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Abstract

Image transforms are used extensively in image
processing to convert one image form into another form.
These transforms are either point-operation transforms or
neighborhood-operation transforms. Injective transforms,
also known as reversible or one-to-one transforms, are a
subset of point-operation transforms where each intensity
value maps to a distinct intensity value. In this paper we
present a novel technique that can identify if an image
was processed by an injective transform. The injective
mapping is also recovered in the process. The technique
is applicable to both linear and non-linear transforms.
We introduce two measures that assess the degree of
injective mapping and the degree of functional mapping
of the transform. The technique is based on the attributes
of the image variation number which is an entropy-
similar informative measure. Tests are conducted on real
images to show the validity of our technique.

Index Terms: Image transforms, Injective transforms,
transform recovery, image information, image restoration

1.  Introduction

Image transforms play an important role in image
processing and image analysis [1] [2] [3]. They are used
extensively to convert an image into a (more meaningful)
new form of the image. These transforms are either
neighborhood-operation transforms or point-operation
transforms. Neighborhood-operation transforms (or local
transforms) perform their transform operation based on
the neighborhood of a pixel. Examples of these transforms
are edge filters (e.g. Roberts, Sobel), low-pass filters,
high-pass filters and local entropy [4]. Point-operation
transforms (also known as gray-scale or pixel brightness
transformations) perform their transform operation based
entirely on the corresponding pixel value in the input
image. Examples of point-operation transforms are image
equalization, image contrast enhancement, image
inversion and image thresholding. They are also used to
correct for digitizer or display device limitations such as
non-linearity [5]. Injective [6] (one-to-one) transforms are
a subset of point-operation transforms where each

intensity value maps to a distinct intensity value. If 
represents the injective transform then,

-1( (u)) = u (1)
where u is the intensity level. Hence, these transforms are
reversible. Examples of Injective transforms are image
equalization and image inversion. In this paper we present
a novel technique that can identify if an image was
processed by an injective transform. Regardless of the
complexity of the injective transform, such as a random
injective transform mapping, the transform can be easily
identified with the technique. The technique is applicable
to both linear and non-linear transforms. The injective
mapping function is also recovered in the process. The
technique is based on the attributes of the image variation
number, a new entropy-similar information measure that
has many applications in image analysis [7]. Two
measures that asses the degree of injective mapping and
the degree of functional mapping of the transform are
introduced. This paper is divided into five sections as
follows: section 2 follows this introduction with a
presentation of the image variation number, its attributes
and its relation to entropy, section 3 presents injective
transforms and the method by which an injective
transform is identified and recovered, the results of our
tests are presented in section 4, and the paper concludes
with section 5.

2.  The Image Variation Number

The Image Variation Number ( ) measures the amount of
information of an image. For an image x, (x) is defined
as the number of non-zero elements of the image
histogram or the number of unique intensity gray-scale
values in image x,
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and hi(x), i = 0, … , L-1, denotes the normalized image
intensity histogram. L = 2n is the number of gray levels in
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the image, where n is the number of bits used to represent
the image. Obviously an image with many distinct gray-
scale values clearly contains more information than an
image with a lesser number of distinct gray-scale values.

(x) is bounded by, 1  (x)  L, or, 0  log2( (x))  n.

2.1.  The Image Variation Number and Entropy
The Image variation number is related to the image
entropy (E),
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Since, only the non-zero elements of the histogram
actually contribute to the entropy, we can restate the
entropy equation as,
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Using the Log Sum Inequality from information theory
[8], we obtain,
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Hence, we obtain,
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or,

E(x)  log2( (x)) (10)

 The last equation states that the log of the intensity
variation number is always larger than (or at best equal to)

the image entropy. As a result, 0  E(x)  log2( (x))  n.
Thus knowledge of the image variation number results in

knowledge of an upper limit (  n) on image entropy.
Conversely, knowledge of the image entropy results in
knowledge of a lower bound on the image variation
number.

2.2. The Joint Image Variation Number
The joint variation number between two images x1 and x2,

(x1,x2), is defined as the number of non-zero elements of
the joint histogram distribution of x1 and x2, i.e.,
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where hij(x1,x2), i = 0 … L-1, j = 0 … L-1, denotes the
normalized joint histogram distributions of images x1 and
x2. L = 2n is the number of gray levels in the image, where
n is the number of bits used to represent the image. Both
image vectors x1 and x2 are of size K. Furthermore,

(x1,x2) is bounded by a lower and an upper bound,
l1  (x1,x2)  l2. The lower bound, l1=max( (x1), (x2)),
is the maximum number of distinct gray-scale values of
the two images, which can not exceed 2n. The upper
bound, l2, is the size of the image vector (K), or the entire
number of possible intensity combinations, 22n, whichever
is smaller,

1  max( (x1), (x2))  (x1,x2)  min(22n,K)  (12)

Note that the joint image variation number can be
extended to more than two images [7].

2.3.  The Joint Image Variation Number and
Joint Image Entropy
The joint image variation number of two images x1 and x2,

(x1,x2), is related to their joint image entropy, E(x1,x2).
Let E(x1,x2) be given by,
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Since, only the non-zero elements of the histogram
contribute to the image entropy, the above equation can be
rewritten as,
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Using the Log Sum Inequality as before, we obtain,
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which produces,

E(x1,x2)  log2( (x1,x2)) (16)

i.e. the joint image entropy of two images is always
smaller than (or at best equal to) the log of the joint image
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variation number. This implies that the joint image
entropy has the following upper limit,

0  E(x1,x2)   log2( (x1,x2)) 

log2( (x1)· (x2))  log2(min(22n,K)) (17)

An interpretation of the joint variation number of two
images is that it is the number of non-zero elements of the
gray-scale correspondence table (GCT) which is a binary
table that indicates the gray-scale intensity mapping
between two images.

3.  Injective Transforms

As earlier stated, point-operation transforms modify an
image by changing the gray-scale intensity values of each
pixel to a new value, by some intensity mapping function.
Any pixel in the output image depends exclusively on the
corresponding input pixel intensity, xo(r,c) = f(xi(r,c)),
where xo(r,c) and xi(r,c) are the output and input images,
respectively, and f is the mapping function. If f is a linear
function, fL, then it has the form,  fL(xi(r,c)) = a xi(r,c) + b,
where a and b are constants. Let u = xi(r,c) be the gray-
scale value of the image, then this equation can be
rewritten as, fL(u) = a u + b. Examples of linear functions
are image equalization and image inversion.

By definition, an injective function is a one-to-one
mapping function, such that,

(u) = { (u)  | (u1)  (u2), u1, u2 } (18)

or -1( (u)) = u, i.e. each value u   maps to a unique

value in . Consequently an injective transform acting on
image x1 producing image x2 maps each intensity value of
x1 into a unique intensity value in x2. Hence, the linear
function, fL, defined above is an injective function if,
a umax +b  2n or log2(a umax + b)  n, where umax is the
maximum intensity value of the input image and n is the
number of bits used to represent the image. Injective
functions are not restricted to linear functions but can also
be non-linear. For example, the non-linear function
fN(u) = um is an injective function if (umax)

m  2n or
m log2(umax)  n.

3.1.  Injective and Reversible Processes
The second law of thermodynamics, also known as the
increase of entropy principle, states that “the entropy of an
isolated system during a process always increases or, in
the limiting case of a reversible process, remains
constant” [9]. Since all processes in nature involve some
energy loss due to friction or heat dissipation -which
decreases the amount of system order- reversible
thermodynamic systems simply do not exist in nature, they
are only used as a theoretical idealization of the process.
If such a reversible system was to exist, the change of

system entropy must be zero ( E = 0), and the entropies
of the initial and final states of the system must be equal
(Ei = Ef, where i and f denote the initial and final states of
the process, respectively).

In image analysis, this is not the case. We can have
images that are processed by a reversible or injective
transform, where the image entropy remains unchanged
and the entropy of the transformed image equals that of
the original image. This is evident by examining the
histograms of an image and its injective transformed
image. Fig. 1 shows the histogram distribution of an
image and the effect of five transforms on the original
histogram distribution. The first three transforms are
injective transforms while the remaining two are not. It is
fairly obvious that the first two transforms (image
inversion and equalization) produce images that have the
same histogram distribution profile as the original
histogram, but in reverse order for the first case and
stretched in the second case. The third transform also
produces the same histogram but is difficult to see
because the order of the histogram has been scrambled.
However, all histogram values are 100% preserved. The
remaining two transforms clearly produced different
histogram profiles. What occurs as a result of an injective
transform, is merely a change in the order of the histogram

distribution, i.e. hi(x) = hr(i)( (x)), where r(i) is the
histogram order index for the transformed image. All
histogram values are preserved and not modified by such
a transform. Hence, E = 0 or Ei = Ef. This fact implies
that the change in the image variation number is also zero
(  = 0), and that   i = f. This can be shown to be true
by,
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=
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3.2. The Injectiveness Theorem
Although  = 0 (or E = 0) is a necessary condition to
identify if a transform between two images is an injective
transform, it is not a sufficient condition. Many images

Fig. 1. Histogram distributions for the Phone Image.
From left to right. Top row: original image, image
inversion and image equalization. Bottom row:
random intensity mapping, squared intensity
mapping with normalization, and squared intensity
mapping with clipping.
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can be found where they have the same values of  or E.
Does this mean that one image can be obtained from the
other image by an injective function? Certainly not. As we
state in the injectiveness theorem below, the joint
variation number of the two images must also equal the
image variation number of each image for an injective
transform to exist between two images.

 Injectiveness Theorem
Given two images x1 and x2. If ,

(x1,x2) = (x1) = (x2) (20)

then the mapping : x1  x2 is an injective (one-to-one)
mapping.

Proof. Let (x1,x2) = (x1) = (x2) = L. (x1,x2) = L
implies that the number of non-zero entries in their GCT is
L. Hence, the mapping between x1 and x2 has L distinct
gray-scale intensity pairs. Furthermore, since each image
has only L distinct intensity values also, this means that
each intensity value of x1 has a unique intensity value of
x2 and vice-versa.          �

Note that both images x1 and x2 must be of equal size for
the injective theorem to be applicable.

3.3.  Recovering Injective Transforms
Once a transform between two images has been
determined to be injective, the transform itself can be
recovered by examining the GCT of the two images. As
stated above, the GCT can be interpreted as a two
dimensional mapping matrix that indicates the gray-scale
intensity correspondence between two images. Hence,
simple curve fitting techniques can be used to fit the GCT
mapping to obtain the functional relation between two
images. For example, the first two GCT plots shown in
Fig. 4 are easily identified as linear mapping functions,
and using simple line fitting techniques we can reproduce
the mapping function. The third GCT  plot of Fig. 4 is also
injective, although it is more difficult to identify. Here, no
explicit mapping equation can be stated as it is a result of
a random injective mapping, but a correspondence LUT
can be easily constructed. The fourth GCT plot of Fig. 4 is
easily identified as a parabolic function and the GCT data
can be fitted to a parabolic equation to arrive at the
mapping equation, and so on.

3.4.  Mapping Indexes
Image transforms are either injective or not. Using the
Injectiveness Theorem we can determine if the transform
is an injective transform. However, some transforms are
not injective but may have some common attributes of
injective transforms because of their closeness to being
injective transforms. By using the two indexes defined
below we can determine the transform’s degree of
nearness to an injective transform. Before presenting the

two measures, recall the calculus definition of a
mathematical function: “Let X and Y be non-empty sets.
Let f be a collection of ordered pairs (x,y) with x  X and
y  Y. Then f is a function from X to Y if to every x  X
there is assigned a unique y  Y” [10].

Injective Mapping Index. The injective mapping index
(F ) between two images, x1 and x2, is defined as,

F (x1,x2) = 1
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which represents the closeness of a transform or a
mapping between two images being injective. The range
of F (x1,x2) is [0,1]. F (x1,x2) = 1 indicates an injective
mapping function between x1 and x2, which is bi-
directional between the two images. Large values of F
indicate closeness of the mapping being injective.

Functional Mapping Index. The functional mapping
index (F ) between two images, x1 and x2, is defined as,

F (x1, x2)  = max( (x1), (x2)) / (x1,x2) (22)

It indicates the closeness of the transform from xs xt

being a function, where,

    xs = {xi | (xi) = min( (x1), (x2))} and

xt = {xi | (xi) = max( (x1), (x2))} (23)

The range of F (x1,x2) is [0,1] where F (x1,x2) = 1
indicates a unidirectional mapping function from xs  xt.
For any two images, F (x1,x2)  F (x1,x2). F (x1,x2) = 1
implies that F (x1,x2) = 1, but the converse is not true.

4.  Applications

Thirty images were employed for testing the injectiveness
theorem and the mapping indexes. The test images were
randomly selected from our image database which
consists of more than 100 images. The images are 8-bit
gray-scale images of size 128x128. Values of the variation
number ( ) for the test images varied from 14 to 255 for
the image set with a median set value of 192. These
images were point processed by the following five
functions: f1: image inversion: f(x) = 255 - x, f2: image
equalization, f3: random intensity mapping:
f(x) = random(x), such that f(x1)  f(x2), f4: squared
intensity mapping with normalization: f(x) = x2/255,
f(x) = [0,255] and f5: squared intensity mapping with
clipping: f(x) = x2, and f(x) = 255 if f(x) > 255. f1 and f3 are
injective functions. f2 is also an injective function
provided that the image can be equalized. f4 may or may
not be an injective function. f5 is an injective function only
if  < 16. Fig. 2 and Fig. 3 show two sample images, the
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Phone image and the Fires image, along with their
transformed images.

The processed images resulting from applying f1  f5 to
the original images were pooled together with the original
images, denoted by f0, and used as the test set. This
resulted in 178 images as two images could not be
equalized. Every pair of images were then examined to
see if the injectiveness theorem is satisfied. This resulted
in the calculation of the joint variation number for 31,684
image pairs, of which 119 image pairs were found to
satisfy the injectiveness theorem (F = 1). Each image and
its transformed images by f1  f3 successfully satisfied the
injectiveness theorem.  Only one image ( (f0) = 14) had
its f5 transformed image satisfying the injectiveness
theorem.

4.1.  Mapping Results
In our discussion we will analyze the results for two
sample images, the phone image and the fires image and
discuss their results. The image set for the phone image
consists of 6 images: the original image and its
transformed images {fi(xphone)| i = 0,...,5}. The histogram
distribution for these images were earlier shown in Fig. 1.
The image set for the fires image consists of 5 images:
{fi(xfires)| i = 0,1,3,4,5} as this image could not be

equalized. Hence, the joint image set for these images
consists of 11 images. Tables 1 and 2 display the injective
mapping index (F ) and the functional mapping index (F )
for all 121 possible image pairs. Fig. 4 displays a plot of
the GCT for several image pairs.

4.1.1. Phone-Phone image Pairs. Each image pair of the
subset {fi (xphone)| i = 0,...,3} produced F  = 1 (and F  = 1),
indicating an injective transform for all pairs of this
subset. Also all image pairs of the Phone-Phone image
pairs had very high F  values (  0.9). In fact all pairs
-except one- had F  = 1, indicating that all image pairs
except one image pair has one-to-one mapping
correspondence from one of the images to the other. This
is an important finding since even though some image
pairs do not have an injective mapping between them, one
image can still be produced from the other by a
mathematical function (algebraic or LUT).

4.1.2.  Fires-Fires image pairs. Each image pair of the
subset {fi (xfires)| i = 0,1,3} produced F  = 1 (and F  = 1),
indicating an injective transform for all pairs of this
subset. In general, all image pairs in this set had very high
F  values (  0.87). All pairs -except one- had F  = 1,
indicating that all image pairs except one image pair has
one-to-one mapping correspondence from one of the
images to the other.

Fig. 2. Processed Image for Phone Image (From left to right): original image, image inversion, random
intensity mapping, image equalization, squared intensity mapping with normalization, and squared
intensity mapping with clipping.

Fig. 3. Processed Image for Fires Image (From left to right): original image, image inversion, random
intensity mapping, squared intensity mapping with normalization, and squared intensity mapping with
clipping (note: image could not be equalized).

Table 1: Injective Mapping for  phone and fires Images
 Image x = phone   y = fires

f0 f1 f2 f3 f4 f5 f0 f1 f3 f4 f5

f0 1.00 1.00 1.00 1.00 0.78 0.35 0.02 0.02 0.02 0.03 0.05
x f1 1.00 1.00 1.00 1.00 0.78 0.35 0.02 0.02 0.02 0.03 0.05

f2 1.00 1.00 1.00 1.00 0.78 0.35 0.02 0.02 0.02 0.03 0.05
f3 1.00 1.00 1.00 1.00 0.78 0.35 0.02 0.02 0.02 0.03 0.05
f4 0.78 0.78 0.78 0.78 1.00 0.37 0.02 0.02 0.02 0.03 0.05
f5 0.35 0.35 0.35 0.35 0.37 1.00 0.06 0.06 0.06 0.06 0.08

f0 0.02 0.02 0.02 0.02 0.02 0.06 1.00 1.00 1.00 0.76 0.42
f1 0.02 0.02 0.02 0.02 0.02 0.06 1.00 1.00 1.00 0.76 0.42

y f3 0.02 0.02 0.02 0.02 0.02 0.06 1.00 1.00 1.00 0.76 0.42
f4 0.03 0.03 0.03 0.03 0.03 0.06 0.76 0.76 0.76 1.00 0.43
f5 0.05 0.05 0.05 0.05 0.05 0.08 0.42 0.42 0.42 0.43 1.00

Table 2: Functional Mapping for phone and fires Images
 Image x = phone   y = fires

f0 f1 f2 f3 f4 f5 f0 f1 f3 f4 f5

f0 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.03 0.03 0.05 0.10
x f1 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.03 0.03 0.05 0.10

f2 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.03 0.03 0.05 0.10
f3 1.00 1.00 1.00 1.00 1.00 1.00 0.03 0.03 0.03 0.05 0.10
f4 1.00 1.00 1.00 1.00 1.00 0.90 0.03 0.03 0.03 0.05 0.09
f5 1.00 1.00 1.00 1.00 0.90 1.00 0.10 0.10 0.10 0.10 0.09

f0 0.03 0.03 0.03 0.03 0.03 0.10 1.00 1.00 1.00 1.00 1.00
f1 0.03 0.03 0.03 0.03 0.03 0.10 1.00 1.00 1.00 1.00 1.00

y f3 0.03 0.03 0.03 0.03 0.03 0.10 1.00 1.00 1.00 1.00 1.00
f4 0.05 0.05 0.05 0.05 0.05 0.10 1.00 1.00 1.00 1.00 0.82
f5 0.10 0.10 0.10 0.10 0.09 0.09 1.00 1.00 1.00 0.82 1.00
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4.1.3.  The fires-Phone image pairs. In contrast with the
results indicated above, the mapping indexes were very
small values (  0.1) when the images belong to different
image sets, indicating no relation between these images
and hence are not -and can not- be produced from each
other.

4.2.  Transform Recovery
All image pairs producing injective or functional
mappings can have their transform equation recovered.
For example,
• Fitting the GCT data for the image pair {f0(xphone),

f1(xphone)) produced the equation, f(x) =255 - x, which
is the equation for inverting the image.

• Fitting the GCT data for the image pair {f0(xphone),
f2(xphone)) produced the equation, f(x)=0.788 x+0.384,
which is the equation for equalizing this image.

• Fitting the GCT data for the image pair {f0(xphone),
f3(xphone)) produced a lookup table that maps each
value of f0(xphone) to a unique value in f3(xphone).

• Fitting the GCT data for the image pair {f0(xphone),
f4(xphone)) -although not a result of an injective
transform (F  = 0.78) but of a functional mapping
(F  = 1) from f0(xphone)  f4(xphone)- to a second order
equation produces the transform equation,
f(x) = 0.003903 x2, which is in agreement with f4

(error < 0.5%). Although one might be tempted to

state that the function x / ( . )0 003903  is the

mapping of f4(xphone)  f0(xphone), and that the
transform is an injective function, this is not the case,
as this last function does not produce f0(xphone).

5.  Conclusion

In this paper we have presented a novel technique that can
identify injective transform image pairs. The injective

mapping function is also recovered in the process. The
technique is based on using the joint image variation
number, a new entropy-similar information measure. Two
mapping indexes, the injective mapping index and the
functional mapping index, are used to identify the
nearness of a transform to being an injective mapping or a
functional mapping, respectively. Tests were successfully
conducted on 178 image variations from 30 images,
resulting in more than 31,000 image pairs. Using the
injectiveness theorem and the mapping indexes the system
correctly identified all injective transformed image pairs,
and identified all image pairs than can be produced by a
direct application of a function to one of the image pairs.
Even when applying a random injective transform to an
image producing an image with no visible relation to the
original image, the method easily detected the two images
as being an injective transformed image pair. In each case
were an injective transform pair or a functional transform
pair was identified the transform function was recovered.
It is hoped that the framework laid in this work will assist
other researchers in the area of image recovery and
restoration.

Acknowledgment. The author would like to thank the
Kuwait University Research Administration for providing
financial support for this research (Grant EM-05/01).

6.  References

[1] Gonzalez, R. and Woods, R. 1992. Digital Image
Processing. Addisson-Wesley, New York.

[2] Jain, Anil K. 1989. Fundamentals of Digital Image
Processing. Prentice Hall, New Jersey.

[3] Sonka, M., Hlvac, V. and Boyle, R. 1998. Image
Processing, Analysis and machine Vision. PWS
Publishing, New York.

[4] Ballard, D. and Brown, C., 1982. Computer Vision.
Prentice Hall, New Jersey.

[5] Castleman, Kenneth. 1997. Digital Image Processing,
Prentice-Hall, Inc. New Jersey.

[6] M. Holz, K. Podewski and K. Steffens. 1987.
Injective Choice Functions. Lecture Notes in
Mathematics, Springer-Verlag, Hannover, Germany.

[7] Mustafa, Adnan A. 2001. “The Image Variation
Number, a Substitute for Image Entropy”. Kuwait
University, Dept. of Mechanical Engineering,
Technical Report #EMM-05/01.

[8] Cover, T. and Thomas, J. 1991. Elements of
Information Theory, John Wiley & Sons. New York.

[9] Yunis, C. and Boles, M. 1998. Thermodynamics: An
Engineering Approach, 3rd ed., WCB/McGraw Hill,
New York.

[10] Thomas, George B. 1972. Calculus and Analytical
Geometry, 4th ed., Addison-Wesley, The Philippines.

Fig. 4. GCT for the phone and fires images
(x = phone image and y = fires image). From left to
right: Top row: f0(x) & f1(x), f0(x) & f2(x), f0(x) & f3(x),
f0(x) & f4(x), f0(x) & f5(x), f4(x) & f3(x). Middle row:
f0(y) & f1(y), f0(y) & f3(y), f0(y) & f4(y), f0(y) & f5(y), f5(y)
& f3(y), f4(y) & f1(y).  Bottom row: f0(x) & f1(y), f0(x) &
f3(y), f0(x) & f4(y), f0(x) & f5(y), f0(y) & f2(x), f0(y) &
f3(x).


