractal image 

encoding based on multi-domain blocks for 
approximating each range block. The contribution of 
each domain block to a range block is confined by the 
error between the original range block and this domain 
block. The process can be regarded as a fuzzy 
aggregation where each domain block contributes to the 
fractal code by a degree derived from a membership 
function. After trying and analyzing the results of our 
method, we have concluded that the limited domain pool 
affects the performance of the encoder in two ways. Due 
to the limited number of searched domain blocks, the 
method succeeds in reducing the encoding time. Also, 
because all the domain blocks are around the range 
block, there is no need to store their locations and hence 
our method achieves a high compression ratio. On the 
other hand, the restricted domain pool makes the quality 
of reconstructed images moderate. Future works will be 
toward the enhancement of the image fidelity through an 
optimum partitioning while keeping the local search 
strategy.    
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