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Abstract

We proposea methodfor improving te Brake’s mass-
detectionalgorithm [4, 5]. The methodinvolvesa pre-
processingstep. In this stepthe locally linear fine detail
structureis removedfrom theimage,whilst retainingthe
largerunderlyingmassstructure.Theremoval technique
for the fine structureis basedon waveletsanda feature
detectionmeasureknown asphasecongruency [3]. The
resultingROC curve shows the pre-processingstepim-
provesthemassdetectionrate.

Introduction and Motivation

Thereare numerousways to motivate our work. From
a medicalperspective, breastcanceris oneof the largest
killers of womenin the Westernworld, approximately

�
in
���

will developbreastcanceratsometime in their life.
From a technologicalviewpoint, mammographyis mov-
ing from beingfilm-basedto digital, with chargecoupled
devices,CCD’s,replacingthetraditionalfilm cassetteand
allowing thedirectcreationof digital images.Hencethere
is considerableinterestin computer-aideddetectionand
thedevelopmentof algorithmswhichwill aid radiologists
in their searchfor massstructures.

We explainmorefully whatwemeanby mass.A mass
is definedto be a region of non-normal,not necessar-
ily malignant,breasttissue. Mass regions have an X-�
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ray attenuationfactormarginally higherthannormaltis-
sue,consequentlythey appearslightly brighterthannor-
mal tissueon a mammogram. Masseshave a rangeof
sizesandshapes.Furthermassesareoftenassociatedwith
spicules: long thin strandsof tissueacting as anchors
holdingthemassin position.

Thedifficult taskwe faceis thedetectionof astructure
of variableshapeandsize,with an imageintensityonly
marginally brighterthanthesurroundingtissue.

Method

Our methodcombinestwo ideas,te Brake’s gradientori-
entatedmassdetectionalgorithm, [4, 5] , and Kovesi’s
featuredetectionmethod,[3], which is developedaround
theconceptof phasecongruency. We summariseboth.

Mass detection by Gradient Orientation
Analysis

Te Brake’salgorithmassignsto eachpixel avalue,which
is a measureof the level of suspicionof that pixel. The
methodis bestexplainedby taking an explicit structure
which hasa strongresponseto the algorithm. As such,
considera masswith an intensitydistribution givenby a
two-dimensionalGaussianprofile,���	��

�����������������������	�� "!#�$ ��%�'&
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In fig 1 we constructthe contoursfor sucha shapeand
display their gradientvectorsfor a representative set of
points.If weextrapolateeachpointalongits gradientvec-
tor we find they all crossat theorigin.

te Brake’s algorithmvisits eachpixel in turn counting
thenumberof surroundingpixels thatsatisfythe follow-
ing two criteria,

1. They arewithin adistance(*),+.-'/ of thecentralpixel.
This boundsthesizeof themassstructurefor which
we arelooking to belessthan (0)�+1-'/ .

2. The extrapolatedgradientvectorat the pixel passes
with a distance(32	/,4�57698,: of thecentralpixel, fig 1.

If theresultantvalueishigherthanthatobtainedfrom vec-
torsorientatedrandomly, thenthis is indicative of anun-
derlyingstructure.A fuller descriptionof themethodcan
befoundin [5].

No one is suggestingthat massesareGaussianstruc-
tureswith axial symmetry, however modellinga massas
anapproximatelycircularstructurewhoseimageintensity
decaysaway from a relatively bright region into a back-
groundvalueis a feasiblestartingpoint.

Oneproblemwith theabovemethodis thatmassesare
oftenheldin placeby spicules,whichgivethemassastar
likestructure.Suchspicules’confuse’thegradientopera-
tor andreducetheteBrakemeasureatthatpoint. Spicules
arepart of a larger setof locally linear breaststructure:
bloodvessels,Cooper’s ligaments,milk ductsandfibrous
tissueareall locally linear. Collectively they areknown
ascurvilinearstructureor CLS.CLS canobscuremasses
andaltersthelocalgradientorientationin amammogram.

To show quantitatively, whetherthepresenceof curvi-
linearstructuresaffectstheperformanceof te Brake’s al-
gorithm, we aim to detectand remove thesestructures
from mammogramsprior to running the detectionalgo-
rithm.

Detection and Removal of CLS using
Kovesi’s feature detection

CLSis locally linearwith awell definedorientation,how-
ever on a larger scaleit curves. CLS appearson mam-
mogramsaslocally bright ridges,of variouswidths and

lengths.CLSaddsa ‘whispy’ effect to mammogramsand
obscurespotentialmasses.

The detectionof CLS hasbeenconsideredpreviously.
For completenesswe mentionCerneaz[1], Cerneazand
Brady [2] andZwiggelar [6]. Our approachto multi-
scaleCLS detectionis basedon the ideasof phasecon-
gruency, first appliedto featuredetectionby Kovesi[3].

Phase Congruency

The local energy model of featuredetectionpostulates
that featuresare perceived at points where the local
Fourier componentsof a signalaremaximally in phase,
i.e. wherephasecongruency is a maximum[3]. Consider
thelocalFourierdecompositionof aone-dimensionalsig-
nal, ; �<���=�?>@A%B�CED A�F�GIH �.JI�E��!LK�M A�H%N1O �.JI�E� (2)

with
KP�RQ � �

. Phasecongruency is definedas,SUTV�XW �ZY >A%B�C D A �  ![�ZY >A%B�C M A �  W Y >A%B�C � D  A !\M  A � &
(3)

The numeratorof Eq. (3) is the squareroot of the local
energy of the one-dimensionalsignal, and the denomi-
nator is the squareroot of the maximumpossiblelocal
energy of the signal if all the Fourier componentswere
in phase. The greaterthe agreementbetweenphasesof
the individual Fourier components,the closer

SUT
is to

one. Equation3 is invariantto the overall magnitudeof
the signalandso

SUT
canbe usedto detectlow-contrast

featuresin asignalor image.However, it is alsoverysen-
sitive to imagenoiseandis ill-conditionedif all thelocal
Fouriercomponentsof the imagearevery small. Kovesi
altersthe formulationof

SUT
in [3] to avoid both prob-

lems,andusesorientedlog-Gaborwaveletfilters in sym-
metric/antisymmetricquadraturepairsto obtainlocal fre-
quency informationatanimagepixel. Furtherdetailscan
befoundin [3].)

We make several assumptionsaboutthe CLS that we
wish to detect.The intensityprofile perpendicularto the
orientationof a strandof CLS is a one-dimensionalpeak
that canbe approximatedto a scaledversionof F9GIH �^]_ � ,
where

�a`�b^cedf]_ dV`�b^c
. We alsoassumethat,because
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the CLS is longerthanit is wide, the
SUT

perpendicular
to theCLSis greaterthanthe

SUT
alongtheCLSatscales

shorterthantheCLS.Wecalculatetheweightedmeanlo-
cal phaseat eachpixel in a mammogram,

]_�g �<���
, over a

rangeof orientations,h , accordingto,]_�g �<�E�i�[jlk F9m j OLno >@A%B�C M g�p A �<���'
 >@A%B�C D g�p A �	�E�,qrs&
(4)

Here
M g�p A �<��� and D g�p A �	�E� arethelocalresultsof convolv-

ing the mammogramwith the odd andeven partsof the
log-Gaborfilter at scale

J
andorientation h [3]. Since

we arelooking for ridgestructureswe only calculatelo-
cal phasecongruency at a pixel

�
andorientationh if the

following inequalityholds,t ]_�g �	�E� t d\`�blc$&
(5)

Otherwise
SUT g �<���

is setto zero.
After determiningvaluesof

SUT g �vu���
at intervals over

thefull rangeof h , we considerthepixel
u�

to bepartof a
CLSif theabsolutedifference

t SUT g �vu�E���3SUT gxwzyl{  ��u�E� t$|�
for any h . The final outputof the CLS detectionpro-

cedureis a binary imagewith CLS featuresmarked, as
shown in Fig. 2b.

Removing CLS from Mammograms

Thebinaryimageof theCLSobtainedin theprevioussec-
tion is now usedasatemplatefor removing CLSfrom the
original mammogram.We first dilate the binary image
usinga }�~�} structuringelementso that all the bound-
ary pixelsin thedilatedimagearepositionedjust outside
CLS in the original mammogram.Finally, the CLS are
removed from the original mammogramby replacesthe
originalvaluesof pixelslocatedin theinteriorof detected
CLS, with valuessmoothlyinterpolatedfrom thebound-
ariesof detectedCLS.

Results

Theresultsaredisplayedin fig 3 usingaROCformat.We
explainhow theresultsaregenerated.Te Brake’smethod
assignsa valueto eachpixel - a measureof suspicion.If
thisvalueis lessthan(greaterthan)somethresholdvalue,

� , thepixel is deemedto benormal(mass)tissue.Every
imagein our database1 hasan accompanying truth file
- an imagefile with the massstructuresmarked by a ra-
diologist. Given this groundtruth we calculatefor every
imagein thedatabasethefollowing two numbers,�L� S - Thetruepositivefraction,theratioof thenum-

ber of pixels which the algorithm and the radiolo-
gist havebothmarkedasmassesdividedby thetotal
numberof masspixels.�\� S - The falsepositive fraction - the ratio of the
numberof pixelsmarkedasmassesby thealgorithm
andnormalby the radiologistsdivided by the total
numberof normalmasspixels.

Eachpoint on the graphis, for a fixed threshold� , the
mean

� ]� S�
 ]� SU� evaluatedoverour setof seventycases,� ]� S�
 ]� S*�i�X� Y >+ B�C � S +� 
 Y >+ B�C � S +� � &
(6)

Where� S + and � S + denotethetruepositive fractionand
falsepositive fraction respectively for image

K
. As the

thresholdis lowered, more and more of eachimage is
deemedto be massand the � S value rises. Of course
the increasein � S hasto be countersetagainstthe rise
in � S . Radiologistswould quickly loseconfidenceif the
numberof falsepositiveswereunacceptablyhigh.

The resultsareshown in theROC curve. fig 3. Three
linesaredisplayed,

1. - Theresultsof thealgorithmon theraw imagedata.

2. - Theresultsof thealgorithmwith thepre-processing
CLSremoval step

3. - The resultsof thealgorithmwith a pre-processing
averagingstep. Eachpixel is replacedby the mean
of its own valueandits eightnearestneighbours.

We seethat the pre-processingCLS removal step im-
proveste Brake’s algorithm,for any valueof � S its � S
value is always greaterthan both the averagedand the
original images.

1We acknowledge the databaseat the University of SouthFlorida
http://marathon.csee.usf.edu
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Figure1: Gradientvectorsandtheir projectionbackinto
thete Brakedistance.

Conclusions

Themainconclusionto bedrawn from thiswork; CLSre-
moval improvestheperformanceof teBrake’salgorithm.

A naturalquestionarises,would te Brake’s algorithm
beimprovedby othermoreconventionalwaysof remov-
ing fine detail structure?The answerto this questionis
yes, as can be seenin the ROC curve for the averaged
data.Howeveraveragingoffersasmallerimprovementin
performancethanourCLSremoval technique.
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Figure2: (a)OriginalMammogram.(b) CLSDetectedin
(a) usingphasecongruency. (c) Mammogramwith CLS
removed.
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Figure3: Results
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