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Abstract. Despite the great advance made in model-based contour track-
ing, tracking without any specific knowledge about outline contour of an
object is still very important in video-sequence processing. This paper
addresses the problem of contour tracking while contour’s evolution is
restricted by a global motion model only.

1 Introduction

The dynamic snake representation [3] has emerged in recent years as a powerful
tool for contour tracking, but simplicity and efficiency of this approach is played
down by instability caused by cluttered background, which is typical for real
video-sequences. The latter circumstance arises from the snake equation [9] that
promotes contour smoothness rather than shape immutability. Various global
and local constraints have been proposed to deal with non-rigid nature of real
objects, which results in difficult tradeoff problem. Under restrictive constraint
the outline contour doesn’t exactly follow the object of interest and may be
trapped by a strong occasional edge, but too “soft” contour frequently follows
noisy edge instead of actual one.

Some researchers have reported successful contour tracking without global
motion constraint. Nguyen et al. [6] applied watershed algorithm accompanied
by first-order prediction scheme. Fu et al. [5] have proposed objective function
that utilized color, curvature, area, optic flow information and operated with
non-overlapping contour pieces rather than with separate control points. Never-
theless, it’s natural to protect contour’s shape from distortion embedding global
motion model into active contour algorithm [1], [4], [8], [10]. Xue et al. [13]
constructed objective function that is insensitive with respect to affine transfor-
mation. Chang and Lin [14] refined velocity field by global affine transforma-
tional constraint. Peterfreund [7] extended dynamic snake approach by velocity
consistency constraints and weak-perspective motion model.

Along with global motion constraint another important issue is interframe
deformation model. In [11], [8], [2] deformation has been represented as a linear
combination of shape vectors drawn from some basis, which in its turn depends
on the current contour’s shape. We refer such a factorization as a linear inter-
frame deformation model.
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Our goal is contour tracking without a priory information about object.
Global motion constraint and linear deformation model are the only allowed
restrictions. Our approach has three remarkable features. (1) Unlike other ap-
proaches, where the space of shape deformations is severely restricted, we admit
all possible deformations to be able to follow unexpected motion, but we rear-
range them enforcing global motion model. (2) Our contour prediction method
naturally incorporates an arbitrary linear deformation model. (3) Simple and
efficient scaling technique makes the tracking process less context dependent.

2 Tracking Algorithm

1. Initialization. t := 1. Interframe interval is set to one by definition ∆t ≡ 1.
(a) Manually delineate the outline contour r1 of an object of interest in the

1st frame of video-sequence. Initial contour must be closed. The accuracy
of delineation depends on interface tool being used. The higher accuracy
the less probability of tracking failure.

(b) Optionally the outline contour r2 in the 2nd frame can be delineated.
Then velocities at the points of initial contour will be estimated, other-
wise they will be set to zero. The estimation of initial velocities is useful
(but not crucial) since a 2nd order motion model is used (section (2.2)).

(c) Pick up a number of control points evenly spaced along the contour.
They will be tracked.

2. Predict contour position rt+1 on the next frame using previous states rt,
rt−1 (section (2.2)).

3. Optimize contour location rt+1 in the next frame for a better fit to image
features (section (2.3)).

4. t := t + 1. Re-sample control points to maintain uniform spacing along the
contour. Proceed with Step 2 untill the last frame.

We represent a contour by a 2N -vector rt consisting of coordinates of N control
points evenly spaced along the contour at the moment t. A vector of interframe
deformation vt relating contours of successive frames is represented similarly
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(
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where the matrix represents an affine or a more complex transformation. Setting
in turn each motion parameter to unity (Θi = 1) and others to zero (Θj = 0,
i �= j) we obtain a basis {vi}, its dimension equal to the number of motion pa-
rameters. The first two vectors v0 and v1 correspond, respectively, to horizontal
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and vertical translations in the image plane. Keeping their directions intact we
orthogonalize {vi} to get an orthonormal basis {hi} of basic deformations. We
call the subspace spanned by {hi} the motion subspace, because any deformation
induced by a linear transformation lies within this subspace. Note, that basic
deformations depend on the location of the contour control points rt and the
selected motion model (the number of independent parameters). All other trans-
formations of contour shape will be called non-basic. For convenience, the basic
deformations are combined into an 2N ×M matrix H with vectors of horizontal
h0 and vertical h1 translation in the first two columns

H = (h0,h1, . . . ,hM−1) , hT
j hi = δji (4)

where N is the number of control points, M is the number of independent motion
parameters. We have tried affine, weak-perspective, quadratic and cubic motion
models with 6, 8, 12 and 20 parameters respectively.

2.1 Motion Stiffness Matrix

The idea of the motion stiffness matrix is to define the deformation energy
such that it is zero for basic deformations and non-zero otherwise. Assume that
the contour consists of evenly spaced control points connected with each other
by elastic links. The contour deformation energy can be naturally defined as a
quadratic form in the deformation vector v

E(v) ≈ vTKv (5)

where a 2N × 2N stiffness matrix K depends on control point positions and
contour elasticity. Multiplying the stiffness matrix by the projection operator,
we obtain the energy term that is insensitive to basic deformations (4)

E∗(v) = vT(I − HHT)TK (I − HHT)v = vTK∗v (6)

where I is a 2N × 2N identity matrix. Regardless of how the original matrix K
was constructed, a basic deformation hi always satisfies the equation E∗(hi) = 0.

Having no a priory knowledge about contour’s behavior, we’ll construct stiff-
ness matrix “manually”, decomposing deformation into discrete Fourier series
v =

∑2N−1
q=0 aqfq , where fq is 2N -dimensional discrete Fourier harmonic

f4i−2+0 = (..., sin(2πki/N), 0, ...)T f4i−2+2 = (..., cos(2πki/N), 0, ...)T

f4i−2+1 = (..., 0, sin(2πki/N), ...)T f4i−2+3 = (..., 0, cos(2πki/N), ...)T

where k is the index of control point. The number of control points N must be
odd. Since coordinates x and y are mixed (see (1)) cosine and sine appear twice.

There is some advantage in use of Fourier decomposition. Constructed on
Fourier harmonics, following matrix is computationally effective (it can be com-
puted in O(N2) operations), it acts like kernel of a low-pass filter in shape space,
and it was experimentally advocated (brackets [.] means integer part of a digit)

Kf =
∑2N−1

q=0
λqfqfT

q , λq = ω2
q , ωq = [(q + 2)/4] (7)
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The eigenvalues λq increase as a square of frequency ωq, hence, the lower the
harmonic’s frequency the less the energy of deformation. Note that Kf is shape-
independent, because fq depends on indices of control points and doesn’t depend
on their actual coordinates, i.e. the contour rt and the deformation vt are inde-
pendent vectors. After projection K∗

f = (I − HHT)TKf (I − HHT) the matrix
becomes shape-dependent, since basic deformations {hi} are shape-dependent.
Nevertheless, the main part of eigenspectrum remains almost intact (only the
lowest eigenvalues are significantly disturbed when M � N), so sub-optimal
methods of eigenspectrum estimation are applicable.

In practice, it may sometimes be useful to impose small energy penalty even
for basic deformations. In fact, basic deformations are eigenvectors of K∗

f with
zero eigenvalues K∗

fhi = 0 (see (6)). The final stiffness matrix has the form

Km = K∗
f +

∑M−1

i=2
αihihT

i , αi = 0.25λ∗
M


1 +

1
2

(δAi − δA)
max

i
(δAi − δA)


 (8)

where the scale coefficient αi is proportional to the smallest non-zero eigenvalue
λ∗

M of K∗
f , δAi is a derivative of internal contour area by the ith basic defor-

mation hi (i.e. reaction of internal contour area on hi), and δA is the mean
derivative. Notice that the coefficient αi in (8) is not arbitrary, being a frac-
tion of the eigenvalue of the first non-basic deformation, so the eigenspectrum
is properly balanced. Secondly, the summation in (8) starts with 2, i.e. trans-
lations by vectors h0 and h1 are not constrained (λ0 = λ1 = 0). Thirdly, basic
deformations that with smaller change of the internal contour area (δAi) are less
constrained (smaller αi). The coefficient 0.25 was found experimentally.

The overall process is as follows. First, using the model of shape deforma-
tions (e.g. (7)) we construct a stiffness matrix K. Second, by projection (6), the
deformations induced by the selected linear transformation (3) are shifted into
null-space of K∗ (no energy cost). Third, in order to constrain transformations,
we impart small eigenvalues to the basic deformation (8) except of translational
ones, which remain unconstrained. We call the obtained matrix the motion stiff-
ness matrix Km.

Strictly speaking, formulas (3), (5), etc. are applicable in the case of in-
finitesimal deformations. Fortunately, translation usually prevails in interframe
contour’s motion, and deformations that distort shape itself are usually small.

2.2 Prediction

We assume that between successive frames a contour undergoes inertial motion
in viscous environment. Generalized Lagrange equation describes such a motion

d

dt

(
∂L

∂ṙ

)
− ∂L

∂r
+

∂D

∂ṙ
= 0 , L = ṙTMṙ , D = ṙTCṙ + ηṙTKmṙ (9)

where M is a diagonal matrix of control point masses (mii = m), C is a diagonal
dissipation matrix (cii = c), Km is a motion stiffness matrix, η is a constant.

382

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



Under the assumption of small interframe deformations (translation may be
arbitrary large), the shape-dependent matirx Km is almost constant within the
time interval [t, t+1], consequently, the velocities and deformations are indistin-
guishable. Formal differentiation of (9) yields a second order motion equation
subject to the initial conditions r0 = rt, ṙ0 = rt−rt−1

Mr̈ + Cṙ + ηKmṙ = 0 (10)

Motion equation (10) differs from the conventional dynamic snake [3] by ṙ in the
3rd term, and describes inertial propagation in a viscous environment in which
non-basic deformations dissipate faster than basic ones. In this way, equation
(10) favours the adopted motion model (3). The predicted contour in the next
frame can be easily expressed in terms of eigenpairs {λi, ei} of Km

r̂t+1 = rt +
∑2N−1

i=0

(
1 − e−µi

µi

(
eT

i

(
rt − rt−1

))
ei

)
, µi =

c + ηλi

m
(11)

By default we set: m = 1, c = 0.1 (small common dissipation) and η = m/λM ,
where λM is the smallest eigenvalue of the non-basic eigen-deformation. The
coefficient η defines “operating point” that is set between basic (λ < λM ) and
non-basic (λ ≥ λM ) eigen-deformations. Prediction can be made less time con-
suming (but also less accurate) if it is applied to only every second control point.

2.3 Optimization

Starting from predicted contour r̂t+1 on the next frame, the optimal one rt+1

minimizes following energy

E(r) =
(
r − rt

)T (ξmKm + ξvKv)
(
r − rt

)
+ ξcrTKcr + ξa‖r − rt+1

a ‖2 (12)

where rt, rt+1 are contour positions in the current and the next frames, re-
spectively, the 2N -vector rt+1

a represents points of attraction in the next frame
(usually edge points), ξm, ξv, ξc, ξa are constants, and (r − rt) is a vector of
deformation from the current contour rt to the next one. When the deformation
vector belongs to the motion subspace spanned by basic deformations {hi} (sec-
tion 2), the quadratic form with the motion stiffness matrix Km contributes a
small energy penalty since {hi} are eigenvectors of Km with small eigenvalues.
Therefore, the better transformation from rt to rt+1 satisfies the selected mo-
tion model (3) the less energy penalty. In this way, the term with Km enforces
the global motion constraint, making deformations to lie inside the subspace
generated by the selected motion model. The cyclic pentadiagonal matrices Kv

and Kc in (12) are borrowed from Kass et al. [9]. The quadratic form with Kv

enforces a coherent movement of neighbor control points. It is almost useless.
The quadratic form with Kc enforces smoothness of the resultant contour r. It
prevents instability when the contour tends to loop. The last term in (12) rep-
resents the potential energy. Each control point has its own point of attraction
on the next frame (section (2.4)), which lies, in our case, near color edges.
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Starting from the predicted contour position (11) in the next frame, we min-
imize (12) from 3 to 5 times, each time re-estimating points of attraction rt+1

a .
Usually, the optimization stage moves the control points by less than one pixel
(dominance of the global motion constraint). Nevertheless, being accumulated
through the tracking process, the resultant modification can be very significant.

By default we set: ξm = 0.5, ξv = 0.0125, ξc = 0.0375, ξa = 0.45. Matrices
Kv and Kc are scaled so that they have “unit” spectrum energies: Tr(Kc) =
Tr(Kv) = Tr(I). The key point is the proper scaling of matrix Km. By taking
into account that ξm ≈ ξa and ξv ≈ ξc ≈ 0, a simplified solution of (12) can
be obtained: x = (sKm+I)−1y, where s is the scale to be found, x = r − rt,
y = rt+1

a − rt. Suppose that vector y is disturbed by white noise with zero mean
and unit variance (the value does not matter). For the variance of x we have

2 ≤ var(x) =
2N−1∑
k=0

1
(sλk + 1)2

≤ 2N =⇒
2N−1∑
k=0

1
(sλk + 1)2

= 2Nγ (13)

where {λk} are eigenvalues of Km (λ0 = λ1 = 0) and γ ∈ [0 . . . 1] is a constant.
If γ → 1, then s → 0 (global motion constraint, embedded in Km, has no effect).
If γ → 1

N ≈ 0, then s → ∞ (the global motion constraint prevails). By default
we set γ = 0.5. The latter means that the energy of disturbance of the solution
vector is almost equally affected by the first and the last terms of (12), i.e. the
energy of the global motion constraint has about the same influence as potential
one. Given a value of γ, equation (13) can be easily solved for s by dichotomy.

2.4 Points of Attraction

Let’s denote by pt
k and pt+1

k the kth control point of the contour in the current
frame and its estimation in the next frame, respectively. The search path St+1

k is
a short chain of pixels centered at pt+1

k and stretched along the normal, [1]. Our
goal is to find a single point of attraction at+1

k,i that belongs to St+1
k in the next

frame for each control point pt
k in the current frame. The index i enumerates

pixels of the search path. By default, St+1
k contains 11 pixels.

We define point vicinity V t
k as the intersection of the circle centered at pt

k

with the region surrounded by the closed contour rt. A large circle radius (10
pixels) provides suppression of texture and reflections of adjacent objects. We
assume that local interframe deformations are small and the point vicinity V t+1

k

in the next frame will be almost the same up to translation. Point color is a
mean color vector calculated over point vicinity: Ct

k =
〈
Ct

x,y

〉
, where Ct

x,y is a
RGB -vector at a pixel (x, y) ∈ V t

k of the current frame. Prior to correlation with
the next frame, the current point color is filtered over time in order to prevent
abrupt changes: Ct

k := αCt
k + (1 − α)Ct−1

k , (α = 0.1).
For every pixel at+1

k,i of the search path St+1
k , we calculate Ct+1

k,i as a mean
color of pixels of the next frame covered by V t

k shifted to at+1
k,i . Following distri-

bution, giving very “soft” preference for the points with well-correlated colors,
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we treat as the probability of color similarity distribution along the search path

pc
k(i) = 1.2 ·

(
max

i
‖Ct+1

k,i − Ct
k‖

)
− ‖Ct+1

k,i − Ct
k‖ (14)

Color gradient, considered as a probability of edge appearance, “softly” ar-
ranges points of the search path, where color gradient at at+1

k,i is the derivative in
the direction of maximal color alteration and ng is a deviation of gradient noise

pg
k(i) = max( ‖∇Ct+1

k,i ‖, ng ) (15)

In practice, the LAB color representation is preferable to the RGB one. Color
edges can be emphasized by a moderate attenuation of the lightness (L := L/2).

We also utilize region-based information in the spirit of Swain and Ballard
[12], constructing the probability map as the ratio of known object’s color his-
togram on the current frame and the color histogram of the search region of the
next frame. Pixel value of the resultant map has the meaning of probability of
object’s appearance at a point of the next frame. It is considered as the “fourth”
color and participates in eq. (15) along with ordinary colors.

The last probability pp
k(i) slightly stimulates proximity between pt+1

k and
attraction point, and consistency between normal and gradient direction at an
attraction point. The optimal point of attraction maximizes the overall probabil-
ity. Its index on the search path is defined as: iopt = arg max

i
( pc

k(i) pg
k(i) pp

k(i)).

3 Results and Conclusion

We have presented approach that tracks arbitrary contour through a videose-
quence under global linear motion model. It contains three main parts: (1) pre-
diction method with embedded motion model, (2) snake-like optimization driven
by motion model, (3) scaling method that balances terms in energy equation.

It is important for a tracking program to have as few adjustible parameters
as possible. The single crucial parameter (available for immediate tuning in our
demo-program) is ξm in eq. (12). In most cases, its default value ξm = 0.5
leads to satisfactory results, but sometimes it has to be corrected to make the
global motion constraint more (ξm > 0.5) or less (ξm < 0.5) dominant. All other
numerical parameters mentioned in this paper are experimentally motivated and
conservative. Their default values have been used in all reported experiments.

A least-squares in nature, our approach, as well as the Kalman filter, is sen-
sitive to non-Gaussian image noise. Still, it is totally different from the Kalman
Snake and similar approaches. The Kalman filter evaluates the consistency be-
tween the predicted state and the measurement. There is no problem if the object
boundary is missed. In that case, the Kalman filter will rely on the prediction.
However, when the predicted contour passes near a casual edge the Kalman filter
can take a wrong decision relating to data consistency. By contrast, we carefully
balance the eigenspectrum of energy matrices, alloting fixed quotas for different
energy terms in eq. (13). Bad measurements cannot quickly distort the contour
because the adaptively scaled motion stiffness matrix preserves its shape.

385

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



Note that the motion stiffness matrix Km must be dense, since under global
motion constraint each control point affects the fate of all others. However, we
are currently considering the reduction of motion constraints from global to
local ones. It seems possible to construct a banded matrix Km so that every n
consecutive control points (n < N) will be forced to share the same motion.

It would be interesting for practicians to see as many tracking results as
possible in order to compare with their own approaches. We have selected several
standard sequences that could be problematic for the dynamic snake and other
methods. Typical tracking results are shown in Figs. 1 to 5. A sequence begins
from the left-top frame. Figs. 1 to 4 demonstrate the situation where many parts
of object boundaries have very weak gradient and there are strong background
edges, which could easily trap a locally-parallel contour. Nevertheless, the shape
stiffness, provided by matrix Km, protects the contour from quick distortion.
However, too “stiff” contour unable to follow variable object, Fig. 5. We resolve
that trade off problem on post-processing step, adjusting object’s contour by
other means. Despite gradual degradation of sharp corners and failure to follow
accurately the varying contour, the tracker locks on the object well even in
complex situations of cluttered background. The tracking rate, with 127 control
points, was roughly 10 fps on a 2GHz P4 computer. The weak-perspective motion
model was experimentally found to do best. Experiments have also confirmed
significance and reliability of our contour prediction scheme (section 2.2).

It is often difficult to find the right balance between the color similarity (14)
and gradient (15) distributions. Color correlation tends to produce false points
of attraction inside an object, whereas a strong casual edge may trap the contour
(see Fig. 2, where rightmost contour points were finally trapped by the strong
vertical edge). Lacking an a priory shape model, it seems unrealistic to be able
to protect the contour from such a trap, but we can weaken destructive effects
utilizing spatial color information. The possible option is the color histogram
method. Having a predicted contour (11) in the next frame, its position can be
corrected by direct correlation of color histograms calculated over the internal
regions of the current contour rt and predicted contour r̂t+1 shifted within a
small search range: −5 ≤ ∆x,∆y ≤ 5 pixels. The result is shown in Fig. 6 where
a highly variable contour was tracked through the entire sequence.
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Fig. 1. Tracking of train, “Mobile” sequence, frames 1..299, ξm = 0.75 in eq. (12).

Fig. 2. Tracking of man, “Paris” sequence, frames 1..1065, default parameters.
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Fig. 3. Tracking of helmet, “Foreman” sequence, frames 1..180, default parameters.

Fig. 4. Tracking of face, “Foreman” sequence, frames 1..180, default parameters.

Fig. 5. Tracking of “red” lady, “Dance” sequence, frames 1..155, ξm = 0.2 in eq. (12).

Fig. 6. Tracking of player’s shirt in the “Stefan” sequence with additional correction
of predicted contour, frames 1..299, default parameters.
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