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Abstract

The Discrete Radon Transform (DRT) preserves
discrete digital image information whilst recasting 2D
image data in a form that closely resembles 1D analog
projections. The projective representation makes the DRT
an effective tool for data compression and for
tomographic reconstruction, in particular to obtain
images from a limited set of real projection data. For
prime sized images formed on regular square or
hexagonal arrays, the projective mapping operation is
arithmetic addition. Algorithms are presented for efficient
computation of the forward and inverse DRT
transformation and to perform elementary image rotation
and tranglation operations in the digital projection space.
Manipulating image data as DRT projections rather than
in the spatial domain avoids the need for expensive
reconstruction and re-projection of the data. Comparing
objects in projection space may accelerate iterative
reconstruction schemes. For some general image
processing operations, projection-based algorithms may
produce efficiencies not realisable in the spatial domain.
The patterns of pixel locations that combine to form each
projection element are shown to have interesting
distributional propertiesthat derive fromthe prime, cyclic
nature of the DRT.
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1. Introduction

Tomography plays an important role in fields ranging
from medicd and industrial imaging to aperture synthesis
radioastronomy and, in the eath sciences, seismic
profiling. The interplay between the processof colleding
discrete signal samples, the formation of objed
projedions in continuous (Radon) space ad the aedion
of a digital recmnstructed image has been of considerable
interest for over 20 yeas[10].

A very genera definition for a Discrete Radon
Transform (DRT) was developed by Beylkin [1] for
discrete arays of arbitrary integer size. Beylkin presented

an exad, algebraic formalism for the discrete projedion
and inversion process conneded the DRT with the
discrete Fourier transform and included the paossbility of
the projedions being taken along curved as well as
straight paths. Beylkin  also  foreshadowed the
implementation of filtering and ather spatial operations in
2D or higher spaces by computation of these propertiesin
the DRT space That topic forms the theme of this paper.

The digital projedions used here ae those defined in
Matus and Flusser [2]. They outlined the group theoretic
and Fourier interpretations of the DRT as applied to
square, prime-sized arrays. They described an applicaion
of the DRT as a mechanism for relatively efficient data
compresgon in digital images. When the aray size is
restricted to be aprime rather than arbitrary integer, the
pattern of sampled image data for ead transform paint is
unique for al projedions; this decouplesthe line integrals.
The projedion and inversion process then bewmmes a
simple aithmetic (additive) operation rather than more
general agebraic transformation of Beylkin's DRT
scheme.

Salzberg [3] applied the DRT to image the structure of
3D crystas from their red x-ray transmisson profiles and
showed it was possble to invert red x-ray projedion data
using the DRT under an iterative reconstruction formula.
Svalbe developed a general agorithm [4] that applies the
DRT formalism to diredly compute the grey scde image
from red space projedion data. That paper shows that
red projedion data can be mapped into a discrete form
compatible with the DRT. This allows the DRT to be used
for red to discrete data mapping, as well as for discrete to
discrete mapping. The DRT has other varied appli cations.
In[5], the DRT is used for the imperceptible, orientation-
sensitive enbedding of messages or structural information
in discrete images. In [6], the distribution of gap lengths
between digital samples along digital projedion rays of
the DRT is s$own to be related to the chaotic energy
spedra observed in discrete systems. The prime length
DRT has links through this to the distribution of zeros of
the Riemann Zeta function.

A “grid-friendly” mapping that is different to the DRT
but that that also preserves discrete line structures was



developed recantly [10], to alow exad mapping between
digital lines and their Radon transform on arbitrary
discrete arays. This mapping hes the representational
advantage that individual lines do not wrap around the
digital array, as occurs in the DRT. The inverse mapping,
dthoughiterative, converges rapidly and acairately to the
digital lines asinput.

Here we present algorithms to compute the forward
and inverse DRT. We dso examine methods to perform
elementary image operations such as image rotation and
trandation in the digital projedion space The objed of
these operations is to perform image cmparisons and
filtering diredly on the projedion data without requiring
recnstruction of the image. For iterative dgorithms, this
may result in substantial computational savings, as well as
providing aternative methods for image processng
operations that are usualy performed in the spatia
domain.

The DRT R(t, m) of image I(x, y), is defined [2, 4] by
the parameters p, t and m, where p is the prime aray size
of the (square) 2D image data. The integer index m, with
0 £ m < p, fixes (uniquely) the relative off sets, Xm:Ym,
between nearest neighbour pixels of the digital ray for that
m value. The ray ange, 6,, = atan(y./Xn), corresponds to
the orientation of the line joining pixel positions Eleded
by (t, m) to their neaest neighbours. The minimum
distance between neighbouring pixels is dn, where d. =
X’ + Ym?. The value of X, is allowed to take negative
values, to enable the digital projedions to span angles
from 0° to 18C. This leads to fourfold and sixfold
symmetry in the angle and gap distributions, for the square
and hexagonal lattices respedively. For the hexagonal
array, X, and y,, are both odd a even.

Theinteger index, t, 0 <t < p, measures the trandation
of adigital ray in horizontal increments fromt = 0 at the
top left corner of the image (where x =y = 0). An image
point (X, y) maps [6] to trandate t for a given m on a
regular square lattice acording to

t=(x - my) mod(p)

m = (ap + Xm)/ym , and (D)
t=(x- (m+%2)y) mod(p)

m = [(ap + (Xr Ym)/2]/ym @)
for reguar hexagona lattices. Modulus p arithmetic

appliesin (1) and (2); a isthe small est positi ve integer for
mto be aninteger.

2. Forward and Inverse DRT Algorithms

The dgorithms for digital projedion and image
remnstruction [2] are remarkably simple, but can be
improved by exploiting the uniform definition of
trandation that applies for all projedion anges [4].
Equations (1) and (2) show that unit translate increments
of t in R(t, m) correspond to unit increments of x in I(x,
y). At agiven m, rows of R can be mnstructed by adding
to R ablock copy of the data on ead row of I(x, y). The
locdion x = Xo a which t = 0, shifts by m mod(p) as y
increments. The “block copy and add’ from | into a
complete row of R is done in two contiguous parts, X = Xg
top-1landx =0tox,— 1 The block copy operationisa
frequently used and hence relatively efficient computer
instruction for most CPU architedures, as it accesses and
processes a string of data items that are stored sequentially
in computer memory.

The typicd computation time required to construct a
761x 762 pojedion from 761x 761 floating point image
data deaeased by a fador of = 5; taking 221.81 semnds
for the standard algorithm [2] and 4078 seconds for the
block copy method. Times are dted for a singe CPU
serial computer. For 479x 479 chta, the times were 43.33
and 9.61 seaonds respedively.

The usual inverse DRT algorithm [2] writes bac the
contents of ead element of R(t, m) into the recmnstructed
image, I'(x, y), a the same pixel locaions as those
accesed to sum the values for that digital projedion. The
forward projedive transformation applied to the first p
rows of R will also produce aremnstructed image. The
effedive value of m, m’, for the re-projeded data can be
obtained from (1) by subtrading the trandates produced
for adjacent rowsinR, as

m=t;,;—tis=t—=(>(+1)m—(t—im)
:—m:p—m

so that m’ isthe complement of m.

Double projedion maps I(x, y) through R(t, m) to I’ (X,
p-y) so that R3 O - I. Thefina row in R, m = p, must be
badk projeded separately (this is a mnseguence of an
arbitrary dedsion to map rows to an ange of 90° and
columns to 0°). The projeded values are normalised by
subtrading the total intensity of any one row of R(t, m)
(equivalent to the total image brightnes§ and then
dividing by p. I'(x, y) then has exadly the same image
values as the original image I(X, ).

Using the forward transform to perform the inverse
mapping is an advantage if the read time per pixel is less



than the write time per pixel for a given computing
system. Parallel computers can more eaily read multiple
data items than write them, as this causes fewer memory
contention problems. Reoonstructing the image using the
forward transform reads the data p times from R for eat
(t, m), with the summed result being written once into the
final image I’ (x, y). The conventional inversion algorithm
reads once from R and writes this result p timesinto I’ for
eah element (t, m). For the “block copy and add’
approach, the relative gains in processng speed are
smaler, as adjacet trandates are still read and added
(hence written) to the output in sequential translate order
(processngall t for ead m, rather than al mfor eat t).

The typicd computation time to recnstruct a 761 x
761limage from 761x 762floating point R data was 43.30
seonds using the inverse transform and 40.82 seconds for
the forward transform inversion method, on a single CPU
serial computer. Both approaches used the more dficient
“block copy and add” approach.

For eat row increment, t must be incremented by m,
then t is chedked for t = p (with p subtraded if required).
This operation is done p + 1 times for ead DRT
projedion. Pre-computing a list of the wrap dffsets and
then indexing into this array for ead row might be
thought to give some marginal gain, but generated at best
equal or larger computational overheals (taking 41.35
seoonds for image remnstruction from 761x 762 dita).

The gproadhes considered here ae dl variants of the
standard bad projedion algorithm (and scde @ order n’;
n badkprojedions are performed, ead over an n x n
image). Faster projedion and inversion algorithms may be
achieved using Fourier or the related linogram (order
nllogn) approaches. The latter methods bath require re-
sampling of the I(x, y) or R(t, m) values. Here we have
concentrated on exad inversion methods using only
additi on of the original sample values, so that the arorsin
I'(x, y) — I(x, y) are limited only by the finite predsion
with  which the (floating-point) data values are
represented, and to avoid the iteration required for
inversion methods sich as[10].

3.Image Trandation and the DRT

To trandate an objed by an offset of dx in the x
diredion and dy in the y diredion in continuous
projedion space (p,0), requires ange dependent
interpolation and resampling of the projedions, as p’ = (X
— dX) cosO + (y — dy) sinB. A trandation operator T can be
applied easily in the R domain because of the linea and
uniform definition for trandates t within R, being the same
for eadh m projedion.

For the sguare lattice the required dffset of the
tranglate origin, dt, depends linealy on the row index m
and is given, from equation (1), by dt = —dx + mdy. The
locaion of t = 0is moved by an integer off set, dt mod (p),
with the shifted data from row m of R being copied to
form the trandated projedions for row m of R'. This
block copy is easily doneintwo parts,t =dttot=p -1
and thent =0tot = dt -1, as used in the forward and
inversion projedion algorithms, for each m. For m = 0, dt
=p-&kandform=p,dt=p—dy.

For hexagonal offsets, equation (2) gives the trandate
mapping, T, asdt = -dx - m(p — dy) + (dy + 1)/2, with dt =
-dy form=0and ct =-dx + p+dy/2for m=p. If R(t, m)
is the DRT of the original image, then the DRT of the
translated imageis given by R'(t', m) = TR(t, m).

Figure 1. Remnstructed image after trandation by
offsets dx = 100 and dy = 200in R(t, m) space (479 x
479image).

Trandates wrap in urit increments around hexagonal
arrays in the x diredion, but in the y diredion the distance
between verticdly adjacent pixels is 2 units (of size vV3/2
as adjacent rows have pixels offset by %2 a trandate unit).
The &ove mapping preserves exadly the spatial
relationships of all pixels from p —dy to dy. Those pixels
wrapped by the trandation process verticdly around the
array have an dternating urit horizontal offset with
oppaite phase to that of the p x p lattice To undo the
trandation, operator T' may be gplied with offsets dx’
and dy’ sothat dx’ + dx =0and dy’ + dy = 0. To corredly



acount for the dfeds of the verticd wrapping, the
negative offsetsaredx’ = (p+1)/2-dxand dy’ = p — dy.
Then applying T'TR = R exadly.

Figure 1 shows an example image reconstructed after a
tranglation by dx = 100and dy = 200in the R(t, m) space
The original image was a 479 x 479 image (“Lena”)
mapped to a hexagonal lattice

4.1mage Rotation and the DRT

Rotation of an objed by an angle dB about the image
circle ceatre in (p, 8) space ca be done trivialy by
redefining the row of sinogram data that corresponds to 0
= 0. If the ange db does not point to one of the eisting
projedion angles, then a new set of projedions need to be
re-interpolated from the eisting set. For discrete images
in 2D space general rotations require interpalation of the
data, for which many efficient algorithms [7] are
avail able.

4.1.Rotation by 9C° on the Square Arr ay

After a 90 degreerotation, trandations are dfedively
taken along the image alumn diredions. It is possble to
map the (t, m) coordinates of a projeded image into those
of the 90 degreerotated image (t', n'), that isR(t', m’) =
SR(t, m), where Sisthe 90 degreerotation operator.

The mapping S between values m and m' is generated
by forming the sequence seq[m’] = (ap — 1)/m. As rows
and columns are interchanged, seq[0] = p and seq[p] = O.
Thistransform mekes 6, = 90° + 8,,, by mapping X.,:ym to
— YmXm- Then, from equation (1), m" = (ap — Ym)Xm.
Multiplying top and badtom by 1/y,, givesm = (a’'p —
1)/m, using modulus arithmetic, where a’ is ame other
integer. For example, when p = 7, seqim’] = 7, 6, 3, 2, 5,
4, 1, 0. Figure 2 shows the mapping on R produced by S
for clockwise and anticlockwise 90° rotations on a 7x7
image.

00 10 20 30 40 50 60 07 17 27 37 47 57 67
01112131415161 6606 16 26 36 46 56
02 122232425262 63 330343135323
03132333435363 62422202523212
04 142434445464 65153555052545 5434 1464442404
05152535455565 64 245414440434 45155525653505
06 16 26 36 46 56 66 61 5141 3121110111213141516101

07 17 27 37 47 57 67 60 504030201000 00 10 20 3040 50 60

@) (b) ©

67 57 47 37 27 17 07
66 56 46 36 26 16 06
33632353134303
22426212 3252 02

Figure 2. a) (t, m) coordinates for a 7x7 image, b) the
DRT coordinates (t', m’) for the image rotated 90°
anticlockwise by SR, c) the DRT coordinates (t', m’)
for the 90° clockwise image rotation, by S'R

The mapping of trandates from R(t, m) into R'(t', m’)
is aso cyclic in m'. Figure 3 shows that the location of
samplesin I(x, y) that are spaced a horizontal distance of
m units apart in R space(ie & translations t mod(m)) will
aways correspond to verticdly adjacent elements in I(x,
y). For the example shown in Figure 2, at m’ = 2, the
trandates from m= seq[2] = 3 are mapped linealy acoss
the row at every seoond trandlate ss[-0-1-2-3-4
-5 — g, which becomes, for mod(7) lengths and starting at
t = 2, the seven trandates[6 3 0 4 1 5 P(as observed on
the third row of Fig. 2b, wherem’ = 2).

oaooodoooocoooodooooeoOO.....
oaooodoooocoooodooo.....
0aoo00do0000C00O.....
oaooodooo.....

Figure 3. The top left corner of an arbitrary image,
(X, y). Image samples sparated by a horizontal
distanceof min I(x, y), marked by thevaluesa, b, c, d,
and e, represent vertically adjacent elements in the
DRT space R(t, m). Heret =1 and m = 5, “0” marks
thelocation of other image pixels.

As gsiccessve gplicdions of S form cumulative
rotations, SSSKR = S'R = R. Permutation of the steps
outlined above produces a single pass agorithm
equivalent to 180 agree rotation, S°, and yields another
for 270 degreerotation, S* = S, so that S'SR = R. The
mapping seq[m] is related to the generalised Legendre
sequences generated by the powers of prime residues used
in adive beam steeing[8].

4.2 Rotation by 6(° on the Hexagmal Arr ay

The 60 degree rotation operator, H, is the transform
that makes 8,, = 60° + 6,,,. The same formalism mapping
mtom andttot appliesto H asfor S, except that here
seg[m] is one lessthan for S (the complementary angle to
misp — 1 —m for hexagonal arrays [6]). The speda case
m=0ismappedtom =p,m=pismappedtom =p -1
and m=p — 1is mapped to m = 0. The latter two
trandation assgnments need to be refleded to preserve
the left to right definition of trandation adopted here. The
operation H’R= H'HR =R.

The operators S and H represent 2D computations in
I(x, y), but are 1D computations when performed in R(t,
m). Rotations in R are generally faster to implement than
the equivalent rotations in 1, as the data acces overhead
for row based operations is much smaler and the
efficiency of data cadingislikely to be higher. For a 761
X 761 image, an efficient row/column swap took 0.27



semnds, in R space the same operation took 0.15
semnds. Figure 4 shows the reconstructed image resulting

from R'HR where R is the DRT of the original version of
the image shown in Figure 1.

Figure 4. Remnstructed image after the 60° rotation
operator, H, was applied to the DRT of the original of
theimage shown in Figure 1 (479x 479image).

4.3 Combinations of Rotation Operations

Combinations of trandation and rotation operators in
R can be cacaded to produce offset and rotated images.
Trandations are ommutative with rotations as they
permute only the order of trandations on ead row of R,
for example TSR = STR. Cyclic warps of the image can
be atieved by cascading the operators T, Sand H.

Figure 5 shows the remnstructed image obtained after
the hexagonal rotation operator, H, is applied to the
square lattice digital projedions, producing a 45° warp of
the original data.

The operators H, S and T shuffle the mordinates of
the original image DRT. Rotations at arbitrary anges and
warp fadors will require interpolation of the DRT values.
Elementary operators guch as S and H exploit the original
four or six fold anguar symmetry of the set of digita
projedions. The definition of m = 0 and m = p that was
adopted in [4] and is used here, requires that the content
of therows 0 and pin R are swapped ead time the H and
S operators are mixed.

Figure 5. Rewmnstructed image after the hexagmal
lattice rotation operation H was applied to the square
lattice DRT of the original image of Figure 1.

5. Properties of the DRT Basis Functions

The DRT mapping hes a number of intriguing
properties, beyond the number theory links described in
[6]. The relationship between the m value which has the
maximum value of d,, and dy, the pixel gap distance for
raysat m = 1 for agiven p can be written as d;? = m* + m
+ 1 = ap, where a is an integer. This implies that an area
equal to dy? should contain amod(p) pixels that belong to
the digital rays at that m, for any t, for agiven value of p.

Figure 6 shows the set of pixel locations in I(X, Yy)
seleded by the digital projediont = 0, m = 97 (where d,,
has its maximum value), for p = 409. A square window of
side length d; translated aaoss this image does usually
contain amod(p) = 23 [dxels, becaise & one pixel leaves
a trandated version of the window, another enters at the
oppaite side of the window. This diding window
property is useful in creding arrays where eat locdion
has a requirement that a mnstant number of sources are
locaed within a square region of a given size for any
locaion within the (cyclic) array.

For 100,000 (uniformly) random placements of boxes
of size 97 x 97, we find that on 99,497 acasions there
were 23 [xels inside the box, whilst the remaining 503
occurrences had 24



Figure 6. Dots are the pixel locations sampled by the
DRT for p =409 m =97 and t = 35. The four squares
drawn in the array are of size 97 x 97. Such squares
enclose 23 pixels at almost all locations in the p x p
arr ay.

6. Conclusions

Algorithms that operate on, or permute the mntents of
discrete DRT projedions have been presented. The
resulting operations are dficient means of forward and
inverse DRT mapping and to perform elementary
trandations (T) and rotations (S and H) from within the
digital projedion space We ae mntinuing to examine
more general rotation operators, convolution and
morphologic operations taken along periodic or conneded
lines[9] inthe R arrays.

Figure 7 shows the point spread function resulting from
convolution in R space #ng hexagonal axes. The
operation was performed by uniformly weighted
averaging wsing a length of 45 pgxels) of the trandates in
the R space &three60 degreesrotations. Wrapping aaoss
thet=0and t = p — 1 baindaries is acommodated by
using circular convolution.

If G is a general linea convolution operator, then
Gl(x, y) = R*™G'RI(x, y). The mnvolution G may be
implemented in R space & the sum of trandated DRT’s
over the kernel of the operator, as aims of y-trandated 1D
row convolutions or, for separable kernels, as the
cumulative product of 1D convolutions over appropriate
rotations of the image.

Figure 7. 173173 image. Point spread function for an
impulse at (86, 86) reconstructed after cumulative 1D
convolution with a pixel length of 45, performed in R
spaceat rotations 0, 60 and 120degrees.
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