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Abstract This paper presents an extensive survey of model selection techniques for
computer vision applications. A large number of existing model selection criteria and a
new model selection criterion (SSC) are introduced and their performance for two
important computer vision tasks: motion estimation and range segmentation are
evaluated and compared. Various factors affecting the performance of different criteria
are introduced and their effects are compared by virtue of conducting controlled
experiments using synthetic and real data. Our results show that the performance of
different model selection criteria are affected by the size of data and the amount (and
distribution) of noise as well as of complexity of models used in an application.

1 Introduction

Many computer vision algorithms rely on using a parametric model, which are usually
determined broadly by examining the underlying physical phenomenon. Such physical
constraints are often represented by a family of parametric models that can be applicable to
various situations of a given task ([2,8,11,13,18,20-22]). Hence, a complete solution to most
vision tasks is likely to depend on how well the true underlying model can be chosen.

On the other hand, the model selection problem, which refers to choosing the most
appropriate and concise model to express given data in an abstract fashion, has attracted the
attention of many statisticians for several decades. Since the introduction of Akaikeis An
Information Criterion (AIC) [1], which had a fundamental effect on model selection
research, many model selection criteria have been introduced [6,14-16,22]. It comes as no
surprise that many of those model selection techniques have been employed in many
computer vision algorithms for various applications ([2,8,11,13,18,20-23]).

Although the general form of a model that underpins a specific task is most likely to be
mandated by its physical characteristics, there are situations where simpler models (than the
general form) can be truly applicable to those particular situations. For example, in 2D
motion recovery, while a third order polynomial represents the rigid motion of a generic
surface, the motion of a planar surface can be represented by a subset of that polynomial (a
partial quadratic model). If there is no a priori information about the shape of surfaces in the
scene, a method to choose the correct model is an important ingredient.

To determine the correct underlying model of a data set, one may simply suggest the most
appropriate model is the one, which best fits to the data. This idea, however, does not work
because it will always favour the most complex model of a model library. The reason is that
the most complex model has more degrees of freedom and can therefore fit to the data better
than any other model in that library. Thus, to choose the correct model, one needs to
establish a trade off between fidelity (how well a model fits the data, which is often
measured by the sum of squared residuals) and the complexity of that model. In practice,
higher order models have to be penalized so that the selected model would be chosen based
on its suitability rather than its fidelity to data. In fact, the salient difference between all the
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existing model selection criteria is in the way by which they penalize the higher order
models.

In this paper, we explain, evaluate and compare an extensive set of existing model selection
criteria for two important computer vision applications namely 3D range segmentation and
2D motion segmentation. Although we think that there are many factors affecting the
suitability of a criterion for employment in a computer vision application, the most
important ones are:

e Application: The nature of physical constraints (which inturn depends on the
application) can affect the performance of a model selection criterion. For example, the
performance of a model selection criterion for range segmentation differs from its
performance for motion segmentation application, as the types of models used in these
applications are different.

e Data Size: As we will show, the size of data (size of image, region etc) can significantly
change the performance of a model selection criterion.

e Noise: The scale and distribution of the noise, which are different in synthetic and real
data, can affect the performance of a model selection criterion. Most model selection criteria
are derived based on a priori assumption about the distribution of the noise.

e  Model Library: The model library, from which the most appropriate model is chosen,
may include very similar models. In this case, there can be a reduction in the performance of
a model selection criterion. For example, the distinction between closely nested models,
which have very similar terms, can be challenging to any criterion.

2 Statistical Model Selection Criteria

Here, we briefly explain (in chronological order) a number of popular and effective model
selection criteria. These techniques appear to perform well in computer vision applications
and have been commonly used in various applications. In the following, P refers to the
number of parameters of a model, r;, denotes the residual for the i™ data point (Zr? is
therefore the sum of squared residuals). We show the scale of noise by ¢ and the number of
data points by N. The dimension of the surface that fits to the data is denoted by d.

Akaikeis An Information Criterion (AIC)

AIC [1] was one of the first model selection criteria introduced in statistics literature. AIC is
based on the idea that a chosen model is correct if it can sufficiently describe any future data
with the same distribution and therefore AIC can be regarded as a hypothetical cross
validation method [12]. In other words, AIC selects a model that minimises the expected
error of the new observation with the same distribution as the data used for fitting (which is
the current observation). AIC uses Maximum Likelihood Estimation (MLE) technique for
computing the residuals and has the following form:

N
AIC=Y "1 +2P57.
i=1

Since 1973, AIC has been modified in many ways. For example, many model selection
criteria including CAIC [6], CAICF [6], GAC [22], GAIC [14] and MAIC [5] are derived
from AIC.
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Cp

Around the same time as the introduction of AIC, Mallow pioneered another model
selection criterion called CP [15]. CP selects the model that minimises the mathematical
expectation of i scaled sum of squared errori , where the error is defined as the algebraic
distance between the predicted and observed data. It means that the error is calculated by a
linear regression method instead of MLE. Therefore, unlike most of the statistical model
selection criteria, CP does not rely on MLE technique for evaluating the residuals (errors).
CP has the following form:

N
CP =Y rP+(-N+2P)5°

In the recent years, Kanatani [12] reported that Geometric CP is equivalent to GAIC
(explained below).

Minimum Description Length (MDL)

Later in 1978, Rissanen introduced MDL [16,17]. The underlying logic of MDL is that the
simplest model that sufficiently describes the data is the best model. For example, if one
aims at encoding and transmitting a given data set, the best encoding model is the model that
generates the least total size of transmitted data. MDL has the following form:

N
MDL =" r? +(P/2)log(N)8>-
i=1
Shortest Data Description (SSD)

Similarly in 1978, Rissanen proposed another model selection criterion termed SSD [17].
SSD selects the model that minimises the bit representation of the data and therefore has a
very similar underlying logic with MDLs and has shown (Figures 1, 2 and 3) to be efficient
where the noise distribution is Gaussian. SSD has the following form:

N
SSD = Z 2 +(Plog((N +2)/24)+2log(P+1)82 -
i=1
Bayesian Information Criterion (BIC)

BIC chooses the model that maximises the conditional probability of describing a data set
by a model constrained by some priori information. Thus, BIC can take various forms based
on the nature of the assumed priori information. For example, an instance of BIC was
introduced by Schwarz [19] in 1978 and has the following form:

N
BAYES = (2z)"'? Log (6,,) //Z r?
i=1

where 0, denotes the estimated parameters of each model.

Consistent AIC (CAIC)

CAIC [6], proposed by Bozdogan in 1987, is an attempt to overcome the tendency of the
AIC to overestimate the complexity of the underlying model. In formulating CAIC, a
correction factor based on the sample size (V) is employed to compensate for the
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overestimating nature of AIC. Logarithm of NV has been suggested as an appropriate instance
of such factor. CAIC can be written as:

N
CAIC =) "1 + P(logN +1)87.
i=1

In computer vision context, Bubna and Stewart [7] reported that CAIC has a satisfactory
performance in surface merging for reconstruction algorithms.

Geometric Bayesian Information Criterion (GBIC)

Almost twenty years after the introduction of BIC, Heckerman and Chickering proposed
GBIC [9]. This criterion, which is based on BIC, appears to be more effective than BIC
perhaps, due to the fact that it somehow reduces the tendency of BIC to over-predict the
complexity of the model. GBIC can be written as:

N
GBIC = r? +(Nd log(4) + Plog(4N))5? -
i=1

Geometric Akaikeis Information Criterion (GAIC)

GAIC is based on AIC. The main difference between Geometric AIC (GAIC), introduced by
Kanatani [14], and AIC is in the way that the expectation functions are evaluated. GAIC is
specifically derived for geometric fitting. As described by Kanatani, the objective of
geometric fitting is to estimate the model parameters from observed data. In geometric
fitting, the properties of the noise are assumed to be known a priori. In contrast, in the
statistical inference procedures, one aims at estimating both the model parameters and the
properties (mean and variance) of the noise. In other words, in geometric fitting the main
objective is to study the observe data themself whilst in statistical methods one aims at
studying the ensemble from which the observed data are sampled. According to Kanatani, in
geometric fitting the ensemble is the set of all algorithms that can be applied to solve a
specific problem. Therefore, the estimation accuracy only improves if noise is decreased.
This is in sharp contrast to the fact that in statistical inference, the estimation accuracy is
improved by increasing the number of sample points.

Kanatani derives a first order approximation of GAIC which can be written as:

N
GAIC = Z 2 +2(dN + P)6* .

i=1

GIC

In 1998, Torr [22] proposed GIC that is a modified version of AIC. In AIC, if the number of
data points (&) is much larger than the number of parameters of a model (P) then the
influence of P on the AICis decision is greatly diminished. In practice, this is a crucial
problem since the main task of a model selection criterion is to determine the correct
number of parameters of the appropriate model. To avoid this problem, Torr proposed using
adjustable coefficients for N and P and rewrote the GAIC to be:

N
GIC =17 + 4dNS> + 1, P5” .

i=1
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Torr suggested that 1>A;>2, A,>2 will provide satisfactory outcomes. The same author
reported that where the difference between the dimensions of the compared models is one,
and the required level of significance is « =0.0456, then, A,=2 and A,=4 would be
reasonable values to use.

Geometric MDL (GMDL)

Shortly after introducing GAIC, Kanatani derived GMDL [14] specifically for geometric
fitting (see GAIC). GMDL, similar to MDL (described previously), relies on knowing the
scale of noise. This criterion has the following form:

N
GMDL = Z 12 —(Nd + P)6* log(6/ L)*
i=1
where L is the reference length and can be determined exactly or as Kanatani suggests can
be approximated by a practical scale such as the image size.

Surface Selection Criterion (SSC)

Recently, the authors have also proposed a model selection criterion named SSC [3,10],
which is an attempt to combine both the geometrical and physical characteristics of the data
in order to identify the true underlying model. To achieve this, the authors have devised a
scheme that generally favours models that store lesser amount of strain energy (as a measure
of roughness) while closely follows the data. The proposed criterion is as follows:

N
E endin, WS
SSC=>"r*/N&’ +P%.
i=1 max

Egending+Twist 18 the strain energy, which is computed as:

C(fl] 0w 9w, ’wow 9w,
E gendingsTist _J.-[Z{( 2 + Byz) _2(1_‘/){8)62 ayz _(m) dxdy

where w is the surface we fit and v is Poissonis ratio and it should be very small since the
twisting energy, in comparison with the bending energy, is small. In our experiments we
assume v = 0.01. Experiments have shown that the performance of SSC is not sensitive to
this value. E\,, is the strain energy of the model with the highest number of parameters in a
set of nested models.

3 Evaluation of Different Model Selection Criteria

To evaluate and compare the performance of various model selection criteria (explained
previously), we have chosen two important computer vision applications in which model
selection plays an important role. Those applications are:

e Detecting the true underlying motion model in optic flow calculation (2D motion
segmentation).

e Detecting the true surface model for 3D range data measurements.

In order to evaluate the performance of the proposed model selection criteria in each of
these applications, we generated a number of different sets of synthetic data and
implemented all of the criteria by calculating their mathematical expressions. The residuals
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of each model remain the same for all of the criteria. Details of our experiments as well as
their results are presented in the following two sections.

It is important to note that since almost all criteria (except CP and SSC) are derived based
on the MLE technique, the residuals also need to be calculated using MLE. However, during
our experiments, we noticed that the performances of these criteria were deteriorated when
we attempted to calculate the residuals based on the MLE. This is mainly due to the fact that
the objective functions of the MLE technique are non-linear and the residuals cannot be
accurately calculated'. Therefore, to make the computation feasible, we have used the
algebraic residuals for evaluating all the criteria. The same scale of noise for all the criteria

N
was also used and computed according to & 2o Zriz /(N — P;,) where N is the number of
i=l
data points and P, is the number of parameters of the highest model in the library. The
reason that we use the scale of noise for the highest surface (as Kanatani [12] described) is
that the scale of noise for the correct model and the scale of noise for the higher order
models (higher than the correct model) must be close for the fitting to be meaningful.

To measure the success of every criterion, we have divided the number of correct
predictions of the underlying model by the total number of different (synthetic) data sets
used in evaluating each technique.

Optic Flow Calculation and Motion Segmentation

To compare the performance of different model selection criteria for motion segmentation
purposes, we have generated three sets of synthetic image sequences in which the
underlying motion of their intensity patterns are known. Following Barron et al. [4], we also
used a sinusoidal texture for our synthetically generated image sequences. The models of
motion we used were: Affine, Partial-Quadratic and Quadratic as shown in Table 2. These
models are chosen because they are commonly used to describe the motion of man-made
objects in video sequences. For example, a Partial-quadratic model expresses the rigid
motion of planar surface while the rigid motion of a curved surface can be approximated by
a Quadratic model. Affine model of motion is also very popular as it adequately explains
common movements of camera such as pan and zoom.

Model Horizontal and Vertical Velocities

IAffine U=ax+bytc&V=cx+dyte

Partial-Quadratic U=ax’ + bxy +cx +dy+e & V=by’ + axy + fx + gy + h

Quadratic U=ax’ + bxy +cy’ +dx + ey + f& V=gx’ + gxy +iy’ +jx + ky + [

Table 1-The motion models used in our evaluation experiments.

In our experiments, we have randomly changed the parameters of every model 100 times
and applied the different model selection criteria to test how well they can identify the true
underlying model. Figure 1 shows the success rate of each criterion in identifying the true
underlying model. Since the performance of every criterion can be affected by the size of
each synthetic image [8], the experiments were repeated for images of various sizes (from

! While calculating algebraic residuals takes less than 1 minute, finding the MLE based residuals for
only 50 different sets of data can take up to several days.
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21x21 to 71x71 pixels). The image size for each experiment is also shown along the
horizontal axis.

Results depicted in Figure 1 clearly show that there is a significant reduction in performance
of each criterion where small images were used (smaller than 35*35). The performance
deterioration is worse in criteria such as: GMDL, GAIC, GBIC and specially GMDL. SSC,
GAIC and Mallowis CP appear to perform better for small images. The significant reduction
of GMDLIis performance can be the effect of using inappropriate i reference lengthi (to
make a fair comparison, a fixed reference length is used in all the experiments).

Although there is not any criterion that is superior in all cases, Figurel shows that the SSC
has a reliable and consistent performance even when it is applied to small images in which
finding the appropriate model is challenging. GMDL, SSD, CAIC, GBIC also appear to
work well for motion segmentation task. Their success can be attributed to the fact that they
usually penalise the higher order models more than the other model selection criteria.
Considering the mathematical expression of each criterion, in general when N is much
greater than 25, the relationship between the penalty terms proposed by each criterion is as
follows: (penalty term of) GBIC> CAIC> SSD>MDL>CP.

The penalty term of GMDL highly depends on the scale (3) of noise and its magnitude
cannot be generalised as above. The penalty term of GAIC is much larger than GBIC
however as we described before the influence of the number of parameters is small. It is
interesting (but not surprising) to note that the two criteria that are theoretically considered
equivalent: GCP and GAIC (see [12] for details) performed similarly in our experiments.

In order to provide a comparative measure of success, we calculated and plotted (shown in
Figure 2) the average success rate of different model selection criteria over the different
image sizes (from 21x21 to 71x71 pixels). It can be seen from this figure that SSC
outperforms the other criteria on average and its success rate is about 10% more than the
others. Other competitive model selection criteria: SSD, GMDL, GAIC and GBIC have
similar (average) rate of success.

Success Rate

100
a0
50
Jo
50
20
40 T T T T
L el L e et e P el L o LN
N, i # o) s fa T iy #hy w1 + L
- N B <A N - S SR A
coocfilifonsa (58] —— CAIC DL
—— SBIC —a— SEometric TP ZP Mallow
—a— 55D —— AL —s— ShDL
—il— 55C

Figure 1-The success rates for different model selection criteria.
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Figure 2-Average of correct prediction for different model selection criteria. We
averaged the success rate of these criteria applied on image sizes of 21%21 to 71*71.

Another important piece of information associated with any model selection criterion is to
discover whether the criterion is likely overestimate or underestimate the dimension of the
underlying model when it fails. To calculate such a measure, we applied each criterion to
300 images of size 51*51 (100 images for each of three motion models) and recorded the
number of times when each criterion has overestimated or underestimated the dimension of
the underlying model. The results are shown in Figure 3. As can be seen from this figure,
except for SSC almost all the other criteria tend to overestimate the dimension of the
underlying motion model. The difference between the behaviour of SSC compare to others
is not unexpected as there are substantial differences between the underlying logic of SSC
and other model selection criteria.

Comparison Between the Percentage of
Sucess,Over-estimation and Under-estimation of
Each Criteria for Images of size 5151
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Figure 3-Various bar colours represent the percentage of success, underestimation and
overestimation of model dimensions for every criterion. The size of images used is
51x51 pixels.

Range Segmentation

Range data segmentation is one of the fundamental problems of computer vision and has
been studied for many years. Since model selection is a crucial part of any range
segmentation scheme, we have chosen this problem as a means to evaluate and compare all
the previously described model selection criteria. In our experiments, we expect a model
selection criterion to be able to identify (from a library of known models) the true
underlying surface model of a set of range data. In addition to all the criteria we explained
and evaluated previously, we have also added the Modified AIC (MAIC 1 developed by
Boyer et al. [5]) in our list of model selection techniques. MAIC is developed exclusively
for range segmentation application and is based on the assumption that the error has a ¢
distribution.
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To perform our evaluation experiments, we first created eight synthetic data sets according
to the surface models in Surface Library 1 and randomly changed the parameters of each
data set 100 times. We also added 1% normally distributed additive noise. We then applied
different model selection criteria on each synthetic data set to determine the true surface
model. The success rate of every criterion in correctly recovering the underlying model of
data is shown in Figure 4.

To provide more realistic measure of how useful a criterion might be, we then proceeded to
examine the success rate of different model selection criteria on real range images. We
chose 50 different images of range data measurements of various objects containing both
quadratic and planar surfaces and applied different model selection criteria to the whole set.
The results of those experiments are also shown in Figure 4. As it can been seen from Figure
4, for synthetic data, almost all criteria have similar performances except SSC which has
higher success rate compare to other criteria. For real data, as shown in Figure 4, it appears
that only SSC and MAIC perform well and the rest of criteria have little success in selecting
the true surface model of real range data. Our experiments also showed that SSC is
considerably better in choosing the right model when it is applied to our experimental set of
real range data. An important point to make is that there is a huge difference between the
performance of statistically based model selection criteria on real and synthetic data. This
can be due to the fact that most assumptions used to derive these criteria are not realistic and
thus, the success rate for real data experiments are very poor.

Model 1 ax’ +by” +cz” +dx +ey +z =1 ) Percentage of Suceess
Model 2 ax’ +by” +cx +dy +eyx =1

Model 3 ax’ +bz” +cx +dz +exz =1

Model 4 az’ +by’ +cz +dy+fyz =1

Model 5 ax’ +by” +cx +dy =1

Model 6 ax’ +bz” +cx +dz =1

Model 7 ay’ +bz” +cy +dz =1

Model 8 ax tby +cz =1

||:| Synthetic data B Real data |

Surface Library 1: From the most

general model to the simplest model Figure 4: Success rate of various model

selection criteria for synthetic (light bar)
and real range data (dark bar). The size
of all images used is 101x101 and the
scale of additive noise is 1%.

4 Conclusion

An extensive survey of model selection techniques for computer vision applications is
presented. A number of controlled experiments using synthetic and real data were used to
compare the performance of different model selection criteria for motion estimation and
range segmentation. It is shown here that although many model selection techniques work
well for motion estimation task, few can distinguish between planar and quadratic surfaces
of range data measurements. Our newly proposed model selection criterion, SSC, has been
shown to outperform the other existing criteria in almost all cases.
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