
DICTA 2002 

Page 1 of 1  

Color Texture segmentation using Multichannel Filtering  
 

Ramchandra Manthalkar and P. K. Biswas 
Department of E & ECE, I. I. T. Kharagpur, PIN 721302, India 

{rrm,pkb}@ece.iitkgp.ernet.in 
 

ABSTRACT 
Gabor filters are extensively used for texture 
segmentation because of their good joint space and 
spatial frequency localization. A texture 
segmentation method using multichannel Gabor 
filters for color texture images  is presented. Only 
even symmetric Gabor filters are used which 
reduce the computational complexity. Principal 
component analysis is used to reduce the 
dimensionality of  feature vector. The results are 
encouraging.  
 
1. Introduction 

 
 The goal of texture segmentation is to partition an 
image into homogeneous regions and identify the 
boundaries, which separate regions of different 
textures.  Many approaches are suggested in the 
literature.  Rao and Lohse [1]  found that 
repetitiveness, orientation and complexity are the 
major features, which account for most of the 
variability of different textures. Fourier power 
spectrum, second order gray level statistics, co-
occurrence statistics, gray level run length 
statistics, fractal dimension, transform and filter 
banks are used to obtain texture features. Wezka et 
al [2]  and Conners and Harlow [3], compared  a 
number of statistical features and concluded that 
co-occurrence features were the best features for 
texture characterization. Du Buf et al [4]  reported 
that several features had roughly the same 
performance. There is no particular method, which 
performs uniformly for all textures. A recent study 
by Trygve Randen and John Husoy [5], concludes 
that no single approach performs best or very close 
to the best for all images. Classification error and 
computational complexity are two very important 
issues in deciding a particular feature set. They 
have advised to test the Gabor filter bank, AR and 
co-occurrence features in case that they may 
perform well for the specific dataset at hand; 
however the co-occurrence and AR schemes do 
have a significant computational complexity. 
  Research suggested that the analysis of a stimulus 
by the visual system might involve a set of quasi-
independent mechanisms, called channels, which 

could be conveniently characterized in the spatial 
frequency domain. The channels in the visual 
system were modeled by filters defined in the 
spatial frequency domain with characteristics based 
on the results of psychophysical and neurological 
studies.  Gabor functions have been shown to be 
good fits to the receptive field profiles of simple 
cells in the striate cortex [6]. Statistical methods in 
the past have proven  to be superior to frequency 
domain techniques. This was due to the lack of 
locality in these early frequency analysis methods. 
Joint spatial/spatial-frequency techniques are 
inherently local in nature, and have characteristics 
that compare favorably with those of statistical 
methods [7]. The major advantage of multichannel 
filtering approach to texture analysis is that simple 
statistics of gray values can be used as texture 
features. The main issues involved in the 
multichannel filtering approach are functional 
characterization of the different channels and the 
number of channels, extraction of appropriate 
features from the filtered images, the relationship 
between channels (dependent versus independent), 
and  integration of texture features from different 
channels to produce segmentation. In this paper a 
strategy similar to that of Jain and Farrokhnia [8] is 
used for image segmentation.  The texture 
segmentation scheme is shown in figure 1.  Each of 
R, G, and B image is passed through the channels 
and features images are obtained.  Afterwards a 
feature reduction scheme is employed using 
principal component analysis. To the best our 
knowledge color texture segmentation is not 
attempted using even symmetric Gabor  filters. 
 
2. Even symmetric Gabor filter 
 
Based on psychophysical grounds Malik and 
Perona [10] provide some justification for using 
even symmetric filters only. Response of an even 
symmetric Gabor filter is given by, 
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θθ cossin yxy +−=′       (3) 
where u is the frequency of the sinusoidal wave 

along the direction θ  from the x-axis. xσ  and yσ  

specify the Gaussian envelope along x and y axes 
respectively, which determine the bandwidth of the 
Gabor filter. The Fourier transform of equation (1) 
is  
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where 

xu πσσ 2
1= ,  

yv πσσ 2
1=  and  

yxA σπσ2= , Figure 2 shows one spatial domain 

impulse response and one frequency domain 

response for 00  degree orientation filters on a 
128128×  grid. Most Gabor filters have slight 

response to regions of uniform luminance (or DC). 
This results in sensitivity to background luminance 
levels, which, for texture discrimination, signifies a 
first order difference between regions. This can be 
corrected by subtracting the mean pixel value of 
each filter from each of pixel value. In frequency 
domain this results in subtraction of a sinc function 
with the same value as the filter at the origin, 
thereby creating a filter with no DC response. 
Unfortunately, the sinc function induces a slight 
rippling in the filter’s response, especially at low 
frequencies. However, the amplitude of the sinc if 
sufficiently low then these ripples is not detectable 
in the spectral plots for the filters [11]. Gabor filter 
is built in Fourier domain, and at  

0== vu , ),( vuH   is kept zero. This ensures 
that the filters do not respond to regions with 
constant intensity. 

In addition to radial frequency and orientation, 
frequency and orientation bandwidths are also very 
important. For Gabor filter defined by equation (4), 

rB  and θB , the half peak magnitude bandwidths, 

are given by 
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rB  is in octaves and θB  is in degrees. 

The filter parameters are decided such that the 
space frequency plane is covered nearly uniformly. 
A class of self-similar functions, referred to as 
Gabor wavelets is  constructed as follows [14]. Let 

),( yxh  be the mother Gabor wavelet, then this 
self-similar filter set can be obtained by appropriate 
dilations and rotations of mother wavelet through 
the generating function: 
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where K
nπθ =  and K  is the total number of 

orientations. The scale factor ma −  in equation (7) 
ensures that the energy is independent of m .  
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This ensures that all filters in the set have the same 
energy.  Let Ul and Uh denote the lower and upper 
center frequencies of interest. Let K be the number 
of orientations and S be the number of scales in the 
multi-resolution decomposition. Then the design 
strategy is to ensure that the half peak magnitude 
cross-sections of the filter responses in the 
frequency spectrum touch each other. This results 
in the following formulas for computing the filter 
parameters  σu and σv (and  thus σx and σy). 
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where 1,...1,0, −=== SmKUu h
πθ  

Here m is scale. In order to eliminate sensitivity of 
the filter response to absolute intensity values, the 
real (even) components of the 2-D Gabor filters are 
biased by adding a constant to make them zero 
mean.  If an image is of size NN ×  pixels, the 

choice of radial frequencies  u  are 21 , 22 , 

24 , 28 ,… 2)4/(N . The unit is cycles per 

image width. In psychophysics, frequencies are 
expressed in cycles per degree of visual angle 
subtended on the eye. The frequencies in cycles per 
image width can be converted to cycles per degree 
if the width of the image in degrees of visual angle 
is known.  Several experiments have shown that 
frequency bandwidth of simple cells in the visual 
cortex is about one octave [8]. Four orientations of 

00 , 045 , 090 , 0135  are used. The maximum 
spatial frequency is so chosen that the highest 
radial frequency fall inside the image. Thus the 
total number of filters in a filter set is given by 

)2/(log4 2 N . Orientation and frequency 

bandwidths of each filter is kept 045  and 1 
octave, respectively. Figure 2 shows a filter in 
spatial and spatial frequency domain. Figure 3 
shows the spatial frequency response of  Gabor 

filters orientated at 00 , 045 , 090 , 0135  and 

spatial frequencies of  24 , 28 ,… 2)4/64(  
cycles per image width ( for an image of 

256256 × ). The lower frequencies are not used 
because they respond to low frequencies and most 
textures consist of mid frequencies. Thus, the 
filterbank covers the total spatial frequency domain 
nearly uniformly.   
  
3. Computing feature images 
 
For computing feature image, each filtered image is 
passed through following nonlinear transformation 
as suggested in [8]. 
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 The application of nonlinear transformation 
converts the sinusoidal transformations in the 
filtered images to square modulations. Average 
Absolute Deviation (AAD) from mean  in small 
overlapping windows is calculated as feature. This 
is similar to texture energy measure proposed by 
Laws [13]. The feature image is computed 
corresponding to each filtered image as 
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where (.)ψ  is the nonlinear function and  xyW  is 

a MM × window centered at the pixel location 
),( yx . The size of averaging window is very 

important parameter. Accurate edge preservation 
and accurate energy estimation are conflicting 
goals.  Gaussian weighted windows are likely to 
result in more accurate texture boundaries. So each 
of the filtered image is passed through a Gaussian 
low pass filter suggested below. 

s

n

enh
s

g
2

25.0

2
1

)( σ

σπ

−

=   (14) 

in each dimension, where 
us )22(

1=σ . This sσ is 

chosen such that it is proportional to average 
intensity variations in the image. Thus, each of the 
filtered image is passed through a Gaussian low 
pass filter. This is repeated for R, G and B image to 
get feature images.   

4. Feature reduction 
 
Principal Component Analysis is used for feature 
reduction. For R, G, B image, after getting feature 
images, a vector is formed for each pixel of 
original image called feature vector which consists 
the corresponding pixel value of pixel in filtered 
images in all R, G and B planes respectively. The 
components, which give variations, more that 
eighty five percent in data are chosen as significant 
features. This is done for all three images. The 
features selected for R, G, B (independently) are 
concatenated together to form feature vector for 
each pixel. 
 
5.  Features for segmentation 

Let there be tn textures present in image. If the 
texture features are capable of discriminating these 
categories then patterns belonging to each category 
will form a cluster in feature space. This cluster 
should be compact and isolated from other texture 
categories.  Here fuzzy c-means clustering 
algorithm is used for segmentation. For each pixel 
in original image a feature vector is formed by 
taking the value of the corresponding pixel in each 
feature image.   This feature set is given to the 
clustering algorithm. The data is normalized to zero 
mean and constant variance for better performance 
of clustering algorithm. The number of different 
textures in the image is explicitly provided to the 
algorithm. 
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6.  Experimental results 
 
The texture images are created by collaging 
subimages of Vistex texture database. Before 
collaging an image for texture segmentation, 
normalization for intensity and contrast is done.  
The experiments are carried out by keeping the 
intensity at 128 and contrast at 60 for 256 gray 

level original images. That is 128int =I , 

60=C .  Figure 4 shows the results of 
segmentation for 2, 3 and 4 texture images. Table 1 
gives the percentage mis classification for test 
images. 

7.  Conclusion 

Color texture segmentation is achieved using 
multichannel filtering (even symmetric Gabor 
filters are used for multichannel filtering  ) and 
results are encouraging.  

 

 
 
 
 Input image (R,G,B)  
   

 

 

 

 

 

 

 

 
 
 
 
  Segmented image. 
    
Figure 1: Scheme for the experiment 
 
 
 
 

   
Figure 2(a) ): spatial impulse response for 
u=5.54 c/I,  (c/iw is cycles per image width). 
  
 
 
 
 

 
Figure 2(b) Frequency Domain representation 

for u=45.25 c/iw 
 
Figure 2: Gabor Filter in spatial and spatial 

frequency domain. 
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Figure 3:  The spatial frequency coverage of 
Gabor Filter bank 
 

 
Table 1: Segmentation results 
     

Texture collage Percentage 
misclassification 

flowers4,          Food10 1.28 

fabric13, grass02, 
water05 

5.04 

fabric13,           grass02, 
water05,           leaves04 

2.35 

Clouds01,          grass02, 
water05,           leaves04 

4.68 
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Figure 4(a): 2 texture segmentation 

 

 
Figure 4(b) :  3 texture segmentation 

 

 
Figure 4(c): 4 texture segmentation 

 

 
Figure 4(d): 4 texture segmentation 

 
Figure 4: Segmentation result  


