
DICTA2002: Digital Image Computing Techniques and Applications, 21-22 January 2002, Melbourne, Australia.

1

Image Operations in Discrete Radon Space

Imants Svalbe
School of Physics and Materials Engineering

Monash University, 3800, Australia
imants.svalbe@spme.monash.edu.au

Abstract

The Discrete Radon Transform (DRT) preserves
discrete digital image information whilst recasting 2D
image data in a form that closely resembles 1D analog
projections. The projective representation makes the DRT
an effective tool for data compression and for
tomographic reconstruction, in particular to obtain
images from a limited set of real projection data. For
prime sized images formed on regular square or
hexagonal arrays, the projective mapping operation is
arithmetic addition. Algorithms are presented for efficient
computation of the forward and inverse DRT
transformation and to perform elementary image rotation
and translation operations in the digital projection space.
Manipulating image data as DRT projections rather than
in the spatial domain avoids the need for expensive
reconstruction and re-projection of the data. Comparing
objects in projection space may accelerate iterative
reconstruction schemes. For some general image-
processing operations, projection-based algorithms may
produce efficiencies not realisable in the spatial domain.
The patterns of pixel locations that combine to form each
projection element are shown to have interesting
distributional properties that derive from the prime, cyclic
nature of the DRT.

Key Words: discrete image processing, computer
algorithms, Radon transforms.

1. Introduction

 Tomography plays an important role in fields ranging
from medical and industrial imaging to aperture synthesis
radioastronomy and, in the earth sciences, seismic
profili ng. The interplay between the process of collecting
discrete signal samples, the formation of object
projections in continuous (Radon) space and the creation
of a digital reconstructed image has been of considerable
interest for over 20 years [10].

A very general definition for a Discrete Radon
Transform (DRT) was developed by Beylkin [1] for
discrete arrays of arbitrary integer size. Beylkin presented

an exact, algebraic formalism for the discrete projection
and inversion process, connected the DRT with the
discrete Fourier transform and included the possibilit y of
the projections being taken along curved as well as
straight paths. Beylkin also foreshadowed the
implementation of filtering and other spatial operations in
2D or higher spaces by computation of these properties in
the DRT space. That topic forms the theme of this paper.

The digital projections used here are those defined in
Matus and Flusser [2]. They outlined the group theoretic
and Fourier interpretations of the DRT as applied to
square, prime-sized arrays. They described an application
of the DRT as a mechanism for relatively eff icient data
compression in digital images. When the array size is
restricted to be a prime rather than arbitrary integer, the
pattern of sampled image data for each transform point is
unique for all projections; this decouples the line integrals.
The projection and inversion process then becomes a
simple arithmetic (additive) operation rather than more
general algebraic transformation of Beylkin's DRT
scheme.

Salzberg [3] applied the DRT to image the structure of
3D crystals from their real x-ray transmission profiles and
showed it was possible to invert real x-ray projection data
using the DRT under an iterative reconstruction formula.
Svalbe developed a general algorithm [4] that applies the
DRT formalism to directly compute the grey scale image
from real space projection data. That paper shows that
real projection data can be mapped into a discrete form
compatible with the DRT. This allows the DRT to be used
for real to discrete data mapping, as well as for discrete to
discrete mapping. The DRT has other varied applications.
In [5], the DRT is used for the imperceptible, orientation-
sensitive embedding of messages or structural information
in discrete images. In [6], the distribution of gap lengths
between digital samples along digital projection rays of
the DRT is shown to be related to the chaotic energy
spectra observed in discrete systems. The prime length
DRT has links through this to the distribution of zeros of
the Riemann Zeta function.

A “grid-friendly” mapping that is different to the DRT
but that that also preserves discrete line structures was

2

developed recently [10], to allow exact mapping between
digital li nes and their Radon transform on arbitrary
discrete arrays. This mapping has the representational
advantage that individual li nes do not wrap around the
digital array, as occurs in the DRT. The inverse mapping,
although iterative, converges rapidly and accurately to the
digital li nes as input.

Here we present algorithms to compute the forward
and inverse DRT. We also examine methods to perform
elementary image operations such as image rotation and
translation in the digital projection space. The object of
these operations is to perform image comparisons and
filtering directly on the projection data without requiring
reconstruction of the image. For iterative algorithms, this
may result in substantial computational savings, as well as
providing alternative methods for image processing
operations that are usually performed in the spatial
domain.

The DRT R(t, m) of image I(x, y), is defined [2, 4] by
the parameters p, t and m, where p is the prime array size
of the (square) 2D image data. The integer index m, with
0 ≤ m ≤ p, fixes (uniquely) the relative offsets, xm:ym,
between nearest neighbour pixels of the digital ray for that
m value. The ray angle, θm = atan(ym/xm), corresponds to
the orientation of the line joining pixel positions selected
by (t, m) to their nearest neighbours. The minimum
distance between neighbouring pixels is dm, where dm

2 =
xm

2 + ym
2. The value of xm is allowed to take negative

values, to enable the digital projections to span angles
from 0° to 180°. This leads to fourfold and sixfold
symmetry in the angle and gap distributions, for the square
and hexagonal lattices respectively. For the hexagonal
array, xm and ym are both odd or even.

The integer index, t, 0 ≤ t < p, measures the translation
of a digital ray in horizontal increments from t = 0 at the
top left corner of the image (where x = y = 0). An image
point (x, y) maps [6] to translate t for a given m on a
regular square lattice according to

t = (x - my) mod(p)

m = (αp + xm)/ym , and (1)

t = (x - (m + ½)y) mod(p)

m = [(αp + (xm- ym)/2]/ym (2)

for regular hexagonal lattices. Modulus p arithmetic
applies in (1) and (2); α is the smallest positive integer for
m to be an integer.

2. Forward and Inverse DRT Algor ithms

The algorithms for digital projection and image
reconstruction [2] are remarkably simple, but can be
improved by exploiting the uniform definition of
translation that applies for all projection angles [4].
Equations (1) and (2) show that unit translate increments
of t in R(t, m) correspond to unit increments of x in I(x,
y). At a given m, rows of R can be constructed by adding
to R a block copy of the data on each row of I(x, y). The
location x = x0 at which t = 0, shifts by m mod(p) as y
increments. The “block copy and add” from I into a
complete row of R is done in two contiguous parts, x = x0

to p - 1 and x = 0 to x0 – 1. The block copy operation is a
frequently used and hence relatively eff icient computer
instruction for most CPU architectures, as it accesses and
processes a string of data items that are stored sequentially
in computer memory.

The typical computation time required to construct a
761 x 762 projection from 761 x 761 floating point image
data decreased by a factor of ≈ 5; taking 221.81 seconds
for the standard algorithm [2] and 40.78 seconds for the
block copy method. Times are cited for a single CPU
serial computer. For 479 x 479 data, the times were 43.33
and 9.61 seconds respectively.

The usual inverse DRT algorithm [2] writes back the
contents of each element of R(t, m) into the reconstructed
image, I’ (x, y), at the same pixel locations as those
accessed to sum the values for that digital projection. The
forward projective transformation applied to the first p
rows of R will also produce a reconstructed image. The
effective value of m, m’ , for the re-projected data can be
obtained from (1) by subtracting the translates produced
for adjacent rows in R, as

m’ = t’ i + 1 – t’ i + 1 = t – (i + 1)m – (t – im)
= − m = p – m

so that m’ is the complement of m.

Double projection maps I(x, y) through R(t, m) to I’ (x,
p-y) so that R2I ≅ - I. The final row in R, m = p, must be
back projected separately (this is a consequence of an
arbitrary decision to map rows to an angle of 90° and
columns to 0°). The projected values are normalised by
subtracting the total intensity of any one row of R(t, m)
(equivalent to the total image brightness) and then
dividing by p. I’ (x, y) then has exactly the same image
values as the original image I(x, y).

Using the forward transform to perform the inverse
mapping is an advantage if the read time per pixel is less

3

than the write time per pixel for a given computing
system. Parallel computers can more easily read multiple
data items than write them, as this causes fewer memory
contention problems. Reconstructing the image using the
forward transform reads the data p times from R for each
(t, m), with the summed result being written once into the
final image I’ (x, y). The conventional inversion algorithm
reads once from R and writes this result p times into I’ f or
each element (t, m). For the “block copy and add”
approach, the relative gains in processing speed are
smaller, as adjacent translates are still read and added
(hence written) to the output in sequential translate order
(processing all t for each m, rather than all m for each t).

The typical computation time to reconstruct a 761 x
761 image from 761 x 762 floating point R data was 43.30
seconds using the inverse transform and 40.82 seconds for
the forward transform inversion method, on a single CPU
serial computer. Both approaches used the more eff icient
“block copy and add” approach.

For each row increment, t must be incremented by m,
then t is checked for t ≥ p (with p subtracted if required).
This operation is done p + 1 times for each DRT
projection. Pre-computing a list of the wrap offsets and
then indexing into this array for each row might be
thought to give some marginal gain, but generated at best
equal or larger computational overheads (taking 41.35
seconds for image reconstruction from 761 x 762 data).

The approaches considered here are all variants of the
standard back projection algorithm (and scale as order n3;
n backprojections are performed, each over an n x n
image). Faster projection and inversion algorithms may be
achieved using Fourier or the related linogram (order
n2logn) approaches. The latter methods both require re-
sampling of the I(x, y) or R(t, m) values. Here we have
concentrated on exact inversion methods using only
addition of the original sample values, so that the errors in
I’ (x, y) – I(x, y) are limited only by the finite precision
with which the (floating-point) data values are
represented, and to avoid the iteration required for
inversion methods such as [10].

3. Image Translation and the DRT

To translate an object by an offset of dx in the x
direction and dy in the y direction in continuous
projection space, (ρ, θ), requires angle dependent
interpolation and resampling of the projections, as ρ’ = (x
– dx) cosθ + (y – dy) sinθ. A translation operator T can be
applied easily in the R domain because of the linear and
uniform definition for translates t within R, being the same
for each m projection.

For the square lattice, the required offset of the
translate origin, dt, depends linearly on the row index m
and is given, from equation (1), by dt = –dx + mdy. The
location of t = 0 is moved by an integer offset, dt mod (p),
with the shifted data from row m of R being copied to
form the translated projections for row m of R’ . This
block copy is easily done in two parts, t = dt to t = p – 1
and then t = 0 to t = dt –1, as used in the forward and
inversion projection algorithms, for each m. For m = 0, dt
= p – dx and for m = p, dt = p – dy.

For hexagonal offsets, equation (2) gives the translate
mapping, T, as dt = -dx - m(p – dy) + (dy + 1)/2, with dt =
-dy for m = 0 and dt = -dx + p + dy/2 for m = p. If R(t, m)
is the DRT of the original image, then the DRT of the
translated image is given by R’(t’ , m) = TR(t, m).

Figure 1. Reconstructed image after translation by
offsets dx = 100 and dy = 200 in R(t, m) space (479 x
479 image).

Translates wrap in unit increments around hexagonal
arrays in the x direction, but in the y direction the distance
between vertically adjacent pixels is 2 units (of size √3/2
as adjacent rows have pixels offset by ½ a translate unit).
The above mapping preserves exactly the spatial
relationships of all pixels from p – dy to dy. Those pixels
wrapped by the translation process vertically around the
array have an alternating unit horizontal offset with
opposite phase to that of the p x p lattice. To undo the
translation, operator T’ may be applied with offsets dx’
and dy’ so that dx’ + dx = 0 and dy’ + dy = 0. To correctly

4

account for the effects of the vertical wrapping, the
negative offsets are dx’ = (p + 1)/2 - dx and dy’ = p – dy.
Then applying T-1TR = R exactly.

Figure 1 shows an example image reconstructed after a
translation by dx = 100 and dy = 200 in the R(t, m) space.
The original image was a 479 x 479 image (“Lena”)
mapped to a hexagonal lattice.

4. Image Rotation and the DRT

Rotation of an object by an angle dθ about the image
circle centre in (ρ, θ) space can be done trivially by
redefining the row of sinogram data that corresponds to θ
= 0. If the angle dθ does not point to one of the existing
projection angles, then a new set of projections need to be
re-interpolated from the existing set. For discrete images
in 2D space, general rotations require interpolation of the
data, for which many eff icient algorithms [7] are
available.

4.1. Rotation by 90°° on the Square Arr ay

After a 90 degree rotation, translations are effectively
taken along the image column directions. It is possible to
map the (t, m) coordinates of a projected image into those
of the 90 degree rotated image (t’ , m’), that is R(t’ , m’) =
SR(t, m), where S is the 90 degree rotation operator.

The mapping S between values m and m’ is generated
by forming the sequence seq[m’] = (αp – 1)/m. As rows
and columns are interchanged, seq[0] = p and seq[p] = 0.
This transform makes θm’ = 90° + θm by mapping xm:ym to
– ym:xm. Then, from equation (1), m’ = (αp – ym)/xm.
Multiplying top and bottom by 1/ym gives m’ = (α’p –
1)/m, using modulus arithmetic, where α’ is some other
integer. For example, when p = 7, seq[m’] = 7, 6, 3, 2, 5,
4, 1, 0. Figure 2 shows the mapping on R produced by S
for clockwise and anticlockwise 90° rotations on a 7x7
image.

00 10 20 30 40 50 60 07 17 27 37 47 57 67 67 57 47 37 27 17 07
01 11 21 31 41 51 61 66 06 16 26 36 46 56 66 56 46 36 26 16 06
02 12 22 32 42 52 62 63 33 03 43 13 53 23 33 63 23 53 13 43 03
03 13 23 33 43 53 63 62 42 22 02 52 32 12 22 42 62 12 32 52 02
04 14 24 34 44 54 64 65 15 35 55 05 25 45 54 34 14 64 44 24 04
05 15 25 35 45 55 65 64 24 54 14 44 04 34 45 15 55 25 65 35 05
06 16 26 36 46 56 66 61 51 41 31 21 11 01 11 21 31 41 51 61 01
07 17 27 37 47 57 67 60 50 40 30 20 10 00 00 10 20 30 40 50 60
 (a) (b) (c)

Figure 2. a) (t, m) coordinates for a 7x7 image, b) the
DRT coordinates (t’ , m’) f or the image rotated 90°°
anticlockwise by SR, c) the DRT coordinates (t’ , m’)
for the 90°° clockwise image rotation, by S-1R

The mapping of translates from R(t, m) into R’(t’ , m’)
is also cyclic in m’ . Figure 3 shows that the location of
samples in I(x, y) that are spaced a horizontal distance of
m units apart in R space (ie at translations t mod(m)) will
always correspond to vertically adjacent elements in I(x,
y). For the example shown in Figure 2, at m’ = 2, the
translates from m = seq[2] = 3 are mapped linearly across
the row at every second translate as [− 0 − 1 − 2 − 3 − 4
−5 – 6], which becomes, for mod(7) lengths and starting at
t = 2, the seven translates [6 3 0 4 1 5 2] (as observed on
the third row of Fig. 2b, where m’ = 2).

o a o o o o b o o o o c o o o o d o o o o e o o o …..
 o a o o o o b o o o o c o o o o d o o o …..

 o a o o o o b o o o o c o o o …..
 o a o o o o b o o o …..
 o a o o o …..

Figure 3. The top left corner of an arbitrary image,
I (x, y). Image samples separated by a hor izontal
distance of m in I (x, y), marked by the values a, b, c, d,
and e, represent vertically adjacent elements in the
DRT space R(t, m). Here t = 1 and m = 5, “o” marks
the location of other image pixels.

As successive applications of S form cumulative
rotations, SSSSR = S4R = R. Permutation of the steps
outlined above produces a single pass algorithm
equivalent to 180 degree rotation, S2, and yields another
for 270 degree rotation, S3 = S-1, so that S-1SR = R. The
mapping seq[m] is related to the generalised Legendre
sequences generated by the powers of prime residues used
in active beam steering [8].

4.2 Rotation by 60°° on the Hexagonal Arr ay

The 60 degree rotation operator, H, is the transform
that makes θm’ = 60° + θm. The same formalism mapping
m to m’ and t to t’ applies to H as for S, except that here
seq[m] is one less than for S (the complementary angle to
m is p – 1 – m for hexagonal arrays [6]). The special case
m = 0 is mapped to m’ = p, m = p is mapped to m’ = p – 1
and m = p – 1 is mapped to m’ = 0. The latter two
translation assignments need to be reflected to preserve
the left to right definition of translation adopted here. The
operation H3R = H-1HR = R.

The operators S and H represent 2D computations in
I(x, y), but are 1D computations when performed in R(t,
m). Rotations in R are generally faster to implement than
the equivalent rotations in I, as the data access overhead
for row based operations is much smaller and the
eff iciency of data caching is likely to be higher. For a 761
x 761 image, an eff icient row/column swap took 0.27

5

seconds, in R space, the same operation took 0.15
seconds. Figure 4 shows the reconstructed image resulting
from R-1HR where R is the DRT of the original version of
the image shown in Figure 1.

Figure 4. Reconstructed image after the 60°° rotation
operator , H, was applied to the DRT of the or iginal of
the image shown in Figure 1 (479 x 479 image).

4.3 Combinations of Rotation Operations

Combinations of translation and rotation operators in
R can be cascaded to produce offset and rotated images.
Translations are commutative with rotations as they
permute only the order of translations on each row of R,
for example TSR = STR. Cyclic warps of the image can
be achieved by cascading the operators T, S and H.

Figure 5 shows the reconstructed image obtained after
the hexagonal rotation operator, H, is applied to the
square lattice digital projections, producing a 45° warp of
the original data.

The operators H, S and T shuff le the coordinates of
the original image DRT. Rotations at arbitrary angles and
warp factors will require interpolation of the DRT values.
Elementary operators such as S and H exploit the original
four or six fold angular symmetry of the set of digital
projections. The definition of m = 0 and m = p that was
adopted in [4] and is used here, requires that the content
of the rows 0 and p in R are swapped each time the H and
S operators are mixed.

Figure 5. Reconstructed image after the hexagonal
latt ice rotation operation H was applied to the square
latt ice DRT of the or iginal image of Figure 1.

5. Properties of the DRT Basis Functions

The DRT mapping has a number of intriguing
properties, beyond the number theory links described in
[6]. The relationship between the m value which has the
maximum value of dm and d1, the pixel gap distance for
rays at m = 1 for a given p can be written as d1

2 = m2 + m
+ 1 = αp, where α is an integer. This implies that an area
equal to d1

2 should contain αmod(p) pixels that belong to
the digital rays at that m, for any t, for a given value of p.

Figure 6 shows the set of pixel locations in I(x, y)
selected by the digital projection t = 0, m = 97 (where dm

has its maximum value), for p = 409. A square window of
side length d1 translated across this image does usually
contain αmod(p) = 23 pixels, because as one pixel leaves
a translated version of the window, another enters at the
opposite side of the window. This sliding window
property is useful in creating arrays where each location
has a requirement that a constant number of sources are
located within a square region of a given size for any
location within the (cyclic) array.

For 100,000 (uniformly) random placements of boxes
of size 97 x 97, we find that on 99,497 occasions there
were 23 pixels inside the box, whilst the remaining 503
occurrences had 24.

6

Figure 6. Dots are the pixel locations sampled by the
DRT for p = 409, m = 97 and t = 35. The four squares
drawn in the arr ay are of size 97 x 97. Such squares
enclose 2323 pixels at almost all l ocations in the p x p
arr ay.

6. Conclusions

Algorithms that operate on, or permute the contents of
discrete DRT projections have been presented. The
resulting operations are eff icient means of forward and
inverse DRT mapping and to perform elementary
translations (T) and rotations (S and H) from within the
digital projection space. We are continuing to examine
more general rotation operators, convolution and
morphologic operations taken along periodic or connected
lines [9] in the R arrays.

Figure 7 shows the point spread function resulting from
convolution in R space along hexagonal axes. The
operation was performed by uniformly weighted
averaging using a length of 45 pixels) of the translates in
the R space at three 60 degrees rotations. Wrapping across
the t = 0 and t = p – 1 boundaries is accommodated by
using circular convolution.

If G is a general li near convolution operator, then
GI(x, y) = R-1G’RI(x, y). The convolution G’ may be
implemented in R space as the sum of translated DRT’s
over the kernel of the operator, as sums of y-translated 1D
row convolutions or, for separable kernels, as the
cumulative product of 1D convolutions over appropriate
rotations of the image.

Figure 7. 173x173 image. Point spread function for an
impulse at (86, 86) reconstructed after cumulative 1D
convolution with a pixel length of 45, performed in R
space at rotations 0, 60 and 120 degrees.

7. References

[1] G. Beylkin, “Discrete Radon Transform”, IEEE Trans. on
Acoustics, Speech and Signal Processing, vol. ASSP-35, no. 2,
pp. 162-172, February 1987.
[2] F. Matus and J. Flusser, “ Image Representation via a Finite
Radon Transform”, IEEE Transactions on Pattern Analysis and
Machine Intelli gence, vol. 15, no. 10, 1993, pp. 996-1106.
[3] P. M. Salzberg and R. Figueroa, Chapter 19, “Tomography
on the 3D-Torus and Crystals” , in Discrete Tomography:
Foundations, Algorithms and Applications, Eds. G. T. Herman
and A. Kuba, Birkhauser, Boston, 1999.
 [4] I. Svalbe and D. van der Spek, “Reconstruction of
Tomographic Images Using Analog Projections and the Digital
Radon Transform”, presented at the Workshop on Discrete
Tomography” , Sienna, Italy, October, 2000 (in press, Linear
Algebra and its Applications, 2001).
[5] I. Svalbe, “A Method to Embed Messages in Images Using
the Digital Radon Transform”, accepted for presentation at ICIP,
Thessalonika, Greece, October, 2001.
[6] I. Svalbe, “Digital Projections in Prime and Composite
Arrays” , IWCIA, Philadelphia, August, 2001, also see
Electronic Notes in Theoretical Computer Science,
www.elsevier/.nl/locate/entcs.
[7] J. Foley et al, Computer Graphics, Principles and Practice,
2nd Edition, Addisson-Wesley, 1996.
[8] M. Schroeder, Number Theory in Science and
Communications, Springer-Verlag, 3rd Edition, 1997.
[9] R. Jones and P. Soill e, “Periodic Lines and Their
Application to Granulometries” , Mathematical Morphology and
its Applications to Image and Signal Processing, Eds P.
Maragos, R. Schafer and M. Butt, Kluwer Academic Press,
1996, p. 263- 272.
[10] A. Averbuch, R. R. Coifman, D. L. Donoho, M. Israeli and
J. Walden, “Fast Slant Stack: A Notion of Radon Transform for
Data in a Cartesian Grid which is Rapidly Computable,
Algebraically Exact, Geometrically Faithful and Invertible”,
May 2001, TR #2001-11, www-stat.stanford.edu/research.

