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Abstract. There are many applications such as stereo matching, mo-
tion tracking and image registration that require so called ‘corners’ to
be detected across image sequences in a reliable manner. The Harris cor-
ner detector is widely used for this purpose. However, the response from
the Harris operator, and other corner operators, varies considerably with
image contrast. This makes the setting of thresholds that are appropri-
ate for extended image sequences difficult, if not impossible. This paper
describes a new corner and edge detector developed from the phase con-
gruency model of feature detection. The new operator uses the principal
moments of the phase congruency information to determine corner and
edge information. The resulting corner and edge operator is highly local-
ized and has responses that are invariant to image contrast. This results
in reliable feature detection under varying illumination conditions with
fixed thresholds. An additional feature of the operator is that the corner
map is a strict subset of the edge map. This facilitates the cooperative
use of corner and edge information.

1 Introduction

With the impressive reconstruction results that have been achieved by those
working in projective geometry (see for example Hartley and Zisserman [1]) there
has been a renewed interest in the detection of so called ‘corners’, or ‘interest
points’. The success of these reconstructions depend very much on the reliable
and accurate detection of these points across image sequences.

The definition of a corner is typically taken to be a location in the image
where the local autocorrelation function has a distinct peak. A variety of op-
erators have been devised to detect corners. These include those developed by
Moravec [2], Harris and Stephens [3], Beaudet [4], Kitchen and Rosenfeld [5],
and Cooper et al. [6]. Corner detectors based on the local energy model of fea-
ture perception have been developed by Rosenthaler et al. [7], and Robbins and
Owens [8]. More recently the SUSAN operator has been proposed by Smith and
Brady [9]. Of these the Harris operator probably remains the most widely used.

A common problem with all these operators, except the SUSAN operator,
is that the corner response varies considerably with image contrast. This makes
the setting of thresholds difficult. Typically we are interested in tracking fea-
tures over increasingly extended image sequences. The longer the sequence the
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greater the variations in illumination conditions one can expect, and the set-
ting of appropriate thresholds becomes increasingly difficult, if not impossible.
Inevitably thresholds have to be set at levels lower than ideal because detecting
too many features is a lesser evil than detecting not enough. Stereo and motion
reconstruction algorithms are then faced with the problem of dealing with very
large clouds of noisy corner points, often greatly compromising their operation.
Matching operations, which usually have rapidly increasing running time as a
function of input size, suffer greatly in these conditions. Typically, considerable
effort has to be devoted to the cleaning up of the output of the corner detector
and to the elimination of outliers. The success of this cleaning up and outlier
elimination process is usually crucial to the success of the reconstruction algo-
rithm. Indeed, a very significant proportion of Hartley and Zisserman’s book [1]
is devoted to robust estimation techniques.

Another difficulty many of these operators have is that the Gaussian smooth-
ing that is employed to reduce the influence of noise can corrupt the location
of corners, sometimes considerably. The SUSAN operator deserves some special
comment here because it does not suffer from these problems outlined above.
It identifies features by determining what fraction of a circular mask has values
the same, or similar, to the value at the centre point. Thresholds are therefore
defined in terms of the size of the mask and no image smoothing is required.
However, the SUSAN operator assumes that edges and corners are formed by
the junctions of regions having constant, or near constant, intensity, and this
limits the junction types that can be modeled.

To address the many problems outlined above this paper describes a new
corner and edge detector developed from the phase congruency model of feature
detection. The new operator uses the principal moments of the phase congruency
information to determine corner and edge information. Phase congruency is a
dimensionless quantity and provides information that is invariant to image con-
trast. This allows the magnitudes of the principal moments of phase congruency
to be used directly to determine the edge and corner strength. The minimum
and maximum moments provide feature information in their own right; one does
not have to look at their ratios. If the maximum moment of phase congruency
at a point is large then that point should be marked as an edge. If the mini-
mum moment of phase congruency is also large then that point should also be
marked as a ‘corner’. The hypothesis being that a large minimum moment of
phase congruency indicates there is significant phase congruency in more than
one orientation, making it a corner.

The resulting corner and edge operator is highly localized and the invariance
of the response to image contrast results in reliable feature detection under
varying illumination conditions with fixed thresholds. An additional feature of
the operator is that the corner map is a strict subset of the edge map. This
facilitates the cooperative use of corner and edge information.

This paper is organized as follows: first the phase congruency model of feature
perception is reviewed. We then examine how the phase congruency responses
over several orientations can be analyzed in terms of moments to provide both
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edge and corner information. Finally the performance is assessed relative to the
commonly used Harris operator.

2 The Phase Congruency Model of Feature Detection

Rather than assume a feature is a point of maximal intensity gradient, the Local
Energy Model postulates that features are perceived at points in an image where
the Fourier components are maximally in phase as shown in Figure 1 [10]. Notice

Fig. 1. Fourier series of a square wave and the sum of the first four terms.

how the Fourier components are all in phase at the point of the step in the square
wave. Congruency of phase at any angle produces a clearly perceived feature [11].
The angle at which the congruency occurs dictates the feature type, for example,
step or delta.

The Local Energy Model model was developed by Morrone et al. [10] and
Morrone and Owens [12]. Other work on this model of feature perception can be
found in Morrone and Burr [13], Owens et al. [14], Venkatesh and Owens [15],
and Kovesi [16–20, 11]. The work of Morrone and Burr [13] has shown that this
model successfully explains a number of psychophysical effects in human feature
perception.

The measurement of phase congruency at a point in a signal can be seen
geometrically in Figure 2. The local, complex valued, Fourier components at a
location x in the signal will each have an amplitude An(x) and a phase angle
φn(x). Figure 2 plots these local Fourier components as complex vectors adding
head to tail. The magnitude of the vector from the origin to the end point is the
Local Energy, |E(x)|.

The measure of phase congruency developed by Morrone et al. [10] is

PC1(x) =
|E(x)|∑
n An(x)

. (1)

Under this definition phase congruency is the ratio of |E(x)| to the overall path
length taken by the local Fourier components in reaching the end point. If all
the Fourier components are in phase all the complex vectors would be aligned
and the ratio of |E(x)|/∑

n An(x) would be 1. If there is no coherence of phase
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Fig. 2. Polar diagram showing the Fourier components at a location in the signal plotted
head to tail. The weighted mean phase angle is given by φ(x). The noise circle represents
the level of E(x) one can expect just from the noise in the signal.

the ratio falls to a minimum of 0. Phase congruency provides a measure that is
independent of the overall magnitude of the signal making it invariant to vari-
ations in image illumination and/or contrast. Fixed threshold values of feature
significance can then be used over wide classes of images.

It can be shown that this measure of phase congruency is a function of the
cosine of the deviation of each phase component from the mean

PC1(x) =
∑

n An(cos(φ(x) − φ(x))∑
n An(x)

. (2)

This measure of phase congruency does not provide good localization and it is
also sensitive to noise. Kovesi [18, 19] developed a modified measure consisting of
the cosine minus the magnitude of the sine of the phase deviation; this produces a
more localized response. This new measure also incorporates noise compensation:

PC2(x) =
∑

n W (x)�An(x)(cos(φn(x) − φ(x)) − |sin(φn(x) − φ(x))|) − T �∑
n An(x) + ε

.

(3)
The term W (x) is a factor that weights for frequency spread (congruency over
many frequencies is more significant than congruency over a few frequencies). A
small constant, ε is incorporated to avoid division by zero. Only energy values
that exceed T , the estimated noise influence, are counted in the result. The
symbols � � denote that the enclosed quantity is equal to itself when its value is
positive, and zero otherwise. In practice local frequency information is obtained
via banks of Gabor wavelets tuned to different spatial frequencies, rather than via
the Fourier transform. The appropriate noise threshold, T is readily determined
from the statistics of the filter responses to the image. For details of this phase
congruency measure and its implementation see Kovesi [19–21].
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3 Combining Phase Congruency Information over many
Orientations

A weakness of previous implementations of phase congruency has been the way
in which information over many orientations is used and combined. The defini-
tion of phase congruency outlined above only applies to 1D signals. To obtain
an overall measure of phase congruency in 2D local energy is first calculated in
several orientations, typically six, using data from oriented 2D Gabor wavelets.
Equation 3 is modified so that the numerator is the weighted and noise com-
pensated local energy summed over all orientations, and the denominator is the
total sum of filter response amplitudes over all orientations and scales. While
this approach produces a phase congruency measure that results in a very good
edge map it ignores information about the way phase congruency varies with
orientation at each point in the image.

To include information about the way phase congruency varies with orienta-
tion we can proceed as follows: calculate phase congruency independently in each
orientation using equation 3, compute moments of phase congruency and look at
the variation of the moments with orientation. The principal axis, corresponding
to the axis about which the moment is minimized, provides an indication of the
orientation of the feature. The magnitude of the maximum moment, correspond-
ing to the moment about an axis perpendicular to the principal axis, gives an
indication of the significance of the feature. If the minimum moment is also large
we have an indication that the feature point has a strong 2D component to it,
and should therefore be additionally classified as a ‘corner’.

Following the classical moment analysis equations [22] we compute the fol-
lowing at each point in the image:

a =
∑

(PC(θ) cos(θ))2 (4)

b = 2
∑

(PC(θ) cos(θ)).(PC(θ) sin(θ)) (5)

c =
∑

(PC(θ) sin(θ))2 , (6)

where PC(θ) refers to the phase congruency value determined at orientation θ,
and the sum is performed over the discrete set of orientations used (typically
six). The angle of the principal axis Φ is given by

Φ =
1
2
atan2

(
b√

b2 + (a − c)2
,

a − c√
b2 + (a − c)2

)
. (7)

The maximum and minimum moments, M and m respectively, are given by

M =
1
2
(c + a +

√
b2 + (a − c)2) (8)

m =
1
2
(c + a −

√
b2 + (a − c)2) . (9)
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This calculation of the maximum and minimum moments, along with the prin-
cipal axis, corresponds to preforming a singular value decomposition on a phase
congruency covariance matrix. The moments correspond to the singular values.

3.1 Comparison with the Harris Operator

A comparison with the Harris operator is appropriate given its widespread
use. The analysis described above is similar to that adopted by Harris and
Stephens [3]. However they consider the minimum and maximum eigenvalues,
α and β, of the image gradient covariance matrix in developing their corner
detector. The gradient covariance matrix is given by

G =
[

I2
x IxIy

IxIy I2
y

]
(10)

where Ix and Iy denote the image gradients in the x and y directions. A ‘corner’
is said to occur when the two eigenvalues are large and similar in magnitude. To
avoid an explicit eigenvalue decomposition Harris and Stephens devise a measure
using the determinant and trace of the gradient covariance matrix

R = det(G) − k(tr(G))2 , (11)

where det(G) = αβ and tr(G) = α + β, the parameter k is traditionally set to
0.04. This produces a measure that is large when both α and β are large. However
we have the problem of determining what is large. Noting that elements of the
image gradient covariance matrix have units of intensity gradient squared we can
see that the determinant, and hence the measure R will have units of intensity
gradient to the fourth. This explains why the Harris operator is highly sensitive
to image contrast variations which, in turn, makes the setting of thresholds
exceedingly difficult. Some kind of sensitivity to image contrast is common to all
corner operators that are based on the local autocorrelation of image intensity
values and/or image gradient values.

Unlike image intensity gradient values phase congruency values are normal-
ized quantities that have no units associated with them. If the moments are
normalized for the number of orientations considered we end up with phase con-
gruency moment values that range between 0 and 1. Being moments these values
correspond to phase congruency squared. Accordingly we can use the maximum
and minimum phase congruency moments directly to establish whether we have a
significant edge and/or corner point. It should be emphasized that the minimum
and maximum moments provide feature information in their own right; one does
not have to look at their ratios. We can define a priori what a significant value
of phase congruency moment is, and this value is independent of image contrast.

4 Results

The performance of the phase congruency operator was compared to the Har-
ris operator on a synthetic test image, and on a real scene containing strong
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shadows. The results are shown in figures 3 and 4. Raw Harris corner strength
and raw phase congruency corner and edge strength images are displayed for
comparison. It should be noted that the Harris corner strength values varied by
many orders of magnitude across the image depending on contrast. To facilitate
the display of the Harris corner strength image what is actually shown here is
the fourth root of the image. Even after this transformation large variations are
still evident. In contrast the phase congruency edge and corner strength images
are minimally affected by image contrast and are readily thresholded (in this
case with a value of 0.4 on both images) to produce a clear set of features.

In applying the Harris operator to the synthetic image the standard deviation
of the smoothing Gaussian was deliberately set to a large value of 3 pixels to
illustrate the problem the operator has in localizing ‘T’ junctions. Notice how
the detected Harris corners are displaced inwards on the left hand grey scale,
note also the double response where the line intersects the circle. The phase
congruency operator, on the other hand, locates ‘T’ junctions precisely. Changing
the number of filter scales used to compute phase congruency does not affect the
localization, it only affects the relative significance of features at different scales.
For the real scene the standard deviation of the smoothing Gaussian for the
Harris operator was 1 pixel. For both images phase congruency was computed
using Gabor filters over 4 scales (wavelengths of 4, 8, 16 and 32 pixels) and over
6 orientations.

Another important point to note is that the phase congruency edge map
includes the corner map, this is unusual for an edge detector! The fact that the
phase congruency corner map is a strict subset of the phase congruency edge
map greatly simplifies the integration of data computed from edge and corner
information. This facilitates the process of building a model of the scene from
point and edge data matched over two or more views. In contrast, if the edge and
corner information is computed via separate means, say the Canny and Harris
operators respectively, the edge data is unlikely to include the corner data. The
Gaussian smoothing that is applied to reduce the influence of noise results in
the Canny edges being weakened in strength, and rounded at corner locations.

MATLAB code is available for those wishing to replicate the results presented
here [21].

5 Conclusion

Phase congruency provides a contrast invariant way of identifying features within
images. By combining phase congruency information over multiple orientations
into a covariance matrix, and calculating the minimum and maximum moments
we produce a highly localized operator that can be used to identify both edges
and corners in a contrast invariant way. The contrast invariance facilitates the
tracking of features over extended image sequences under varying lighting con-
ditions. An additional advantage of the operator is that the phase congruency
corner map is a strict subset of the phase congruency edge map. This simplifies
the integration of data computed from edge and corner information.
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Original image. Fourth root of Harris corner
strength image (σ = 3).

Phase congruency edge strength
image.

Phase congruency corner strength
image.

Harris corners with threshold 107

(maximum corner strength was
3.4 x 109).

Phase congruency corners with
threshold 0.4 (maximum possible
phase congruency value is 1).

Fig. 3. Comparison of the Harris and phase congruency operators on a test image.
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Original image. Fourth root of Harris corner strength im-
age (σ = 1).

Phase congruency edge strength image. Phase congruency corner strength image.

Harris corners with threshold 108 (maxi-
mum corner strength was 1.25 x 1010).

Phase congruency corners with threshold
0.4 (maximum possible phase congruency
value is 1).

Fig. 4. Comparison of the Harris and phase congruency operators on an image with
strong shadows.
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