
DICTA2002: Digital Image Computing Techniques and Applications, 21–22 January 2002, Melbourne, Australia 1

Real-Time Hausdorff-Based Tracking

David Vignon
�

and Brian Lovell
�

�
Intelligent Real-Time Imaging and Sensing (IRIS) Group

The School of Computer Science and Electrical Engineering
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Abstract

We describe a real-time computer-vision tracking mod-
ule capable of using several Hausdorff distance based ap-
proaches to localize and match edge models in a scene.
The implementation is based on widely supported soft-
ware and hardware technologies such as Microsoft Di-
rectX/DirectShow, Intel Image Processing and the Open
Source Computer Vision libraries.

1. Introduction

The system described in this paper is based on the ob-
ject tracking methods developed by Huttenlocher et al [1].
This system can track multiple non-rigid objects, such as
people, in a cluttered environment, such as an office or lab-
oratory. In 1995 a similar real-time tracking system was im-
plemented by Welsh and Ahmed [3] using a cluster of Sun
workstations with shared- and distributed-memory multi-
processors connected via high-speed ATM links. The main
challenge of this project was to implement a similar sys-
tem on a standalone PC running Windows 2000 by using
real-time image processing software technologies such as
Microsoft DirectX/DirectShow, the Intel Image Processing
library, and the Open Source Computer Vision library.

2. The Hausdorff Distance Measures

Hausdorff distance is a scalar measure of the distance be-
tween two sets of points. In practice, the two sets of points
may be obtained by edge detecting a reference image and
a target image to determine the current position of the se-
lected object within the image.

Consider the interpretation of the distance of a single
point � from a set of points 	 . When we say that � is a
distance 
 from 	 , 
 is often considered to be the Euclidean
distance from � to the nearest point of 	 . The Hausdorff
distance naturally extends this concept to the distance be-
tween two sets of points, 	 and � say. If we determine
the distance of each point in � from a set of points 	 as
above, we will then have � Euclidean distance measures,
where � is the number of elements in � . Since we want a
scalar measure of distance, we choose the maximum value
of these distance measures which is known as the directed
Hausdorff distance.

2.1. The directed Hausdorff distance

More formally, the directed Hausdorff distance is de-
fined by
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where 	.�0/ (21 � -)-)- � (4365 and �7�0/ +)1 � -)-)- � +98:5 are two
sets of points, and ; - ; is the distance between points ( and
+ measured by some norm (generally the Euclidean norm<�=

). It identifies the point (?> 	 that is farthest from any
point of � , and measures the distance from ( to its near-
est neighbour in � . Thus

�� �@��	A� is commonly referred to
as the forward Hausdorff distance between 	 and � , while�� 	������ is the reverse distance. One interpretation of the
forward distance

�� �@��	A� is the distance within which we
can find every point of 	 from � and similarly for the re-
verse distance.

The forward and reverse distances are not necessarily the
same. For example, consider the sets of points which com-
prises the graphic symbols ‘+’ and ‘-’ and further assume



that these symbols are aligned. The set of points corre-
sponding to the symbol ‘-’ is a subset of the set of points
representing ‘+’ so the distance is zero, but the reverse dis-
tance is definitely positive and is, in fact, equal to half the
height of the ‘+’ symbol. To create a symmetric distance
measure we define the total Hausdorff distance, � , as the
maximum of the forward and reverse distances. That is

� � 	���������� (�� � �� 	������9� �� �@��	A��� - (2)

The lower the distance value is, the better the match.

Figure 1. Example of the system being used
for hand tracking

2.2. The generalized Hausdorff distance

Now the directed distance
�� 	������ , and hence the Haus-

dorff distance, will be small when every point of 	 is near
some point of � . Thus this distance is a very fragile mea-
sure because it may depend on just a single outlier pixel in
the entire image causing

�� 	������ to be large. This is com-
mon particularly when the object is partially occluded, or
noisy due to poor edge extraction or capture. The definition
of equation 1 is thus replaced with a more robust general-
ization of the Hausdorff distance based on order statistics,
sometimes called the “partial Hausdorff distance” by taking
the �
	�� ranked distance rather than the maximum distance.
Thus generalized Hausdorff distance is defined by
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where �
	�� denotes the ��	�� largest value.

2.3. Application to object tracking

Most object recognition systems require a similarity
measure between the model (or reference) features and the

image features. The Hausdorff distance measures the diver-
gence of a set of features with respect to a reference set of
features [1]. The features are usually image edges in prac-
tice. In general, we are interested in using the Hausdorff
distance to identify instances of a model in an image or to
track a moving object in a scene.

Now if 	 denotes the set of scene points and � denotes a
set of model points, let � be some transformation of � in the
2D space; only translation and scaling are considered here

— separately in � and � . The values of � where
�� � � ���9��	��

is small are the most likely transformations of the model.

Thus for a range of values of � ,  � 	���� � ��� � is evaluated

to determine the minimum distance in the transform search
space.

3. Real-Time Imaging Software Tools

Microsoft � DirectX � is a set of low-level applica-
tion programming interfaces (APIs) for creating games and
other multimedia applications. Microsoft DirectShow is an
API for streaming media on the Microsoft Windows � plat-
form. DirectShow simplifies media playback, format con-
version, and capture tasks. At the same time, it provides
access to the underlying stream control architecture for ap-
plications that require custom solutions.

The Intel � Image Processing Library provides a set of
low-level image manipulation functions in standard DLLs
and static libraries form. The functions are optimized for
Intel Architecture processors, and are particularly effective
at taking advantage of MMX (Multimedia Extensions) tech-
nology, the Streaming SIMD Extensions (SSE) and SSE-
2 [6]. The Open Source Computer Vision Library is mainly
aimed at real-time computer vision [7].

4. Efficient Implementation

There are several techniques for computing the Haus-
dorff distance and we needed to determine the method best
matched to our machine architecture.

4.1. Dilation method

Given that the forward distance
�� �@��	A� is the distance

within which we find every point of 	 from � (or � � ��� ),
the most both straightforward and intuitive method is to use
successive dilations.

Let 	�� be the dilation of the scene 	 by a disc ��� of
radius � , � the number of points of the model � , � the
number of points of � which should be aligned with 	��
(partial Hausdorff-distance), � the number of points of � � ���
covered by 	 � . We refer to !3 as the Hausdorff-fraction
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and

3 as the threshold fraction. Intuitively, !3 measures

the percentage of � � ��� which lies within distance � of the
points of 	 .

Thus we search for the minimum radius � by which the
model set 	 must be dilated to cover


3 of the points in � .

This calculation could involve many dilations of the refer-
ence image 	 which is computationally quite expensive.

4.2. Distance transform method

In practice, it is extremely time-consuming to dilate the
scene 	 (or a portion of it) many times for all transforma-
tions, and then to dilate � � ��� for those times where we also
need to compute the reverse Hausdorff distance. It is far
more efficient to compute once only the distance transform
(using Intel IPL library) of the scene and to then thresh-
old it to produce the various dilated model sets. Similarly,
we compute once only the distance transform of the scaled
model and we translate and threshold it. For all pixels of
the image, the distance transform gives the distance to the
closest edge-pixel. For example, If this transform is thresh-
olded at 1 (if value ��� then 1 else 0), this is equivalent to
dilating with a disk of radius 1.

Note that finding the crossproduct between the binary
images is just simple logical AND between 	�� and � � ���
which determines � .

4.3. Hausdorff Fraction tracking

In a real-time system, it is sensible to fix the Hausdorff
distance to a particular value � , and use this value as the
radius of dilation for the point sets 	 (and also for � � ��� for
the other direction of the Hausdorff measure).

The forward and reverse Hausdorff fractions between
the two sets are then calculated as [3]:

� � � � ���9��	�� � % of t(B) which align 	�� ���
� ��

� � 	���� � ��� � � % of A which align � � ����� ���
�

�
�

where � � is a disc of radius � .
Let be � � ��� � , the dilation of the model � � ��� , � the num-

ber of point of the scene in the location of � � ��� (Region
of Interest) and � the number of points of 	 correlated with� � ��� � . Thus


8 is the threshold fraction for the reverse Haus-

dorff fraction.
Practically, this can be implemented by performing the

distance transform, thresholding at � , performing a logical
AND followed by counting pixels.

Note: here, the total Hausdorff fraction is given by the
minimum of the reverse and forward fraction (while the
total Hausdorff distance is given by the maximum of the
forward and reverse distance). The best transformation
is the transformation for which the Hausdorff fraction is
largest (rather than smallest for a Hausdorff distance-based
method).

4.4. Assumptions on the inter-frame movement of
the model

In the case of object tracking, for a video sequence, we
assume that motion and shape change from frame to frame
are small, thus some optimizations limit the space of search
to a small range of translations and scalings from the previ-
ous model position.

4.5. Multiresolution techniques

Huttenlocher describes a multi-resolution method for
scanning the space of possible transformation of a model
based on the partial Hausdorff distance. This approach

makes the reasonable assumption that if � � 	���� � ��� � is

large for certain values of � , it must also be large all nearby
values � � [2]. This allows large portions of the transforma-
tion space to be discarded efficiently by quantising the space
it into searches at different resolutions.

For the forward distance, the distance transform of the
image set 	 is first computed, and then probed at the lo-
cations of transformed model points. The values at those

coordinates are sorted and
 � � � ���9��	�� is given by � 	�� the

value.
Practically, ranking is very time-expensive, so we exploit

thoroughly the tools available in the image-processing ded-
icated libraries:

� The distance transform of 	 is performed and masked,

� Then we compute the histogram of the masked image
and use the cumulated histogram method to sort out
the resulting pixel. The Hausdorff distance is the in-
dex at


3
	 of the maximum value of the cumulated

histogram,

� We use an image pyramid of the scene and the model
as a multi-resolution method. Actually, a transforma-
tion (eg. translation) at a coarser resolution of the pyra-
mid is equivalent to several transformations at a finer
resolution,

� Finally, we keep the best match instead of the best
matches for testing in a finer resolution of the pyramid,
contrary to Huttenlocher.
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In the same way, we compute the distance transform of� � ��� and then scan this array at the locations of the points
of A.

4.6. Relation to Chamfer methods

The Chamfer system is a related shape-based object de-
tection [4] technique which has been used to great effect
by Garvrila et al [5] in detecting road signs and pedestri-
ans from moving vehicles. Basically, the Chamfer matching
measure is the crossproduct of the distance transform of the
edge-detected scene and the transformed model. The lower
the value is, the better the match. If, for example, the aver-
age distance value lies below a certain threshold, the target
object is considered detected.

When applied to object tracking, the Chamfer System
can be seen as a simplification of the previous method,
avoiding ranking (even if we need to examine both forward
and reverse transform for the tracking application rather
than the object recognition application). Thus the same
method as above is applied (distance transform, followed
logical AND) but an average of resulting pixels is per-
formed instead of a cumulated histogram.

4.7. Model Refreshing

Even if we assume that the model undergoes small trans-
formations from frame to frame, the cumulative changes
can be too great to match the object in the current frame
with the original model. We need then to update the model
once the Hausdorff distance grows too large (or the Haus-
dorff fraction becomes too small).

5. The Final System

The final system was made available as an AX file
which could be loaded into the filter graph editor appli-
cation of the DirectX SDK. A property page dialog (as
shown in Figure 2) is used to control the operation of the
tracker module. The final system was able to track ob-
jects such as hands and faces at about 12 frames per sec-
ond. A video of the output of the working system is avail-
able from http://www.csee.uq.edu.au/˜iris/
ComputerVision/UQ/hausdorff.mpg.

6. Conclusions

It is apparent that with careful coding and appropriate
software technologies, it is now possible to produce com-
plete computer vision tracking systems that run on a stan-
dalone PC. Such tracking systems will form pat of the core
technology for future applications in video annotation and
passive surveillance within the research group.

Figure 2. View of the tracking system property
page
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