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Abstract 
 

Noises, in the form of false motion vectors, cannot be 
avoided while capturing block motion vectors using block-
based motion estimation techniques. Similar noises are 
further introduced when the technique of global motion 
compensation is applied to obtain “true” object motion 
from video sequences, where both the camera and object 
motions are present. We observe that the performance of 
the mean and the median filters in removing false motion 
vectors, for estimating “true” object motion, is not 
satisfactory, especially when the size of the object is 
significantly smaller than the scene. In this paper we 
introduce a novel filter, named as the Mean-Accumulated-
Thresholded (MAT) filter, in order to capture “true” object 
motion vectors from video sequences with or without the 
camera motion (zoom and/or pan). Experimental results 
on representative standard video sequences are included to 
establish the superiority of our filter compared with the 
traditional median and mean filters. 

 

1. Introduction 

Extracting motion parameters from image sequences 
has been a central theme in the areas of computer vision 
and image coding. There are many types of motion 
estimation algorithm such as pel-recursive [22], block-
matching [8], and optical flow based method [7]. In 
general, block-matching algorithm [8] attracted wider 
acceptance due to its simplicity, robustness, and lesser 
hardware complexity which is already adopted by a large 
number of video coding standards (MPEG-1/2 and 
H.261/262/263 etc.).  

The exhaustive block-matching full-search (FS) [8], 
where each candidate block is searched for the closest 
match within the entire search region, it generally provides 
reasonably good performance with the expense of high 
computational time. 

Several fast algorithms have already been proposed to 
address the above issue. The three-step search algorithm 
(3SS) [12], the new three-step search (N3SS) [13], the 
four-step search algorithm (4SS) [17], and the cross-

search algorithm [6] are based on the assumption that the 
block distortion measure increases as the checking points 
move away from the global minima. But this assumption 
does not hold true in the real world video sequences [4]. 
Moreover, search directions of the above algorithms can 
be ambiguous and therefore, may converge to local 
minima. 

In true motion estimation, where object and/or camera 
motions are estimated, the FS algorithm tends to pick 
many “false” motion vectors even when no object motion 
is present in the search region. This is due to the fact that 
the distortion of an object in a video frame is proportional 
to its velocity and therefore, as the length of a motion 
vector grows so does the block difference error. The FS 
algorithm is, therefore, modified in our paper [19] by 
introducing distance dependent linear threshold (LT) and 
exponential threshold (ET) named as the Modified Full 
Search (MFS) algorithm. In this paper we use this MFS 
algorithm for estimating true block motions.  

Block motion is governed by the movement due to the 
camera (pan and/or zoom) referred as global motion, 
movement of the objects referred as object motion or 
“true” motion, or both. Many motion estimation 
techniques ignore this aspect and make no distinction 
between the global and the local motion. However, 
separating these two classes of motions is significant for 
“true” object motion. In case where both the local and the 
global motions are present in the video sequences, “true” 
object motions (i.e., the local motion), necessary for 
object-based video representation, segmentation, and 
retrieval, can only be obtained by canceling out the global 
motion component from the block motion, known as 
global motion compensation.  

Once the global motion is compensated from the 
estimated block motion, “true” object motion vectors are 
clustered in the blocks containing one or more objects. As 
the block motion estimation cannot be done with complete 
accuracy due to the limitation of block-based estimation 
techniques, a number of impulse noises (false motion 
vectors) are also likely to be introduced after the above 
processing along with the “true” object motion vectors. To 
retain only the “true” object motion vectors, we must filter 
out these impulse noises from the scene.  
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Many types of filters have already been proposed and 
examined for filtering impulse noises. Among them the 
median filter and the mean filter are widely used. While 
applied to reduce noises in an image, the median filter 
performs better than the mean filter as the mean filter 
often blurs the edges [5][21]. The same is not true for 
filtering out noises from the motion vectors, especially 
when objects are quite small compare to the size of the 
scene. In such cases, the median filter tends to remove 
significant number of “true” object motion vectors along 
the edge of the objects whereas the mean filter reduces the 
length of all the motion vectors, including the “true” ones. 
To address this issue we develop a new filter, named as 
the Mean-Accumulative-Thresholded (MAT) filter, which 
is successfully applied to a number of representative 
standard video sequences to capture the “true” object 
motion vectors.   

The remainder of this paper is organized as follows. 
Section 2 describes the block motion estimation technique 
used in this paper. The parametric global motion 
estimation techniques are introduced in Section 3. In 
Section 4 the general process of estimating local (object) 
motion, including our proposed MAT filter, is discussed. 
Some experimental results are included in Section 5. 
Section 6 concludes the paper. 

 

2. Block Motion Estimation 

In [19], we observed that in true motion estimation, the 
FS algorithm tends to pick many “false” motion vectors 
even when no object motion is present in the search 
region. To address this issue we modified the FS 
algorithm (names as the MFS algorithm) by introducing 
distance dependent thresholds. The MFS algorithm not 
only avoids capturing a large number of “false” motion 
vectors but also reduces the search time significantly. In 
this paper we use the MFS algorithm for estimating true 
block motions. 

 

3. Global Motion Estimation 

If there is no local motion in a scene and only the 
camera is moving, the dynamics of the resulting video 
sequences can be adequately described by only a few 
camera operation parameters.  

3.1. Motion Model 

Techniques for global motion estimation (GME) have 
been proposed in [9][18][20]. Most of the GME methods 
differ in the parametric model to represent the camera 
motion as well as in the technique to estimate the 
parameters of the chosen model. Although a complex 

model results in a better description of the motion, it also 
leads to a greater difficulty in parameter estimation and 
higher computational complexity. Conversely, a simple 
model is sufficient enough to represent the global motion 
of a small video sequence, especially when the global 
motion is primarily used for compensating the camera 
motion from the block motion to obtain “true” object 
motion. 

The conventional block-matching algorithm assumes 
that all the pixels in a block have equal displacements, and 
thus estimates one motion vector for each block. Let there 
be N blocks in a video frame. Lat us assume that the 
motion vector of a block is the motion vector of the center 
pixel of that block. Let (vx(k), vy(k)) be the measured 
motion vector, according to our MFS algorithms explained 
in Section 2, of the block k, k = 0, 1, …, N-1, whose center 
pixel’s coordinates are (sx(k), sy(k)) with respect to the 
center of the frame. 

For global motion estimation, we consider the 4-
parameter motion model depicted in [18] with some 
modification. The generalized 4-parameter motion model 
for camera zoom and pan is defined as 

��
�

��
�+��

�
��

�=��
�

��

�
4
2

3
1

)(
)(

)(
)(

a
a

ksa
ksa

kv
kv

y
x

y
x       (1) 

where 
),(  and  121 yxx ppfaza ==   2(a) 

),( and 243 yyy zpfaza ==   2(b) 
In the above definition, zx and zy are the zoom factors 

along the x-axis and y-axis respectively, (px, py) is the pan 
vector. 

3.2. Motion Parameter Estimation 

Now consider the iterative least-square estimation 
algorithm for obtaining the optimal values for camera 
parameters (a1, a2, a3, a4) by using the following criteria: 
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By differentiating with respect to the parameters, and 
setting the derivatives to zero, we obtain the following 
solution as shown in (5, 6, 7, 8). 

 

21

0

1

0

2

1

0

1

0

1

0
1

)()(

)()()()(

�
�

�

�

�
�

�

�
−

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�
−

=

��

���

−

=

−

=

−

=

−

=

−

=

N

k
x

N

k
x

N

k
x

N

k
x

N

k
xx

ksksN

kskvkskvN

a     (5) 



 

3 

 

21

0

1

0

2

1

0

1

0

1

0

2
1

0
2

)()(

)()()()()(

�
�

�

�

�
�

�

�
−

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�
−

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

=

��

����

−

=

−

=

−

=

−

=

−

=

−

=

N

k
x

N

k
x

N

k
x

N

k
xx

N

k
x

N

k
x

ksksN

kskskvkskv

a

 (6) 

21

0

1

0

2

1

0

1

0

1

0
3

)()(

)()()()(

�
�

�

�

�
�

�

�
−

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�
−

=

��

���

−

=

−

=

−

=

−

=

−

=

N

k
y

N

k
y

N

k
y

N

k
y

N

k
yy

ksksN

kskvkskvN

a      (7) 

21

0

1

0

2

1

0

1

0

1

0

2
1

0
4

)()(

)()()()()(

�
�

�

�

�
�

�

�
−

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�
−

�
�

�

�

�
�

�

�

�
�

�

�

�
�

�

�

=

��

����

−

=

−

=

−

=

−

=

−

=

−

=

N

k
y

N

k
y

N

k
y

N

k
yy

N

k
y

N

k
y

ksksN

kskskvkskv

a

 (8) 
Since all the blocks are taken into consideration, the 

above estimate will be affected by the presence of the 
local motion. To eliminate this influence, we use the 
above procedure iteratively, each time eliminating the 
blocks whose motion vectors do not match with the so-far-
estimated global motion fields. As observed in [18], the 
iteration converges very quickly in our experiments.  

 

4. Object Motion Estimation 

In case where both the local and the global motions are 
present in the video sequences, “true” object motions can 
only be obtained by canceling out the global motion 
component from the block motion, known as global 
motion compensation.  

Once the global motion parameters for the scene is 
calculated according to section 3, the “true” object motion 
vector (ox(k), oy(k)) of the block k, k = 0, 1, …, N-1, can be 
calculated as: 
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Once the global motion is compensated from the 
estimated block motion, “true” object motion vectors are 
clustered in the blocks containing one or more objects. As 
the block motion estimation cannot be done with complete 
accuracy due to the limitation of block-based estimation 
techniques, a number of impulse noises are also likely to 
be introduced after the above processing along with the 
“true” object motion vectors. To retain only the “true” 
object motion vectors, we must filter out these impulse 
noises from the scene. 

Many types of filters have already been proposed and 
examined for filtering impulse noises. Among them the 

median filter and the mean filter are widely used 
[2][5][11][16][21]. The median filter and its variants have 
already been applied in many applications for noise 
rejection from block motion vectors [1][10][14][23]. 

4.1. The Mean Filter 

The idea of mean filtering is simply to replace each 
value with the mean (`average') value of its neighbors, 
including itself. This has the effect of smoothing values 
that are unrepresentative of their surroundings. Mean 
filtering is usually thought of as a convolution filter [24]. 
Like other convolutions it is based around a kernel, which 
represents the shape and size of the neighborhood to be 
sampled when calculating the mean. Often a 3×3 square 
kernel is used. Two major characteristics of the mean filter 
are:  

• A single very unrepresentative value can 
significantly affect the mean value of its 
neighborhood.  

• When the filter neighborhood straddles an edge, 
the filter will interpolate new values.  

4.2. The Median Filter 

Like the mean filter, the median filter considers each 
value in turn and looks at its nearby neighbors to decide 
whether or not it is representative of its surroundings. 
Instead of simply replacing the value with the mean of 
neighboring values, it replaces it with the median of those 
values. Two major characteristics of the median filter are:   

• The median is a more robust average than the 
mean and so a single very unrepresentative value 
in a neighborhood will not affect the median value 
significantly.  

• Since the median value must actually be one of 
the values in the neighborhood, the median filter 
does not create new unrealistic values when the 
filter straddles an edge.  

4.3. The Mean-Accumulated-Thresholded (MAT) 
Filter 

While applied to reduce noises in an image, the median 
filter performs better than the mean filter as the mean filter 
often blurs the edges [5][21]. The same is not true for 
filtering out noises from the motion vectors, especially 
when objects are quite small compare to the size of the 
scene. In such cases, the median filter tends to remove 
significant number of “true” object motion vectors along 
the edge of the objects. If the length of the “true” object 
motion vector is of same order of the introduced impulsive 
noises after the global motion compensation, a single 
iteration of the mean filtering would fail to remove all the 
impulsive noises, introduced by the global motion 
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compensation, even after using a threshold value. To 
address this issue we introduce a new filter, named as the 
Mean-Accumulated-Thresholded (MAT) filter. 

The MAT filter has two phases. The first phase of the 
MAT filter is basically an iterative “in-place” application 
of the mean filter. But the major difference lies in how the 
“in-place” values are updated. In each iteration, the mean 
value is added on top, instead of replacing, the existing 
value as follows:  
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where, )(mean kx and )(mean ky are the mean values, 

along the x-axis and the y-axis respectively, in the 3×3 
neighborhood kernel for all k, k = 0, 1, …, N-1. 

With the mean and the median filters, even after the 
iterative “in-place” application, the length of the updated 
motion vectors will never exceed the maximum length of 
the original vectors in the neighborhood. But the same is 
not true for the MAT filter. Just after a few iterations (as 
low as 2), length of the “true” object motion vectors will 
be increased significantly, compare to the other vectors, 
including the impulses introduced during the global 
motion compensation and/or due to the limitations of the 
block-based motion estimation.  

It is, therefore, highly likely that only the “true” object 
motion will be retained if the vectors, with length higher 
than a preset threshold, are selected as the last phase of the 
MAT filter. 

 

5. Experimental Results 

This MAT filter has been successfully applied to a 
number of representative standard video sequences to 
capture the “true” object motions vectors. Throughout the 
experiments, we use M = N = d = 16, i.e., each frame is 
divided into 16×16 pixel blocks and the size of the search 
region is 49×49 pixels, where at most 332 search points are 
used. All experiments are performed on the luminance (Y-
component) of the frames. 

In Figures 1–3, we present (a) the current frame, (b) 
the next frame, (c) block motion vectors computed using 
the MFS algorithm [19], (d) object motion vectors using 
the median filter of 3×3 kernel, (e) object motion vectors 
using the mean filter of 3×3 kernel, and (f) object motion 
vectors using the proposed MAT filter. In all the above- 
mentioned figures, the MAT filter outperforms the popular 
median filter, while capturing “true” object motion. 

 

6. Conclusions and Discussion 

The median and the mean filters and their variants 
have been used widely to remove noises from images and 

to smooth global motion vectors of video sequences. We 
have observed that the performance of these filters in 
removing false motion vectors for estimating “true” object 
motion is not satisfactory, especially when the size of the 
object is significantly smaller than the scene. In this paper 
we have introduced a novel filter, named as the Mean-
Accumulated-Thresholded (MAT) filter, in order to 
capture “true” object motion vectors from video sequences 
with or without the camera motion (zoom and/or pan). 
Experimental results on representative standard video 
sequences have been included to establish the superiority 
of our filter compared with the mean and the median 
filters.  

It is worth mentioning that although the MAT filter 
increases the length of the original object motion vectors 
significantly, it should not cause any problem as long as 
these vectors are not used for video coding. In case we are 
interested in capturing object motion vectors of “normal” 
length, it can easily be achieved by normalizing the MAT 
filtered vectors.  

Although in our definition, the MAT filter uses the 
mean filter of 3×3 kernel, any other kernel size can also be 
used without loosing any generality. No study is done on 
the optimal kernel size to be used with the MAT filter. In 
future, we also like to explore whether different optimal 
kernel sizes exist for different video sequences with 
objects of different velocity. 
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(a) (b) (c) 

   
(d) (e) (f) 

Figure 1: (a) Current frame (frame #32 of “Tennis”); (b) Next frame, (frame #33 of the same video sequence); (c) Block motion 
vectors computed using the LT algorithm [19]; (d) Object motion vectors using the median filter of 3×3 kernel; (e) Object 
motion vectors using the mean filter of 3×3 kernel; (f) Object motion vectors using the MAT filter. 
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(a) (b) (c)  

   
(d) (e) (f) 

Figure 2: (a) Current frame (frame #99 of “Ballet”); (b) Next frame, (frame #100 of the same video sequence); (c) Block 
motion vectors computed using the LT algorithm [19]; (d) Object motion vectors using the median filter of 3×3 kernel; (e) 
Object motion vectors using the mean filter of 3×3 kernel; (f) Object motion vectors using the MAT filter. 

 
 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3: (a) Current frame (frame #15 of “Foreman”); (b) Next frame, (frame #16 of the same video sequence); (c) Block 
motion vectors computed using the LT algorithm [19]; (d) Object motion vectors using the median filter of 3×3 kernel; (e) 
Object motion vectors using the mean filter of 3×3 kernel; (f) Object motion vectors using the MAT filter. 

 
 


