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Abstract

This paper considers the recovery of the epipolar geom-
etry for the case of calibrated/uncalibrated two view rela-
tions. Two view relations are the basis for accurate calibra-
tion of stereo rigs and are often used in the solution to se-
quential processing of digital image streams to recover the
surface structure of a scene or otherwise known as, struc-
ture from motion (SFM). The outcomes of this research are a
freely available implementation of the algorithms required
to determine an accurate solution to the epipolar geometry
of a two-view relation.

1. Introduction

The recovery of the epipolar geometry for a pair of views
is a well known process. As early as the 1869 the pro-
jective geometry of the epipolar relation had been recog-
nised, first by Sturm[11] and more recently by Longuett-
Higgins[7] and Faugeras[2]. The computation of the SFM
of a pair of images is computationally demanding. The sys-
tem discussed in this paper has been written in the VXL
C++ computer vision libraries (www.robots.ox.ac.uk/~vxl),
which supply an excellent basis for computer vision re-
search and development. The algorithms required to com-
pute the SFM of an image sequence are publically available
in VXL’s Multiple View Geometry Library (MVL), and ex-
ecutables for the SFM program are available for Windows
and Linux architectures (www.csee.uq.edu.au/~iris).

In practice the problem of the recovery of the surface
structure from the scene involves the solution to the epipolar
relation between the cameras (this epipolar configuration is
demonstrated in Figure 1), namely the rotation of the optical
axes from one camera to the next (R), and the translation of
the optical centers of the cameras through 3D world space
(t). TheP (or camera) matrix (1) is responsible for the pro-
jection of the 3D projective co-ordinatesX = (x; y; z; 1) to
the 2D projective image co-ordinatesx = (u; v; 1);

xi = PXi = A[R j �Rt]Xi (1)

A represents the intrinsic properties of the camera con-
veyed by the pinhole model of the camera [15]. Lense ef-
fects such as radial distortion and aberations are not consid-
ered in this model of the camera. The matrixA is composed
as follows,

A =

0
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These intrinsic parameters represent the aspect ratio, fo-
cal length(�x; �y), image center(xo; yo) and skew(s) of
the camera. This is a necessary consideration when map-
ping the light hitting the camera’s lense as it is projected
through the camera center to the CCD array or exposure.
To the solve the epipolar relation there are two generalised
approaches. Depending upon the practicality of the situa-
tion to which they are being applied, they can be used at
one’s discretion.

The first case is that of the calibrated camera. This re-
quires prior knowledge of the camera/s and publically avail-
able programs such as Zhengyou Zhang’s’Easy Calib’[16].
Once the camera intrinsics are known, the projective equa-
tions (1) can be determined up to a Euclidean basis after the
solution of the Longuett-Higgins equation (2) which in turn
allows a determination of the camera matrices. Note thex 0

denotes a point in the second image.

x0TEx = 0 where E = t�R (2)

The problem formulation in the calibrated case is im-
paired by the fact that it restricts the determination of
changes in the cameras intrinsics such as focal length. This
means that the auto-focus feature on most modern digital
cameras must be disabled and the focal length must remain
static after calibration.

The second more general case of camera calibration is
that of the uncalibrated camera. This case is the focus of
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Figure 1. Epipolar relationship between
points visible in two views.

most contemporary structure recovery algorithms, and has
received the majority of the attention in the modern litera-
ture. The important advantage of the uncalibrated case is
that the structure recovery algorithm does not need access
to the camera prior to processing the sequence to recover
the intrinsic properties of the camera. Features of the cam-
era such as the auto-focus will not affect the reconstruction
as estimates of the cameras intrinsics can be calculated for
each frame in the pair or sequence.

The discovery that allows the computation of the struc-
ture in the uncalibrated case was Faugeras’s F matrix. This
is essentially a generalisation of the Longuett-Higgins equa-
tion for the case of unknown camera intrinsics.

x0TFx = 0 where F = A0�T t�RA�1 (3)

Clearly the complexity of the structure recovery process
is increased with the addition of more unknowns in the cam-
era intrinsic matrices. But it is possible to recover solutions
to different camera bases (Affine, Similarity & Euclidean)
from several of these uncalibrated relations [9, 3].

So given an F matrix the Projective camera matrices P
and P 0 can be derived as;

P = [I j 0] and P 0
= [e0 � F + e0vT j �e0] (4)

where e0 is the nullspace of F T (or the epipole in the sec-
ond image), v is the vector for the plane-at-infinity which is
the plane containing the vanishing points of parallel lines in
the scene. � is an arbitrary constant that merely changes the
changes the scale of the resulting reconstruction. The most
challenging component in recoverying the camera matrices

Figure 2. (a) All matched candidates with es-
timated epipolar geometry (b) Inliers, with es-
timate of epipolar geometry

in the uncalibrated two-view case is solving for the plane-at-
infinity [4]. Note that given a proper estimate of the plane-
at-infinity the resulting reconstruction will be Affine, where
as other estimates will result in a Projective reconstruction.

Gaining a reconstruction from the E matrix requires a
slightly different method [5]. The E and F matrices will be
refered to as C from this point.

2. Background

This section of the paper provides an overview of the
theory maintained in the solution to the un/calibrated cam-
era matrices.

2.1. Robust Determination of Scene Structure

In order to solve C, features must be recovered from
both images and putative matching candidates isolated [17].
This is a relatively simple process requiring an initial fea-
ture extraction from both images followed by some process
to find matches between features in each image. This pa-
per uses corners (Harris corner detector) as the feature to
be matched across the images and NCC template matching
to find the putative correspondences. It is also possible to
use lines or curves exclusively or in conjunction with cor-
ners to potentially increase the accuracy of the two-view
relation. Once putative matching candidates have been iso-
lated in both images, proceeding in a Least-Squares fashion
results in a solution for C. But as demonstrated in Figure
2. the presence of incorrectly matched candidates coupled
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with errors in corner localisation will degrade the accuracy
of the resulting relation. For close range scene modelling
this can be catastrophic for the resulting accuracy of the re-
projected 3D point estimates. In order to cater for these
errors, robust methods of weighting the validity of each of
the corner-to-corner candidates are employed.

There are many different ways to perform robust weight-
ing of matched candidates. This work implements the use of
three methods that have enjoyed the most attention in the lit-
erature. These are RANSAC [12] (Random Sampling Con-
census), MLESAC [14](Maximum Likelehood Sampling
Concensus) and LMedSq [17](Least Median of Squares).
These differing methods all use Monte-Carlo bucketing to
gather 7-point subsamples from the entire set of matched
candidates, where 7 corner-to-corner matches are the min-
imum number required to solve for C. These 7-point sub-
samples can generate a hypothesis for the relation govern-
ing all matched candidates, through the generation of mul-
tiple hypotheses and testing of the fit of each hypothesis a
7-point basis for the relation is determined. This basis and
its corresponding estimate of C will either maximise the
number of correctly matched corner-to-corner candidates or
inliers (RANSAC) or minimise the overall residuals of the
fit (MLESAC & LMedSq).

The robust cost function in each case is expressed as :

�RANSAC :

�
d < threshold; inlier

d > threshold; outlier

maximises the number of inliers, where d in this case is
the following epipolar error measure,

d =

q
(x0TCx)2 + (xTCTx0)2

�MLESAC :

�
d
�
< �2; inlier

d
�
> �2; outlier& d

�
= �2

MLESAC proceeds by finding the 7 point basis that min-
imises the combined error of all the matched correspon-
dences, where outliers are capped to the threshold used for
comparison.
�LMedSq : seeks to minimise the median error d of the

resulting vector of errors from each of the 7-point bases be-
ing tested. Thus finding the basis resulting in the minimum
median residual error.

2.2. Non-Linear Minimisation

Once an initial estimate for the relation has been deter-
mined, the inliers of the matched corner-to-corner candi-
dates can be used to further increase the accuracy of the
estimate for C by a gradient descent type algorithm (this
work uses the Levenburg-Marquardt algorithm).

This work has implemented two Non-Linear minimisa-
tions, one uses a rank-2 parametrisation of the C matrix
which is not available for the straight Least-Squares fitting

procedure discussed in the previous subsection [17]. The
other parametrisation was suggested by [14], and looks to
augment the given 7-point basis for the relation to arrive at
an optimal estimate for all the inliers.

The process of Non-Linear minimisation is potentially
flawed if an adequate initial estimate for the relation is not
provided. The error surface has local minima that can dis-
tract the gradient descent process from the true global min-
ima.

2.3. Triangulation

Once the C relation has been determined for a pair of
views and the initial set of camera matrices constructed, it is
still necessary to back-project the 2D points from both im-
ages to their mutual position in 3D space. In the calibrated
case this process will result in the 3D Euclidean points or
sometimes called a metric set of scene points. In the uncal-
ibrated case, the process of recovering the structure suffers
from the indeterminacy of the cameras intrinsics properties
thus rendering only a Projective or Affine solution to the
structure tractable.

In either case the process of the back-projecting the rays
to their point of intersection is generic. Again there are
range of possible methods to perform this back-projection
[10].

2.4. Degenerate Point Configurations

To further complicate the process of reconstructing a
scene from a set of features correspondences, there are cer-
tain configurations of points and/or camera motions that
defy the usual epipolar description. These point configu-
rations are termed degenerate.

Degenerate configurations, if not detected, will lead to
spurious two-view relations that can break down image
sequence processing or render a pair of views unrecon-
structable. Additionally, point sets that lie close to degen-
erate configurations can also exhibit poor estimates for the
resulting two-view relation.

Point configurations that will lead to degeneracies are
generalised in a practical sense to;

- Cyclo-rotation, where the only motion between frames
is a rotation of the camera about its optical center.

-Movement of the camera relative to a plane consuming
the entire field of vision, or even still a dominant plane in
the scene that attracts all the feature matches.

-There are also classes of surfaces that are degener-
ate these are called critical surfaces [8]. Point pairs that
are matched on these surfaces will render portions of the
matched candidates degenerate. Critical surfaces include
cones, cylinders and hyperbolic paraboloids.
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To overcome these practical anomalies, the work of Torr
[13, 12] describes a process of robust model fitting, called
GRIC (Geometrically Robust Information Criteria) follow-
ing the work of Kanatani [6]. This process finds both a ho-
mography (non-degenerate two-view relation) and a C ma-
trix for a pair of views and compares the MLE of the fit
in both cases, chosing the model that minimises the GRIC
score for the views in question. The homography calcu-
lated is a 2D projective transform between images that has
no degeneracies but doesn’ t encode the epipolar geometry
for the views. This means that you can maintain point tracks
through a degenerate pair but you are unable to reproject the
point pairs to gain structure.

In the case of just two views this can be utilised as a flag
to indicate that the image pair is invalid, or for sequence
processing this will save a breakdown in the tracking pro-
cess.

3. Implementation

The theory discussed in the previous section has
been coded in C++ using the open source VXL li-
braries and is freely available for download from the
Multiple View Geometry (MVL) library contained within
the OXL (Oxford) library in the public distribution
(www.robots.ox.ac.uk/~vxl).

The VXL libraries provide an ideal environment for C++
implementations of computer vision and image processing
type code. The libraries offer support for most common
image formats (including support for very large images).
In addition VXL provides most common image processing
functions (filters, feature extraction, etc.) and an excellent
numerical library which maintains C++ wrappers for a large
collection of publically available NETLIB (www.netlib.org)
FORTRAN code.

Perhaps the most impressive faecet of the VXL library
collection is it’s cross-platform capabilities. By abstract-
ing all the machine/OS dependent components of the library
such as GUI creation and standard C++ library calls VXL
can operate on all the most common operating systems (ex-
cluding Macintosh & BEOS). There is a full collection of
STL containers and capabilities to produce .mat files com-
patable with MATLAB (or OCTAVE) mathematical envi-
ronments.

A thoughtfully coded C++ library such as VXL gives
the programmer capabilities for semi-rapid development of
computer vision applications that enjoy the full benefit of
C++ compiler optimisation and cross-platform portability.

Image Capture &
Feature Extraction

Initial feature matching
& generation of putative

feature candidates

Calculate a robust
E/F matrix estimate
for the two views

Upgrade structure
through some means

[2][8]

Render Scene Points Signal Degeneracy

Calculate H & C
and compare the
GRIC score in

each case

Test

Degenerate

Figure 3. Block diagram of the two-view re-
construction process

3.1. Block Diagram of the Two-View Structure Re-
covery System

Figure 3. is a block diagram of the two view structure
recovery system discussed in the background section.

3.2. 3DWorlds

The application that utilises the routines discussed above
is called 3DWorlds. 3DWorlds requires an image sequence
in the following format image.###.format where .format in-
cludes .pgm, .ppm, .jpg, .tif, .mit, .viff and .rgb image types.
Figure 4 shows the project options available for 3DWorlds,
where the results of the estimates of the 2D feature loca-
tions, H /C matrices and corresponding 3D points are writ-
ten to text database files where they can be analysed by
other means.

The results of 3DWorlds for known motion synthetic im-
age sequences has validated the accuracy of the routines for
the case of medium baseline SFM sequences, with wide-
baselines and small baselines currently being beyond the
capabilities of the feature tracker (NCC template matching).

Figure 5 shows the results of the routines on a couple of
two-view pairs where zooming of the camera along its opti-
cal center is present and straight stereo motion of the cam-
era (only the second image of the pairs are displayed). Note
that in the testing of the GRIC algorithm, all known de-
generacies where detected with no false detections, though
sequences with very small-baselines are flagged as degen-
erate, reflecting their poor encoding of structure.

The 3D points generated by 3DWorlds can either be of
a Projective or Quasi-Euclidean basis [1]. In the case of
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Figure 4. 3DWorlds project options

Figure 5. (a) Synthetic image with epipole at
center (b) Sythetic stereo image with epipole
at infinity

the latter the 3D scene points reflect more closely the actual
3D structure of the scene, though falling short of a proper
Euclidean representation.

4. Conclusions

The concepts related to creating a sparse reconstruction
of a surface seen in two views from a camera have been dis-
cussed. The system presented is available for use in other
multiple-view geometry related research, and a executable
program that gives a database of text file estimates of ho-
mographies and F matrices between image pairs. Along
with camera matrices depicting either Projective or Quasi-
Euclidean reconstructions of the scene with associated 3D
point estimates.

Ideally the system should also incorporate the full Strat-
ified recovery of a Euclidean reconstruction, by perform-
ing a self-calibration procedure [9] that will upgrade the
Affine/Projective reconstruction to a Euclidean reconstruc-
tion. This is a topic to be considered in future work.
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