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Abstract. In this paper, an image-based method---non-uniform light field
mapping is proposed which combines edge-based surface light field partition
and non-uniform decomposition of light field matrixes for real-time rendering.
Through this method view-dependent appearance of scenes with complex
reflectance properties can be rendered in real-time. This method obtains surface
light field by resampling the data which are captured from vantage points. To
acquire interactive rendering rate we propose to partition surface light field over
bi-triangles and arrange it into 2-D matrixes, then we approximate surface light
field data by non-uniformly factoring these matrixes into textures. Finally, we
present an image-based rendering method which improves rendering
performance through textures sorting and rendering directly from these compact
data with the support of graphic card.

1. Introduction

Many interactive 3D applications such as Virtual Reality, computer animation, game
and education involve capturing and reproducing the appearance of real objects. Real
objects, however, exhibit complex surface properties such as subsurface scattering
and refraction. General representation must model these properties and render them
photorealistic with interactive rate. In spite of the rapid progress in computer graphics
over the past three decades, rendering complex scene with such reflectance properties
in real-time is still a challenge. Image-based methods [1, 2, 3] are proposed to solve
the problem, and many of these techniques are based on 4-D plenoptic function [1, 2,
15] ---parameterize the rays in 4-D empty space using two parallel planes.
Unfortunately, Image-based rendering (IBR) requires dense samples of the scene
and uses thousands of images to ensure view-dependent photorealistic results.
Geometry-less image-based methods [1, 2, 3, 6] take a collection images captured
from vantage points as input, and construct the plenoptic function of the scene which
can be used to synthesis novel images from arbitrary viewpoints. Levoy [1] developed
a method to parameterize the rays using two parallel planes and constructed a 4-D
plenoptic function. Novel images are synthesized by reverse searching in the sample
database and interpolating between acquired ray samples. In this method, the
representation restricts the viewpoint to lie outside of the convex hull of the object.
View-dependent texture mapping (VDTM) [3, 4] is a kind of geometry-based IBR
where multiple reference images (through visibility computation) are weighted and

369



Proc. VIlth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

composed together to render a novel image. This approach uses geometry information
to re-project original images into the desired camera viewpoint and compute the
visibility. VDTM supports rendering outside the convex hull of the object for using
visibility computation and requires less images than geometry-less IBR.

Chen et al. [8, 10] developed a compact representation for surface light field (SLF)
which was proposed by Wood ef al. [5] and developed an algorithm to partition
surface light field through mesh-ring (Vertex-based method) and proposed to
approximate the discrete 4-D surface light field function as a sum of products of
lower-dimensional functions which are called textures. The uniform compressed
textures can be effectively decompressed and the object can be rendered on-the-fly by
using commodity graphics hardware.

IBR makes a unique compression algorithm for its light field capture methods and
random access requirements [1, 7, 15]. Levoy [1] applied vector quantization (VQ)
algorithm to obtain compressed representations of light field. Magnor [7] proposed a
MPEG-like compression algorithm for light field that produces better compression
ratios than those obtained by Levoy. Nishino [13] developed a compression approach
for dense images in Eigen-space. They constructed a set of texture maps for each cell
by projecting each image onto the mesh. Compression is achieved by performing a
principal component analysis on each set of textures.

Non-uniform light field mapping method which utilizes geometry of the object to
reduce the data size and achieves interactive rendering through texture sorting and
texture mapping can be used to solve these problems. First, the method obtains SLF
by resampling the input images which are captured from vantage points. Then we
propose to partition surface light field over bi-triangles and arrange them into 2D
matrixes to achieve interactive rendering rate. Third, we approximate surface light
field data by non-uniformly factoring these matrixes into textures according to their
individual properties. Finally, an image-based rendering method is presented which
improves rendering performance by textures sorting and rendering directly from these
compact data with the support of graphic card. The pipeline of edge-based non-
uniform light field mapping is shown in Fig.
1.

Our approach depends on both geometry
and dense images of the scene thus lead to
compact representation and  efficient
rendering. It removes the convex hull
restriction of the two-plane light field
parameterization and admits a progressive
representation which can be rendered in
interactive rate through textures sorting
algorithm and texture mapping technology.

The following sections describe these algorithms in detail. We begin by describing
the representation of surface light field through edge-based partitioning in section 2.
Next, we discuss our resampling algorithm for surface light field in section 3.1 and
introduce our factoring algorithm based on bi-triangle in section 3.2. Then we discuss
the rendering algorithm in section 4. Finally, we illustrate the experiments results and
present ideas for future research in section 5 and section 6 respectively.

Fig. 1. The pipeline of edge-based
non-uniform LFM. Left: acquired
images and geometry of the object.
Middle: view textures and surface
textures. Right: rendering result
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2. Representation

A SLF [5] is also a 4-D function that completely defines the outgoing radiance of
every point on the surface of an object in every viewing direction:

L(r,s,0,0) — (r,g,b) (1)

The first pair of parameters of this function (7,5) describes the surface location and
the second pair of parameters (@, ¢) describes the viewing direction. In practice, a

surface light field function is normally stored in discrete samples, which requires
much storage thus leads to impractical direct manipulation. Chen ez al. [8, 10]
proposed to partition the 4-D surface light field based on mesh vertex as shown in
Equation (2):

I (r,5,6,0) = L(r,s,0,0) 8¢ (1. 5) )

We assume the geometry of the scene is represented by mesh triangles. Through

experiments, we find that the partition function ¢ (7,5) should satisfy all of the

following criteria simultaneously to overcome rendering discontinuous introduced by
resampling through mesh triangles (see section 3.1 for details):
e The function should divide surface light field data in the (r, s) domain without
altering the original data.
e The function should be continuous within one primitive.
e To reduce blurring artifacts, the function should be zero in the edge of the
primitives.
Through these oJ -é,’k 2 i3

analyses, we propose to ‘ e '
partition surface light . 1
field based on edge of — : )

mesh  triangles  as . . ! !
illustrated in Fig. 2. (a) (b} (el (d)«
They can be described  Fjg 2, Edge-based partition function: ¢',¢?, ¢,
in Equation (2).

Here, we define three
partition functions for

which add to unity in centric triangle A¢

centric triangle Az : e*' for edge k,, e*? for edge k, and e** for edge k,. They

all satisfy the three criteria and add to unity in centric triangle, so this partition
method preserves the original surface light field for all mesh triangles. And because
the partition functions reduce to zero at triangle edge, they ensure surface light field
continuous in triangle edge. To accelerate calculation speed, a predefined lookup table
based on barycentric coordinate is used for edge-based surface light field partition.
The same process can be adopted for all edges in scene mesh and they add to unity in
any triangle. We refer to the surface light field unit corresponding to each
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edge L (r, 5,0, ) as edge light field.

Finally, we define local coordinate system for edge-based surface light field
partition: the surface normal at the middle point of the common edge is labeled as Z-
axis and the common edge is defined as X-axis. Each edge light field is re-
parameterized in their individual local coordinate systems. To reduce notation
complex, we use the same letter to denote edge light fields in their local coordinate
frames. All processing in non-uniform light filed mapping is identical for each bi-
triangle, so we explain algorithms for only one bi-triangle in the following section.

3. Encoding Surface Light Field

The processing of edge-based non-uniform light field mapping can be divided into
two main steps: Encoding surface light field into compact textures and rendering
directly from these textures.

Encoding surface light field for a real object requires the following steps: (1) range
scanning the object and build a triangle mesh to represent its geometry; capture a
collection of images of the object from vantage points and register them to the mesh
[5, 14, 8], (2) resample the raw data to obtain surface light field through visibility
computation, (3) partition the surface light field based on bi-triangles, (4) non-
uniformly factor 4-D surface light field into a sum products of 2D function (also
called textures).

Raw data acquire and register step can be done use algorithms developed by Chen
[8]. Our method can be described with Fig.1 when the raw data has been acquired.
The upper-left photos in Fig.1 describe the raw images acquired use camera from
different view positions and bottom-left photo in Fig.1 denote object geometry
acquired by range-finder. The middle of the figure presents the compact textures---
view maps and surface maps which obtained from our non-uniform matrixes
factoring. Resampling algorithm is adopted between left and middle components of
this figure. The right photo is a result rendered from a viewpoint using our edge-based
light filed mapping algorithm.

3.1 Resampling

Surface light field [5, 8, 10] requires dense samples as input, but we can only acquire
scattered samples of actual surface light field function in practice. Resampling,
therefore, is an intuitive method to approximate the surface light field function. We
assume the edge sizes of the triangles are relatively small compared to their distance
to the cameras, through which the resampling process which is considered a 4D
function reconstruction problem traditionally can be realized in two steps: resampling
parameters (7, ) and (6, @) respectively.

Before data resampling, visible cameras for each mesh triangle should be computed
to determine which camera position can be used for the triangle resampling. We
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define full-visible list and part-visible list for each mesh triangle, which corresponds
to a set of irregular size texture patches captured from various camera positions,
depending on its area shadowed by other triangles.

Vv . . .
If, _ A4 Y camera V is full-visible to A¢
4 4, 3)
If k, < K <k, camera V is part-visible to At

Where AZ: denotes the area of A¢ and ANAV[ represents the visible area of A¢ from
viewpoint V. k1 is a predefined constant to determine whether the viewpoint can be

added to the full-visible list of this triangle. k, is another predefined constant to

determine whether this viewpoint can be added to part-visible list of this triangle. We
take x = 0.9 and x, = 0.3 inour experiments respectively.

Let 1,/ denotes full-visible viewpoint in camera i for Az, V,” denotes part-visible

viewpoint in camera i for A7 . And let list F, ={F, ,F, ... F _} denote full-

A1l
Af,N,

visible views of Az and list P,, = {P,,,P P,, ,} denote part-visible

T
views of At , which are sorted by K defined in Equation (3). Each element in the two
lists is vector which consists in corresponding pixel values in raw image that re-

projected to its geometry mesh from computed camera point Vl.l (I=f,l=p).

Before view resampling, we should convert F,, and P,, to bi-triangle form. This
can be done simply by compute the union list of two common-edge triangles. Let
F , and Pek represent full-visible view list and part-visible view list respectively.

We use pr « to represent the number of points in bi-triangle e and N .+ to denote
full-visible viewpoints number for bi-triangle a Vl.l (I=f,l=p) is converted to
Velk . (I=f,1 = p) by the same method.

l:hen parameters (r, s) resampling process can be done directly through bi-

interpolation and a M/ " * N matrix M for bi-triangle " can be obtained.
We will use Fig. 3 to explain the view resampling algorithm. Before view

resampling, vectorsF , and Pek should be converted to local coordinate system of

- . . L
each bi-triangle as defined in section 2. We use F % and Pek to denote each vectors
e
in local reference frame defined by edgee, . And let C*, represent current ivisible
e

viewsi and should be initialized equal to F % . First, we project all full-visible

viewpoint Ve{ . of bi-triangle " onto the x-y plane of local reference frame defined
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by edge e, using Equations (4) to form a projection map as shown in Fig. 3a.

x=(dex +1)/2

y=(dey +1)/2 “@

Where d denotes corresponding view directiony ! (I= f,l = p)-Eachpoint in

the maps denotes a texture coordinate (X, ).

Second, we perform the Delaunay-triangulation of these points (see Fig. 3b). Third,
we take current element in part-visible list P£ and project corresponding view

direction V@f”_ into x-y plane. Then we approximate the current project part-visible

view PeLk i (red point in Fig. 3c) using linear combination of C jk and obtain P;Lk -
Fourth, wé evaluate L according to Equation (5) to determine whether this part-visil,)le
view should be added to current ivisible viewsi C jk and used for further Delaunay-
triangulation. If L is larger than a predefined threshold, we add Peﬁ l_to C fk and

perform a new circle Delaunay-triangulation as discussed in step 2 and 3 according to
the order in p , . Finally, we compute the regular grid of views by the combination

views inC £, .
e

L = P P / N
Z (1 et il et il D (5)
jev
o]*]e]e |
olefo[e(elalale| |
poagooonnl
- =l aDAan OON
I [= annnaYanne
. anpoeEon
y SWAY p. SWAY p. )N s[e[ete s [Kale e [o]s]
AL T T o[e[s|oTe y]*
~ - - . Qoo
e[efefa|a]a[e]e]e]
ele[e[efe]a]e]s] |
slefale™] 11

(a) () (c) (d) (e)

Fig.3 Resampling views: (a) Projection of original full-visible views, (b) and (d)
Delaunay triangulation of current projected views, (c) Projection of current part-
visible views, (e) Uniform grid of views computed by blending current i visible viewsi

Wherepj g denotes the valid (not shadowed by other triangles in current viewpoint)

pixel value for bi-triangle e from viewpoint Vef o N represents the valid points

.. L
number and Pef y represents the same value computed by the combination of Cek .

The rendering result of utilizing part-visible samples is shown in Fig. 4. As
shown in this figure, the image edge would be less blurring by using part-visible
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samples.

We have obtained approximate
surface light field through data
resampling algorithm. To build a
computational matrix and eliminate
the discontinuities across triangle
boundaries, we propose to partition
surface light field based on edges of

(2) (b)
Fig. 4. Compare rendering
result between not using part-
visible samples (a) and using
part-visible samples (b)

triangles etkl (2 » Which is illustrated

in Fig. 2 and described in section 2.

3.2 Factoring SLF matrix

Through resampling and partition, we acquire a matrix as shown in [8]. Edge-based
partition of surface light field data allows us to approximate each edge light field
independently while maintaining continuity. The codec invokes PCA [12, 13] or NMF
[8, 11] algorithm to factor the matrix and obtain two types of 2-D function---surface
maps and view maps. The factoring method can be described with Equation (6).

K

LY (r.s.0.9) =3 T.(r.s)*V,(6.9) (6)
i=1

However, the decomposition term K should not be uniform for all mesh triangles.
Nishino [13] proposed to determine the dimensions of Eigen-space according to
whether the cells have highlights or self shadows. We separate all the mesh triangles
into two groups based on its average brightness, and compute PSNR for each group.
The result is shown in Table 1. From the table we can find that the decomposition

term should be higher in highlights or self shadows areas to maintain uniform PSNR.

Approximation term Normal area Highlights area PSNR Highlights area
K PSNR (Uniform) PSNR (Non-uniform)
1 48 41 47
2 53 46 51
3 56 49 54

Table 1. PSNR of uniform decomposition and non-uniform decomposition
The simplest approach to maintain constant PSNR in PCA is to compute T

according to Equation (7) where A4 ; represents Eigen-values. When we maintain T to

be constant, the approximation term k varies according to the properties of the bi-
triangle. This method requires obtaining all the Eigen-values of each bi-triangle and
therefore is not efficient.
K P
T =Y A, Y 4, @)

i=1 i=1

We adopt power iteration algorithm [9] to solve Equation (6) and propose a non-
uniform decomposition algorithm to maintain PSNR constant accordingly. First, we
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convert the resampled data from RGB to YC,C, , and determine the real

decomposition term K for each mesh bi-triangle based on the average value of Y
within it. Then, matrix Y is factored use computed term K and matrixes C, and C b

are factored use term K/2. Finally, all YC C, matrix factors are converted to RGB for

rendering.

4. Rendering

Rendering is an inverse process of decomposition and can be intuitively achieved
by applying Equation (8). The rendering performance, however, is not efficient. From
the Equation (8) we can see that evaluating one complete approximation term is
equivalent to multiplying pixel- by-pixel of the surface map and view map texture
fragment pairs for three edge light fields of the triangle and adding the results
together. This makes us to use texture mapping technology powered by current
customer video card to accelerate the rendering rate.

~ K 3
Ly(r,,s,,6,,8)=> | > Ta.(r,.s,)eV° (6,.8,) ®)

i=1 \_j=1

To avoid excessive texture swapping and improve rendering efficiency, we
develop a textures sort algorithm to improve render performance. First, we predefine
set of sizes for mesh triangles and tile the same size surface light field maps together.
Since one triangle requires three surface maps per approximation term, we tile all
these maps in the same collection. View maps, on the other hand, are independent to
mesh triangles, so put all view maps of each term in one collection. Though each bi-
triangle has one same view map for two triangles, we attach each triangle to one view
map and sort these view maps (doubled number of bi-triangles) according to their
attached triangle size in rendering process before filling to texture memory.

Chen et al. [8] propose an algorithm grouping view maps based on mesh triangle
size. But because of the number within one ring is not constant, the algorithm is hard
to implement in efficient way. For our edge-based partition approach, the algorithm
can be efficiently realized. Let p denote the number of groups split from the triangle
mesh according to predefined sizes and triangle size. We then produce one view map
collection per group [V,,V,,--- v, and let [§/, S -, S;’_ ] be the collection of

surface maps corresponding to view maps V, (through textures sorting describe

above). For each approximation term, the rendering algorithm can be described as
follows:

fori=1, ..., pdo

load sorted view maps K into texture unit 1

for j=1, .., g, do
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load surface maps S;. into texture unit 2

render all triangles within S;.

endfor
endfor

5. Result

Data obtained from UNC are used to test our approach as shown in Fig. 5. From the
figures we can see edge-based surface light field partition has advantages over vertex-
based partition. First, non-uniform factoring has better reconstruction quality than
uniform decomposition in same approximation term. Second, Non-uniform factoring
has a bit smaller compression ratio than uniform factoring in same approximation
term, but non-uniform factoring has smaller storage when the reconstruction quality is
the same. Figure 5 (d) shows compress ratio of this data.

6. Conclusion and future work

This paper presents an edge-based non-uniform surface light field mapping
algorithm. The compression ratio can be achieved up to 1000:1 through factoring
edge-based surface light field matrixes and further invoking a normal still image
compression algorithm (such as VQ). The approach can achieve an interactive
rendering rate through textures sorting and texture mapping technology.

The non-uniform algorithm is not applied for NMF because it does not constraints
the matrix factors to be orthogonal. The future work with non-uniform decomposition
is to develop an orthogonal and negative factoring algorithm. 4-D surface light field
can not represent dynamic scene. We are planning to extend this work to 6-D using
EM-PCA algorithm.
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Fig. 5. Comparison between edge-based partition and vertex-based partition methods
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