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Abstract 
 
The purpose of this work was to develop an automated 
method to determine CNS atrophy. Two volumetric 
analysis algorithms, the Image Subtraction Method (ISM) 
and the Single Histogram Image Method (SHIM), were 
developed and evaluated. The two programs were tested 
using a computerized phantom MRI brain image and 
clinical MRI data. The ISM and SHIM were evaluated 
against six multi-modality algorithms and eight single-
modality image segmentation algorithms to determine 
which algorithms had the most accuracy and 
reproducibility in volume determination of CSF and brain 
matter. The results of the phantom study showed that ISM 
was the most accurate algorithm to measure CSF and 
brain matter: 20.08% systematic error in CSF volume 
determinations; 1.5% overestimation of GM and WM 
areas. The clinical data study also showed that the ISM 
algorithm gave the most consistent results for the analysis 
compared to the neuroradiological interpretations, and 
the manually determined volumes. The reproducibility 
and reliability of the ISM algorithm show its potential for 
quantitative diagnosis of CNS atrophies. 
 
1. Introduction 
 
       Magnetic Resonance Imaging (MRI) has become a 
standard tool to evaluate and determine anatomical and 
pathological changes in the human brain. Studies have 
shown that some neuropathological disorders affect the 
cerebral spinal fluid (CSF) and brain volumes. For 
example, the human immune-virus (HIV) infection 
produces ventricular atrophy and a decrease in white 
matter (WM) volume (1). Hydrocephalus disorders in 
children increase CSF and decrease WM(2). Atrophy is 
commonly associated with Alzheimer’s disease(3). 
Neuroradiologists, in standard clinical practice, visually 
evaluate central nervous system (CNS) atrophy. In 
general, four categories of atrophy are used: normal, mild, 
moderate, and severe atrophy. Comparative studies and 
subtle changes can be difficult to assess by visual 
interpretation. A diagnostic method, which could measure 
the volume of CSF, WM and gray matter (GM) in a rapid 

and reliable manner, could be of clinical importance for 
evaluating progressive disease.  
       Many segmentation algorithms have been developed 
with different degrees of accuracy, reproducibility and 
speed(2-8). Clarke et al (7) compared three types of 
pattern recognition approaches of parametric, 
nonparametric and nonstatistical methods to segment MR 
brain images. They found that the K Nearest Neighbor 
(KNN) and the Artificial Neural Network (ANN) had 
comparable segmentation results while the Maximum 
Likelihood Method (MLM) suffers from intensive noise. 
Jackson et al (8) used the Parzen Window method to 
determine CSF volumes and evaluate the accuracy and 
reproducibility of this technique for normal human brains. 
       Some algorithms need operator interaction and 
supervision of a trained investigator or medical expert but 
inter-operator variability of supervised algorithms can 
significantly affect outcome. In a clinical practice, where 
patient numbers are high and the rapid reporting of results 
is a necessity, manual segmentation or operator supervised 
segmentation are not practical or feasible. However, a 
methodology, which could rapidly process and segment 
different tissue types of the brain, could lead to 
quantitative grading of atrophy. 
       The Image Subtraction Method (ISM) is a non-
statistical technique, which does not require any user 
intervention. The Single Histogram Image Method 
(SHIM) is a histogram-based approach for segmentation 
of MR brain images together with 2D Entropy (15) and 
Moment Preserving (16) methods. KNN (10), Gaussian 
Clustering (12), Parzen Window (11) and ANN (12,13) 
were the supervised algorithms evaluated in this study. 
The purpose of this study was to evaluate two new 
volumetric analysis algorithms (ISM and SHIM) against 
the common algorithms used for volumetric 
determinations from MRI images. 
 
       KNN, Gaussian Clustering, Parzen Window, 
Artificial Neural Network, Chain Method (14) and 
ISODATA (14), can be run in both the multi-modality and 
single modality operation. 2D Entropy and Moment 
Preserving algorithms are single modality approaches. 
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2. Materials and Methods 
 
Software: ISM and SHIM algorithms were programmed in 

C language and run on a SunOS 4.1 workstation and the 

other algorithms run on an SGI running IRIX 6.1. 

ANALYZE software (12) was used to select the region of 

interest of each tissue type for the training set and to 

perform clustering for KNN, Gaussian, Parzen Window 

and ANN, as well as ISODATA and Chain Method. 

ISM: The ISM is based on subtraction T1 from T2 

weighted image. However, dynamic ranges of signal 

intensities in T1 and T2 images are different depending on 

MRI receiver gain settings, voxel size and signal to noise 

ratio (SNR). Therefore, scaling of signal intensities was 

performed in the range of zero to one; zero representing 

the lowest signal intensity and one representing the 

highest signal intensity of the brain region. Only the 

isolated brain pixels were scaled so that the outlying 

pixels, e.g. dura or eyeballs, did not affect the results. 

These regions, especially in T1 images, had the highest 

signal intensities and therefore had to be removed prior to 

scaling. The CSF regions can be separated from WM and 

GM if the following criteria is met: I2(x,y)>I1(x,y) where 

I2(x,y) and I1(x,y) are the scaled intensities of T2 and T1 

at the location of (x,y). 

SHIM: The SHIM algorithm is based on histogram of a 

T2 weighted image. The histogram was smoothed by an 

averaging filter width of seven, which produced a more 

stable outcome. Brain matter (WM and GM) is assumed 

to be normally distributed with a mean (µ) and standard 

deviation (σ). The mean (µ) is the first peak in the 

smoothed T2 histogram and standard deviation of the 

peak is calculated using the full width at half maximum 

(FWHM), σ = FWHM/2.35. The CSF threshold was 

selected as µ + kσ The constant k was calculated for 11 

slices from two patients which the CSF thresholds were 

manually selected. The average of the 11 k values (k= 3.5) 

was used for the study.  

Evaluation: Evaluation of brain image segmentation 

algorithms is a difficult task due to factors such as the 

complexity of the brain, MRI signal to noise, slice 

thickness, resolution and RF coil uniformity. Qualitative 

assessment of any algorithm based solely on visual 

assessment could not produce a quantitative comparative 

study. Therefore, we evaluated all algorithms using two 

independent tests. The first, a computer generated brain 

phantom (5) based on routine clinical MR images, was 

chosen because the exact pixel volume of WM, GM, and 

CSF pixels could be known prior to testing the algorithms. 

The programs performances were then re-tested using 

standard clinical MR images with different degrees of 

age-related atrophy determined by board certified 

neuroradiologists. 

Phantom Study: The brain phantom images were 

generated by using brain tissue templates. The templates 

are the anatomical structures of the brain produced from 

clinical data, and model WM, GM and CSF for each slice 

of a normal brain. One advantage of using is that the 

topology of each tissue type remains realistic. Our 

assumption was that preserving topology of brain regions 

would be important for clinically referable results. Extra-

ventricular CSF regions are more affected by partial 

volume averaging than other regions since they consist of 

smaller areas and have longer boundaries with WM and 

GM. The extra-ventricular CSF has a larger perimeter-to-

area ratio (in 3D analysis area-to-volume ratio) which 

causes more partial volume averaging effects and thus 

greater inaccuracy in final results.  

      Each brain image template consisted of 10 slices 

spaced 0.5 mm apart with an image matrix size of 

512x512. The brain phantom was modeled by assigning 

each tissue type with a mean intensity for a corresponding 

region of a clinical image and adding gaussian noise. The 

gaussian noise was estimated by measuring the variance of 

a region of interest in the clinical images. The means and 

variances used in our study to generate T2 weighted 

phantom, were 270 and 2500 arbitrary units for WM 

regions, 363 and 6400 for GM regions, and 1000 and 

8400 for CSF regions and the means and variances to 

generate T1 weighted phantom, were 415 and 2500 

arbitrary units for WM regions, 325 and 3600 for GM 

regions, and 140 and 1000 for CSF regions. The 10 

template slices were averaged to simulate partial volume 

averaging effects in Z direction. Changing the image 

resolution from 512x512 to 256x256 simulated partial 

volume averaging in x and y directions. By using these 

methods, we were able to generate T1 and T2 brain 

phantom images and test the accuracy of the algorithms by 

knowing a priori the exact volumes of the phantom CSF, 

GM and WM pixels. Examples of the phantom images 

used in this study are shown in Figure 1. 
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Figure 1. (a) T2-weighted computer generated phantom 
image. (b) T1-weighted computer generated phantom 
image comprising ten 0.5mm slices. The individual 
images were obtained by averaging the ten slices to 
create partial volume effects with known CSF, GM and 
WM pixels. 

 

Clinical Data Study: Standard clinical T1 (TE/TR 

11/500), dual spin echo (TE/TR 30/85/2500) or fast spin 

echo T2 (TE/TR/ETL 85/3000/8) images were obtained 

using a General Electric Signa 1.5T clinical system. The 

field of view was 22cm with pixel resolution of 256x256. 

Slice thickness was 5 mm with either 2.5 mm or 0 mm 

inter-slice spacing.  

Pre-Processing: Background noise and dura were 

removed from the images using the T2 weighted images 

and the connected components algorithm (9). In this 

process, a background noise threshold was manually 

selected for each slice to generate a binary image. The 

connected component algorithm iteratively assigns labels 

to all non-zero pixels and finds the single largest 

connected object and rejects all others. The largest 

connected object is the brain region. This process uses T2 

weighted images, since in the T1 images, extra-ventricular 

CSF and bone both have low signal intensities, and CSF 

regions could be incorrectly removed as part of the 

background noise or extra-meningeal tissues. We found 

this initial step to be important for pixel classification 

since the dura region has a similar intensity range as CSF, 

especially in FSE/T2 image sets. The connected 

component step also provides an outline of the brain 

perimeter, which can be used for T1 image analysis if 

there is no patient motion between the acquisitions of the 

MRI series.  

       The performance of all multi-modality segmentation 

algorithms was assessed with MR data from four clinical 

cases with different degrees of atrophy. These clinical 

images were from patients 33-87 years old with normal, 

mild, moderate and severe clinical atrophies, as 

determined by board certified neuroradiologists. Each 

data set consisted of six slices through the midbrain and 

encompassing the lateral ventricles. The CSF volumes of 

four clinical data sets were manually determined by 

selecting the CSF threshold for each clinical case after 

pre-processing the image slices. The signal intensity of the 

pixels higher than a threshold corresponding to the 

smallest determinable CSF pixels, were considered as 

CSF. The manual selection of CSF thresholds is 

subjective, especially in tissue interface areas. Some 

factors that affect manual segmentation are: display 

resolution, image contrast, and degree of expertise. To 

best approximate the true CSF volume and account for 

possible user variability, the CSF threshold was selected 

with radiological supervision. The CSF volume in each 

clinical case was then calculated by averaging three CSF 

volumes obtained by thresholds of 3% higher and lower 

than the original selected threshold. The results of manual 

segmentation are shown in Table 1. 

 

Atrophy Ave. CSF 
Threshold 

Ave.  
% CSF 

Ave. 
% BM 

Standard 
Deviation  

Normal 580 10.52 89.48 0.99 
Mild 580 15.99 84.01 1.38 

Moderate 760 20.65 79.35 1.33 
Severe 565 27.47 72.53 1.62 

Table 1: Clinical Study (Manual Segmentation) 

 

      In both phantom and clinical studies, the supervised 

algorithms, Parzen Window, KNN, ANN and Gaussian, 

were trained with the same training sets selected from the 

5th slice of each data set. These training sets were used to 

segment the whole volume. Representative clinical axial 

T2 images in the areas of the ventricles are shown, after 

connected component processing, in Figure 2. 
 
3. Results 
 

Phantom Study: The phantom results of the multi-

modality algorithms are summarized in Table 2. 

Comparing the seven algorithms, the smallest percent 

error of calculated CSF was obtained by our ISM 

algorithm. The ISM algorithm gave the volume of 9.54cc 

CSF for the phantom image when the true CSF volume 
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was 7.945cc, or an overestimation of 20.08%. The total 

brain matter (GM + WM) was calculated to be 95.90cc by 

the ISM algorithm or an overestimation of 1.5%. The next 

best result was obtained using the ISODATA algorithm 

(9.88cc CSF, 24.35%). The ISM and ANN methods 

overestimated the total gray and white matter volume 

(95.90cc and 94.79cc vs. 94.48cc). All other methods 

underestimated the total brain matter. The Parzen Window 

and Chain Method underestimated the total volume of the 

phantom, while the other algorithms overestimated the 

total volume by 0.5-2.9%. 

Figure 2. Representative clinical MR T2 images of 

individuals with neuroradiologically determined (a) normal 

brain, 49 y.o. female, (b) mild atrophy, 33 y.o. male (c ) 

moderate atrophy, 87 y.o. female and (d) severe atrophy, 

83 y.o. male. 

 

   The results of the single-modality algorithms are 

summarized in Table 3. The most accurate method for 

estimating CSF of the phantom was ISODATA. There was 

virtually no error in the ISODATA CSF determination 

(7.94cc CSF). However ISODATA overestimated the GM-

WM volume by 1.85%. ANN gave the second best result 

for calculating CSF volume (10.39cc, a 30.77% 

overestimation) and the best results for total gray and 

white matter volume (94.40cc, a 0.09% underestimation). 

As in the majority of single-modality and multi-modality 

algorithms, there was an overestimation of total CSF, GM 

and WM. This overestimation is from multiple counting of 

pixels with mixed characteristics of white matter, gray 

matter and CSF. 

 

Table 2. Phantom Results (Multi-Modality) 

Algorithm CSF(cc) 

V=7.94 
%Err GM(cc) 

V=49.80 
%Err WM(cc) 

V=44.68 
%Err 

ISM 9.54 20.08% 95.90# 1.50% - - 

ISODATA 9.88 24.35% 93.07# 1.49% - - 

ANN 10.53 32.53% 58.00 16.46% 36.79 17.66% 

PARZEN 13.42 68.92% 54.98 10.40% 36.05 19.32% 

KNN 16.12 102.89% 53.16 6.75% 35.37 20.84% 

CHAIN 17.44 119.51% 84.85# 10.19% - - 

GAUSSIA 17.80 124.04% 61.39 23.27% 26.13 41.51% 

 

Table 3. Phantom Results (Single-Modality) 

Algorithm CSF(cc) 

V=7.94 
%Err GM(cc) 

V=49.80 
%Err WM(cc) 

V=44.68 
%Err 

ISODATA 7.94 0.01% 96.33# 1.85% - - 

ANN 10.39 30.77% 57.19 1.48% 37.21 16.72% 
PARZEN 10.60 33.42% 55.42 11.29% 38.52 13.79% 

SHIM 11.50 44.75% 93.16# 1.40% - - 

KNN 12.93 62.74% 55.16 10.76% 36.74 17.77% 
ENTROPY 15.66 97.11% 89.00# 5.80% - - 

CHAIN 19.24 142.17% 85.07# 9.96% - - 

GAUSSIAN 23.01 189.61% 44.53 10.58% 37.84 15.31% 
MOMENT 60.55* 4.86% - - 44.10 1.30% 

# GM and WM could not be separated. * CSF and GM could not be separate 

 

Clinical MRI Data Study: The percentage CSF volume 

manually determined from the MRI images of four 

patients, with normal, mild, moderate and severe atrophies 

as determined by board certified neuroradiologists, were 

10.52% (0.99) , 15.99% (1.38), 20.65% (1.33) and 

27.47% (1.62) respectively (Table 1).  

      The volumetric results for the clinical studies obtained 

from multi-modality analysis are shown in Table 4. The 

ISM algorithm gave the most consistent results among 

seven multi-modality segmentation algorithms for the 

percent CSF volume of 13.30%, 19.82%, 22.00% and 

34.71%, respectively for normal, mild, moderate and 

severe atrophies. 

      Two unsupervised algorithms of ISODATA and Chain 

Method did not yield consistent results. The Chain 

Method measured 25.21% CSF for the mild atrophy, 
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significantly higher than 24.33% CSF for the severe case. 

ISODATA gave consistent results for moderate and severe 

atrophies but measured a smaller percent CSF for mild 

atrophy (11.14%) than the normal case (13.97%). Parzen 

window, Gaussian and KNN suffered from a high 

percentage of unclassified pixels. The unclassified pixels 

were mostly extra-ventricular CSF and GM which could 

not be separated. This problem was partially due to 

interslice variation and use of the same training sets in one 

slice to segment the whole volume. In addition, choosing 

training set for GM is difficult because of small and 

disperse anatomical structures. 

      The results of the clinical studies from single-modality 

algorithms are shown in Table 5. Among single-modality 

algorithms, 2D Entropy had the most consistent result. 

However, significant over estimation of the percent CSF, 

based on the manual segmentation, (normal 17.27%, mild 

22.26%, moderate 26.54 and severe 37.80%) appeared to 

make this algorithm problematic. The supervised 

algorithms, such as ANN, KNN, Parzen and Gaussian 

gave very similar results to multi-modality analysis for 

CSF classification even though they did not use the 

additional information of T1 weighted image modality. 

KNN, Parzen and ANN measured about the same percent 

CSF for normal, mild and moderate atrophies. The SHIM 

algorithm overestimated percent CSF volume (18.89%) 

for the normal case and underestimated for severe atrophy 

(24.37% CSF). This algorithm also measured percent CSF 

for the moderate atrophy case 22.85%, slightly lower than 

mild atrophy 23.34%.  

 

4. Discussion 
 
      The difficulty with assessing segmentation algorithms 

is that in-vivo results are impossible to verify. One cannot 

determine the CSF volume in a patient directly. CT and 

MR image can give accurate estimations of ventricular 

atrophy, but determination of an accurate volume is 

dependent on the algorithm used in the image analysis. 

The algorithms used in this study gave varied results.  

For any multi-modality algorithm, registration of images 

is crucial for accurate segmentation. Registration is 

necessary prior to segmentation if there is any movement 

of the patient’s head during the MRI scan. 

        The subtraction of normalized T1 from normalized 

T2 weighted images resulted in separation of CSF regions 

from the brain matter. Our phantom and clinical studies 

showed that the ISM algorithm could indeed segment CSF 

regions with a high degree of accuracy, reproducibility 

and speed. This algorithm measured the CSF volume of 

the phantom images with 20.08% error, the lowest among 

multi-modality algorithms and the second lowest among 

single-modality algorithms. Reproducibility of the results 

for CSF volume measurements in clinical cases, which 

have different degrees of atrophy, could be achieved by 

using ISM. WM and GM however could not be separated 

by this method. Although ISM segmented part of the falx 

cerebri as CSF (See Figure 3), this structure does not 

comprise a large volume. The volumes calculated by ISM 

compared to the manually segmented images were within 

the 20% systematic error as determined by the phantom 

study. It must be kept in mind that a 20% error in CSF 

determination represents a result of 10cc +/- 2cc CSF 

volume. Combined with the measurement of total GM and 

WM, which has a lower systematic error of 1.5%, a scale 

of atrophy based on brain volumes is attainable. 

 

Figure 3. (a) T2-weighted image of mild atrophy after 
dura and background were removed. (b) Segmented 
image by the ISM algorithm. 

 

       T2 phantom and clinical images were used to test 

SHIM algorithm. The result showed 44.75% inaccuracy 

for CSF volume measurement in the phantom study. The 

variation of mean and standard deviation of the brain 

matter peaks in T2-weighted image histograms for 

different atrophies is one of the sources of inaccuracy in 

CSF volume measurement. The severe atrophy has the 

smallest percent brain matter, even though the peak is the 

highest. This is because the CSF regions made up a 

significant percent of the brain volume and therefore the 

partial volume averaging had the least effects on the brain 

matter. In addition, the assumption of Gaussian 
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distribution for brain matter with the mean and standard 

deviation of m and s might be acceptable for the severe 

atrophy case, but not for normal, mild and moderate 

atrophies. Overestimation of CSF for the normal case and 

underestimation of CSF for the sever atrophy case are 

believed to be due to slight variations of constant k from 

slice to slice and patient to patient. Any variation in k was 

disregarded to gain full automation. The result of the 

SHIM segmentation on the mild atrophy case is shown in 

Figure 4a. The variation of k from slice to slice can be 

partially resolved by using the histogram of the whole 

volume instead of each slice. 

Figure 4. Segmented images of the mild atrophy data by 

(a) SHIM algorithm (b) single-modality Gaussian algorithm 

 

Summary: As Tables 4 and 5 show only ISM, among the 

multi-modality algorithms, gave reasonable increases in 

CSF as a function of clinical atrophy as determined by 

neuroradiological interpretation. The Entropy method 

gave the most consistent results for the single-modality 

methods. Although the absolute quantitation is not 

possible in vivo, the consistency of the ISM results as well 

as the determined systematic error of this method from the 

phantom study show that it is a promising method with 

reasonable, and acceptable systematic errors. Although the 

CSF volumes determined by the automated algorithm are 

higher than the manually segmented images, a 20% 

overestimation of the areas determined by manual 

segmentation, are similar to the ISM results, and 

demonstrate a consistent increase in CSF volume with 

progression in atrophy (Table 6). 

 
4. Conclusions 
 
      The results of our study indicate that the Image  

Table 6. Final Comparative Results 
Atrophy Ave. 

%CSF 
Manual  

Ave. 
%CSF 
+ 20% 

%CSF by 
ISM 

%CSF by 
Entropy 

Normal 10.52 12.62 13.30 17.27 
Mild 15.99 19.19 19.82 22.26 

Moderate 20.65 24.78 22.00 26.54 
Severe 27.47 32.96 34.71 37.80 

 

Subtraction Method gave rapid, reproducible results for 

both the phantom and clinical image sets. Comparing both 

the ISM and SHIM methods with six multi-modality and 

eight single modality segmentation algorithms, we have 

found that there is no method for CSF volume 

determinations without systematic errors and limitations. 

In a clinical setting, we believe considerations such as 

automation and rapidity of data analysis are important. 

Expert systems, such as KNN and Parzen, which require a 

trained technician or medical expert to supervise and run 

the algorithms, are not practical for routine patient care. 

Furthermore, the volumetric results from the supervised 

algorithms are subject to errors from the signal-to-noise 

variations in the areas chosen as the training pixels. These 

factors make the results of expert systems difficult to 

reproduce, even for trained personnel. 

      It has been our goal to develop a rapid and reliable 

methodology to determine the percentage of CSF and total 

white and gray matter for clinical evaluation of 

progressive atrophy disease, such as HIV and Alzheimer’s 

disease. At present neuroradiologists use a relative scale 

of normal, mild, moderate and severe atrophy. Inter-

reader variability and clinical experience can affect image 

interpretation. Clearly, a reproducible automated or semi-

automated system, with known systematic errors, would 

give a more reproducible and consistent clinical 

evaluation for progressive degenerative brain diseases, 

independent of observer variability. We believe that a 

semi-quantitative atrophy scale is now possible and that 

disease related atrophy may be distinguished from “age-

related” atrophy as often reported in clinical studies. 

Because of the rapid analysis of image information 

obtainable by ISM, and the reasonable and reproducible 

errors in estimating brain volumes, we are pursuing this 

methodology in further studies.  
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Table 4. Clinical Study (Multi-Modality) 

Algorithm Normal 
% CSF 

Mild 
% CSF 

Moderate 
% CSF 

Severe 
% CSF 

Normal 
% GM 

Mild 
% GM 

Moderate 
% GM 

Severe 
% GM 

Normal 
% WM 

Mild 
% WM 

Moderate 
% WM 

Severe 
% WM 

ISM 13.30 19.82 22.00 34.71 86.70# 80.18# 78.00# 65.29# - - - - 
ISODATA 13.97 11.14 20.15 21.75 86.03# 88.46# 79.85# 76.97# - - - - 

ANN 12.75 10.83 7.33 21.89 30.85 44.55 43.71 20.11 56.40 44.62 48.96 58.01 
PARZEN 7.76 7.24 9.10 19.72 34.92 42.22 32.75 21.01 51.76 46.35 49.76 55.43 

KNN 7.04 7.46 7.31 20.06 27.73 37.49 28.62 18.12 56.92 47.87 50.03 56.37 
CHAIN 13.32 25.21 15.09 24.33 21.79 38.34 24.71 16.09 61.45 34.49 55.33 57.00 

GAUSSIAN 5.43 7.66 5.04 18.08 30.29 44.19 29.50 20.97 52.04 42.92 47.02 53.48 

  Table 5. Clinical Study (Single-Modality) 

Algorithm Normal 
% CSF 

Mild 
% CSF 

Moderate 
% CSF 

Severe 
% CSF 

Normal 
% GM 

Mild 
% GM 

Moderate 
% GM 

Severe 
% GM 

Normal 
% WM 

Mild 
% WM 

Moderate 
% WM 

Severe 
% WM 

ISODATA 13.84 30.16 15.33 29.24 86.16# 69.84# 84.67# 70.76# - - - - 
PARZEN 6.83 7.35 8.66 18.96 32.13 42.11 27.14 17.08 61.04 50.54 63.24 64.26 

SHIM 18.89 23.34 22.85 24.37 81.11# 76.66# 77.15# 75.63# - - - - 
KNN 6.78 7.21 7.33 18.88 25.63 42.27 23.82 15.62 67.59 50.52 64.96 65.35 

ENTROPY 17.27 22.26 26.54 37.80 82.73# 77.74# 73.46# 58.18# - - - - 
CHAIN 9.98 9.59 11.87 23.89 26.85 19.64 21.81 20.96 63.17 70.77 67.76 55.15 
AUSSIAN 7.03 7.01 2.36 16.80 14.17 59.21 97.64# 22.40 75.67 33.78 - 60.79 

ANN 8.31 8.30 7.31 18.62 30.66 41.16 22.38 15.95 61.03 50.54 70.31 65.43 
MOMENT 64.82* 59.19* 63.78* 65.28* - - - - 35.18 40.81 36.22 34.72 
# GM and WM could not be separated. * CSF and GM could not be separated. 


