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Abstract. This paper seeks to extend the Fourier space properties of
the discrete Radon transform, R(t, m), proposed by Matus and Flusser
in [1], to expanded discrete projections, R(k, θ), where the wrapping of
rays is removed. This expanded mode yields projections more akin to
the continuous space sinogram. It is similar to the Mojette transform
defined in [2], but has a pre-determined set of discrete projection angles
derived from the Farey series [3]. It is demonstrated that a close approx-
imation to the sinogram of an image can be obtained from R(k, θ), both
in Radon and Fourier space. This investigation is undertaken to explore
the possibilities of applying this mapping to the inverse problem, that
of obtaining discrete projection data from continuous projection data as
a means of efficient tomographic reconstruction that requires minimal
interpolation and filtering.

Keywords: discrete Radon transform, tomographic image reconstruc-
tion, discrete Fourier slice theorem.

1 Introduction

The discrete Radon transform (DRT) is a mapping of data from a 2-D discrete
function, I(x, y), to a set of 1-D discrete projections. Beylkin first defined the
class of transforms termed DRTs in 1987 [4]. This paper investigates two of the
transforms in this class and makes comparisons in both Radon and Fourier space
with a more continuous form of the RT, the sinogram. The DRT applied here is
the R(t,m) mapping proposed by Matus and Flusser in [1] and an expanded ver-
sion of this, R(k, θ) first described by Svalbe in [5, 6] and subsequently developed
in [7]. Discrete projection transforms may enable images to be reconstructed from
real projection data with fewer free parameters than current tomographic tech-
niques, yielding higher fidelity reconstructed images with fewer reconstruction
artifacts.

Fig. 1 depicts the various transforms explored here and their relationship
to two well-established tomographic methods, Fourier inversion (FI) and filtered
back-projection (FBP). FI involves 2-D interpolation of the radial slices obtained
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from the 1-D DFT of the continuous projections, �̂(ρ, θ) onto a Cartesian grid,
Î(u, v) and applying the inverse 2-D DFT to obtain the image, I(x, y) [11]. This
method produces artifacts in the reconstructed image due to the interpolation,
particularly at edges. FBP applies a selected filter to the projections in Fourier
space to effectively differentiate the projection data, this produces artifacts in
the image reconstructed through the inverse of the projection process[11]. Recon-
structing discrete images from discrete projections is an exact process therefore
errors only occur in the mapping from continuous to discrete projection data.
This mapping is the topic of this paper. The broader aim is to explore the pos-
sibility of improving the quality of tomographic reconstruction using the DRT.

Fig. 1. Relationship between the discrete transforms as defined in this paper. ⇔ repre-
sents an exact, invertible 1:1 mapping, ⇒ represents an exact mapping in one direction
only, → represents an approximate mapping requiring some form of interpolation or
filtering.

R(t,m) is defined on arrays of prime (p) size under modulo p arithmetic.
Digital projections are a set of discrete sums along lines x = my + t mod p
for all intercepts 0 ≤ t < p at some gradient m, 0 ≤ m ≤ p. Due to the
modulo p arithmetic, lines are wrapped around the image (refer Fig. 2a). A
similar DRT which can be applied to arrays of size 2n as well as prime size
arrays is proposed in [8]. The transform R(k, θ) is obtained by separating these
wrapped ray-sums with intercepts t, into individual ray-sums with intercepts
ktym

, ktym±p, ktym±2p, . . . This expanded mode can be viewed as a discrete form
of the continuous sinogram, �(ρ, θ). It is similar to the Mojette transform defined
in [2] however with a predetermined angle set. The discrete angle set common
to R(t,m) and R(k, θ) is found to be a subset of the Farey series [3].

Whilst these discrete ray-sums are useful in digital applications [9, 10], they
do not have a direct connection to projections in the physical world. This paper
demonstrates two methods of forward mapping from discrete projections, R(k, θ)
of an image to a set of continuous projections, �(ρ, θ), one method in Radon
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Space (§2.3) and another in Fourier space (§3.1). In [5] it was shown R(k, θ) can
be used to reconstruct an image from �(ρ, θ) via the inverse of the mapping
described in §2.3, using linear interpolation. Results were significantly improved
when images were reconstructed at large p and sub-sampled to the required size.
This improvement was ascribed to the reduction of relative gap size between the
discrete ray sample points, dm (refer Fig. 2a). dmax, the upper limit for dm in
the DRT angle set for an image of size p, scales with

√
p. Discrete projections

with large dm are shown to be important in §3.2 as they contain much of the
high frequency information. In this paper, the properties of R(k, θ) in Fourier
space are explored to develop a new method to achieve the inverse mapping,
obtaining discrete projections from continuous projections acquired at the DRT
angle set via the inverse of the mapping described in §3.1 without requiring the
case of large p image size.

The notation for the 1-D and 2-D discrete Fourier transforms (DFT) used
in this paper, as well as the sinogram and its properties in Fourier Space is as
follows. Let Îy(u), 0 ≤ u < p, be the 1-D DFT of row y of a 2-D p × p discrete
function, I(x, y), found as

Îy(u) =
p−1∑
x=0

I(x, y) exp[−i2πux/p]. (1)

Let Î(u, v) be the 2-D DFT of I(x, y), found as

Î(u, v) =
p−1∑
x=0

p−1∑
y=0

I(x, y) exp[−i2π(ux + vy)/p] (2)

In Fourier space, the spatial frequency f is given by u in Î(u)y and by the distance
from the origin in Î(u, v), i.e.,

√
u2 + v2. The spatial wavelength corresponding

to f is p/f .
The sinogram, �(ρ, θ), of a continuous 2-D function, f(x, y), obtained from

the real world can be thought of as a set of p unit-width ray-integrals with
intercepts ρ, �−p/2� ≤ ρ ≤ �p/2�, over an imaging circle of diameter p at a
discrete set of angles, θ [11]. It is depicted in Fig. 2c and has the form

�(ρ, θ) =
∫ ∞

−∞
f(ρ sin θ + s cos θ,−ρ cos θ + s sin θ)ds. (3)

The Fourier slice theorem states that the 1-D Fourier transform of a projection
at angle θ is equivalent to a central radial slice through the 2-D Fourier transform
of the original object/function at the angle θ⊥ = θ + π/2 [11]. For a discrete set
of intercepts, ρ, this is approximated by �̂θ(u) = f̂(u sin θ,−u cos θ), �−p/2� ≤
ρ ≤ �p/2� [11]. Fig. 5c shows the distribution in Fourier space of one projection
of f(x, y) of size p = 29 at the angle shown in Fig. 2c. The next section defines
the digital projections that characterise the DRT.
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2 Discrete Radon Transform Projections

2.1 R(t, m)

R(t,m), as defined by Matus and Flusser [1], replaces the continuous integrals
of (3) with discrete sums along the line x = my + t mod p. As with the 2-D
DFT, it assumes the image is periodic over size p, thus the digital rays wrap
around the image under modulo p arithmetic. The DRT, as depicted in Fig. 2a
for p = 29, t = 0, m = 9, is defined as

R(t,m) =


p−1∑
x=0

I(x, t) : m = 0,

p−1∑
y=0

I(〈my + t〉mod p, y) : 0 < m ≤ p.
(4)

(a)R(t, m) (b)R(k, θ) (c)�(ρ, θ)

Fig. 2. (a) Sample pattern of one R(t, m) raysum, t = 0 and m = 9 for p = 29.
Black squares represent pixels sampled by the ray-sum. Dashed line represents line
x = my + t mod p for generation of the sampling pattern. Solid lines represent the
resulting projection direction giving minimum gap distance between adjacent sampled
pixels. Here x9 = −2,y9 = 3 hence d2

9 = 13 and θ9 = tan−1(3/−2). (b) Sample pattern
for one R(k, θ) raysum at θ9 with k = t + 2p = 58. (c) Depiction of one line integral in
�(ρ, θ), as defined in (3).

2.2 R(k, θ)

For a given m, as defined in §2.1, the pixels of the image that are sampled to
form a discrete ray-sum are depicted in Fig. 2a. dm is defined as the minimum
gap distance between samples along a discrete modulo p ray with a separation
distance xm in the horizontal and ym in the vertical, giving d2

m = x2
m + y2

m. The
angle of dm defines the projection angle θm = tan−1(ym/xm). It was shown in
[3] that for the DRT angle set, 1 ≤ d2

m ≤ d2
max = 2p/

√
3.
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R(k, θ) is found by separating the wrapped digital rays, m, into individual
digital rays, labelled by translates k, at angle θm (Fig. 2b). R(k, θ) has the same
sampling pattern as R(t,m) defined by xm and ym with ray-sums found as

R(k, θ) =
p−1∑
x=0

p−1∑
y=0

I(x, y)δ0(k − xym + yxm), (5)

where the delta function, δ0(x), is 1 when x = 0 and equals 0 otherwise. The
number of discrete ray-sums in each projection, Nm, is not constant. There are
pym rays for 0 ≤ x ≤ p and p|xm| rays from 0 ≤ y ≤ p, therefore Nm =
p(|xm| + ym) = pwm [5]. Each row of R(k, θ) has period Nm.

2.3 Sinogram from R(k, θ) in Radon Space

(a)
(b)

Fig. 3. (a) Depiction of a unit width ray-integral comprised of overlapped adjacent
discrete projections at some k0, shown for a projection angle tan−1(3/4). The dark
grey pixels correspond to the central digital projection, k0 with contribution to the
unit width ray-integral hm(0). (b) general form of ray-spread function hm(n) defined
in (6), where n is distance from the central digital ray, k0. Depicts contribution to the
unit width ray-integral from the digital projections neighbouring k0.

The sinogram of an image with each projection sampled at a discrete set of
angles can be obtained by convolving R(k, θ) with a ray-spread function, hm(n)
(Fig. 3), defined for the case where |xm| ≤ ym, by

hm(n) =



1 − wm−dm

2(wm+dm) − 2n2

2|xm|ym
: 0 ≤ |n| ≤ κ − dm

1 − wm−dm+4n
4(wm+dm) − n2

2|xm|ym
: κ − dm ≤ |n| ≤ κ − |xm|

ym

wm−dm
+ 2n−ym

2|xm|ym
: κ − |xm| ≤ |n| ≤ κ − ym

wm+dm+4n
4(wm−dm) + n2

2|xm|ym
: κ − ym ≤ |n| ≤ κ

0 : |n| ≥ κ,

(6)

where n = k0 − k and κ = (wm + dm)/2 for wm = |xm| + ym[12]. For the
case of |xm| > ym, ym and xm are exchanged in (6). This function describes
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the distribution of a continuous ray-integral, of unit-width, centred on k0 by the
overlap of 2κ adjacent discrete rays. The contribution of each k to the ray-integral
is determined by the proportion of area of the pixels sampled by the unit-width
ray. hm(n) is applied at p locations, k0, in each digital projection (separated by
intervals of dm) found as k0 = �p/2�(ym − xm) ± ηdm for 0 ≤ η ≤ �p/2�. The
distance dm in discrete projection space at angle, θ corresponds to a unit distance
perpendicular to θ in image space, i.e., ρ = kdm in Fig. 2. Therefore at all
angles, θ, the central pdm elements in the discrete projection define an imaging
circle of diameter p in image space. Fig. 4 shows an example of a continuous
sinogram obtained from a discrete image using (6). The resulting sinogram has
the same angle set as the DRT. As a subset of the Farey series, it is based on
equi-spaced gradients rather than equi-spaced angles, giving rise to the apparent
discontinuities at π/4, π/2 and 3π/4. Fig. 7a gives an example of the distribution
of projection angles in the DRT for p = 29. This gives an approximation to the

(a) (b)

Fig. 4. (a) 257 × 257 image I(x,y). (b) 257 × 258 sinogram resulting from the convo-
lution of R with hm described in §2.3. This produces p unit width ray-integrals at the
p + 1 DRT angles.

sinogram that would be obtained as projections of a real object or continuous
function at the DRT angle set. The sinogram can be treated as a sample of
the discrete convolution R̂ ∗ ĥ. To reconstruct the image from the sinogram, the
inverse of this convolution must be performed to obtain the discrete transform.

3 Fourier Analysis of R(t, m) and R(k, θ)

Since there is a mapping between discrete and continuous projections in Radon
space, there should be some form of discrete Fourier Slice theorem for R(k, θ).
It was shown in [1] that the elements of the DFT of a projection, m, produced
in R(t,m) correspond to elements in the 2-D Fourier space according to

R̂m(u) =

{
Î(0, u) : m = 0,

Î(u, 〈−mu〉mod p) : 0 < m ≤ p.
(7)
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There is a similar relationship for R(k, θ). As each projection is periodic over
length Nm, the elements of the 1-D DFT of a (k, θ) projection correspond to
elements in the 2-D Fourier space according to

R̂θ(u) =
Nm−1∑
k=0

p−1∑
x=0

p−1∑
y=0

I(x, y) exp[−i2πuk/Nm]δ0(k − xmy + yxm) (8)

=
p−1∑
x=0

p−1∑
y=0

I(x, y) exp[−i2π(uymx − uxmy)/Nm]

= Î(
ym

wm
u,− xm

wm
u) mod p, 0 ≤ u < Nm.

This result has properties from both �̂θ(u) and R̂m(u). It has a similar form to
�̂θ(u), since ym = dm sin θ and xm = dm cos θ, i.e., R̂θ(u) = Î(γ sin θ,−γ cos θ)
where γ = dm

wm
u. The wrapped rays in Fourier space coincide with those for

R̂m(u), as can be seen in Fig. 5.

(a) R̂(u)m=9 (b) R̂(u)θ=tan−1(3/−2) (c) �̂(u)θ=tan−1(3/−2)

Fig. 5. Distribution of the DFT of the three different projections in 2-D Fourier Space.
Projections are at tan−1(3/ − 2) degrees (or gradient m = 9) for an image of size
p = 29 as shown in Fig. 2. (a) the p spatial frequencies of the R(t, m) projection. (b)
the Nm = pwm = 145 frequencies of the R(k, θ) projection. (c) the p frequencies of
the �(ρ, θ) projection.

3.1 Sinogram from R(k, θ) in Fourier Space

The sinogram can also be obtained from R(k, θ) in Fourier space. From the
discrete Fourier slice theorem, the p frequencies of �̂θ(r) are separated by unit
distance in the direction θ⊥m (Fig. 5c). The elements of R̂θ(u) are separated by
a distance dm/wm also in the direction θ⊥m (Fig. 5b). The principle difference
is that R̂θ(u) extends to a radius of pdm and therefore must wrap in Fourier
space since the 2-D DFT is modulo p in the x and y directions. Therefore the
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relative magnitudes of r and u are given by u = rdm/wm. The first pdm/wm

frequencies of R̂θ(u) (i.e., out to a frequency of p), interpolated to be spanned
by p frequencies gives �̂θ(r).

3.2 DRT as a Frequency Filter

The discrete Fourier slice theorem for R(t,m) defined in (7), implies that the
DRT can serve as a crude frequency filter. The sampling pattern of the DRT
for a ray-sum in R(t,m) defined in (4) is identical but perpendicular to its
DFT in 2-D Fourier space. Therefore, the projection sample gap distance, dm,
also gives the distance from the origin of frequencies sampled by that discrete
projection in 2-D Fourier space, i.e., the minimum spatial frequency for that
projection. The projection with dm = dmax has a lower spatial frequency cut-off
at f =

√
(2p/

√
3) [3]. Fig. 6a shows the distribution of projection samples in 2-D

(a) (b) (c)

Fig. 6. (a) R(t, m) projection distribution in 2-D Fourier Space for p = 257 (origin in
centre of image). Grey levels for each digital projection are proportional to dm, with
white/(black) corresponding to dm = 1/(dm = dmax). (b)/(c) images obtained by

reconstructing image using projections where dm is greater/less than
√

p/2
√

3.

Fourier Space. It can be seen that the projections with low dm contain all the
low frequency information. Fig. 6b and 6c demonstrate the DRT acting as a low
and high pass filter. Fig. 6b was achieved by reconstructing I(x, y) from R(t,m)
using only projections with dm < dmax/2 whilst in 6c only projections with
dm > dmax/2 were used. This demonstrates that digital projections with large
dm are important in image reconstruction, as they contain more of the higher
spatial frequency information as conjectured in [5]. When all digital projections
are used, the frequency space is uniformly sampled and the reconstruction is
exact.

4 Reconstruction of Images

Reconstructing images from continuous projection data via the DRT requires
the inverse mapping to that of obtaining the sinogram via R(k, θ) described
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in §2.3 and §3.1. The method presented here involves interpolation from the
Fourier transform �̂(uρ)θ to R̂(uk)θ. This uses the DFT data from all sinogram
projections to obtain the frequencies of each individual discrete projection (Fig.
7a). Previous methods have expanded the p elements from just one continuous
projection into Nm = pwm elements via linear interpolation [5, 13] or matrix
methods [12] using no information from projections at other angles (result for
[5] in Fig. 7b). As more interpolation is required for large wm (hence large dm),
the errors in the reconstructed image occur at higher frequencies. Interpolation

(a) (b) (c)

Fig. 7. (a) Illustrates the additional information obtained from the other projections

for interpolation in Fourier space. Black dots represent elements of R̂θ(u) that are

required, grey dots represent data acquired from �̂θ(u). (b) 257 × 257 image recon-
structed from the 257 × 258 sinogram (Fig. 4b) via linear interpolation in (k, θ)-space.
(c) Image reconstructed from sinogram via interpolation in Fourier space as described
in §4.

in Fourier space enables use of the information from projections with angles near
θ⊥m to improve the interpolation at θm. This is essential for projections with large
dm. The principal pwm/dm elements for each projection can be obtained directly
from the DFT of the continuous projection at that angle. The remaining wrapped
digital rays can be found by interpolation using the other Fourier slices. Those
projections with large dm, have additional information from the other slices
�̂θ(r) because a larger dm produces more wrapped rays crossing the slices in
Fourier space (refer Fig. 7a).

5 Conclusions

The properties of the DRT in Fourier space for both R(t,m) and R(k, θ) were
investigated. It was found that the (t,m) transform behaves as a crude frequency
filter, where projections with larger dm contain more of the high frequency in-
formation and are therefore important in image reconstruction. It was shown
that the sinogram of the image with the DRT angle set could be obtained from
the (k, θ) transform in both Radon and Fourier space. Mapping the sinogram to
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R(k, θ), i.e., continuous to discrete projections in Fourier space was presented
as a new method to reconstruct images. This technique reduces the amount of
interpolation required to obtain each digital projection, as it uses more informa-
tion from the continuous projections for discrete rays with larger dm. Effectively,
this fills the gaps between discrete samples. Efficient algorithms for implement-
ing the R(k, θ) method and a comparison of image quality with Fourier inversion
and filtered back projection is the subject of ongoing work.
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