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Abstract. In this paper we present the theoretical setting for the closed form
solutions to the multiview constraints of curves and surfaces observed by the
motion of a camera in a scene. We £nd that knowledge of a curve or surface‘s
structure can provide matching constraints and thus closed form solutions for the
position of a camera in a scene over many images. This is advantageous for the
process of Structure From Motion (SFM) as it may negate some of the need for
non-linear optimisation (Bundle-Adjustment) of an initial linear solution to the
motion of the camera and structure of the scene.

1 Introduction

The literature on the multiview constraints of curves and surfaces is rather sparse. To
date the only cases that have received attention are the constraints for degree-2 curves
(planar) and degree-2 surfaces.

This paper will present some theoretical work on the multiview constraints of curves
and surfaces. There will be very little discussion of practical issues and no speci£c
numerical algorithms given. However, we will place the novel matching constraints on
a similar footing to those of the existing matching constraints which have well known
methods for their solution [7].

This study of the multiview constraints of curves and surfaces shows that while
the constraints for arbitrary curved features can be derived, the constraints can contain
many hundreds or thousands of free variables. We show that the overwhelming majority
of these variables are redundant, however it may still pose a signi£cant task to enforce
these constraints algebraically in a practical setting where the data is affected by noise.

1.1 Notation and Basics

Firstly, we wish to develop the notation that will be used for the rest of the paper. This
notation is adapted from [13] with the usage of the symmetric operators which we will
use to derive representations for curves and surfaces.

We are motivated to develop a system of symbolic algebra that allows us to express
geometric concepts such as varieties and the operations upon them [1]. To this end we
can use the language of vector spaces, determinants and different representations of the
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symmetric group to de£ne various geometric objects that we wish to study. The entire
presentation of the geometry herein will be limited to projective vector space P

n.
An element of an n-dimensional projective vector space in the tensor notation is

denoted as xmAs
i ∈ P

n. The symbol mAs
i is called an indeterminant and identi£es

several important properties of the vector space. To better understand the notation we
may rewrite it in the standard vector form. Rewriting the symbolic notation can be
achieved by listing the elements of the vector space using the indeterminant as the
variables of the expression. In this manor the symbol that adjoins the indeterminant is
merely cosmetic, for example

xmAs
i ≡ [mAs

0, mAs
1, . . . , mAs

n]� (1)

where m identi£es the multilinearity of the indeterminant, s depicts the degree (or
step) of the indeterminant, we show in the next section that there are several different
types of degree that we will be concerned with. The last element specifying the inde-
terminant is i, this a choice of the positioning of the elements in the vector. We stress
that this is merely a choice as to how the elements in a vector are to be labelled. The
standard labelling is just 0 . . . n for an n-dimensional projective vector space. Due to
space constraints we are ommiting a third representation of the tensor algebra which
is the tableaux form. The tableaux form for the tensor algebra is the most effective
representation for computational purposes and will be a feature of future work.

Indeterminants of a regular vector space (Pn) are called contravariant and indeter-
minants of a dual vector space (∗Pn) are called covariant. The notation for a dual vector
space is similar to that for the regular vector space,

x∗
mAs

i
≡ [∗mAs

0,
∗
mAs

1, . . . ,
∗
mAs

n] (2)

tensor contraction is achieved via a dot product of elements for a regular and dual
vector space,

x∗
mAs

i
xmAs

i ≡ [∗mAs
0,

∗
mAs

1, . . . ,
∗
mAs

n][̇mAs
0, mAs

1, . . . , mAs
n]� = 0 (3)

since our vector spaces are projective the contraction results in the scalar 0. In the
interests of compactness and clarity often we will abandon the entire set of labels for
an indeterminant via an initial set of assignments. If this is the case assume that i is any
arbitrary scalar between 0 and n and s,m = 1. If an indeterminant is used in a covariant
expression then the ∗ maybe omitted.

1.2 Operators

The basic tools used to construct the algebraic/geometric entities in the tensor notation
are called operators. There are three different types of operators that we will use in this
paper Table 1, the symbols νd

n =
(
d+n

d

) − 1 and ηk
n =

(
n+1

k

) − 1.
The two different forms of the tensor are representative of the fact that we can

always rewrite any tensor expression as the vector of its coef£cients. We call this al-
ternative to the tensor form the vector form. The vector form is simply a vector space
of the unique coef£cients in any tensor expression. Writing the tensor as a vector of
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Operator Symbol Tensor Form Vector Form Conditions

Segre - xAi...Bj xαk ∈ P
nA × · · · × P

nB -

Anti-Symmetric (Step-k) [. . . ] x[Ai...Bj ] xα[k] ∈ P
ηk

n i < j and, A �= · · · �= B

Symmteric (Degree-d) (. . . ) x(Ai...Aj) xα(d) ∈ P
νd

n i ≤ j

Table 1. Tensor Operators

coef£cients abandons the symmetry of the tensor form so this results in a less fruitful
representation for symbolic derivations but reduces the redundancy so the result is a
more effective representation for mappings between vector spaces.

1.3 Geometric Algebra

The application of the tensor operators given in Table 1 to vector spaces gives us a
means represent the geometry of various features we encounter in computer vision as
the embedding of a coef£cient ring into some other vector space. Table 2 summarises
the representation and the DOF for linear features in the projective plane ([A0, A1, A2] ∈
P

2).

Hyperplane P
2 ∗

P
2 DOFi Embedding

Points xA0 xA0 → εA0A1A2x
A0 = x[A1A2] 2 P

2

Lines x[A0A1] x[A0A1] → εA0A1A2x
A0A1 = xA2 1 P

2

Table 2. Linear features and their duals in P
2

Similarly, Table 3 summarises the representation and the DOF for linear features in
projective space ([a0, a1, a2, a3] ∈ P

3).

Hyperplane P
3 ∗

P
3 DOFs Embedding

Points xa0 xa0 → εa0a1a2a3x
a0 = x[a1a2a3] 3 P

3

Lines x[a0a1] x[a0a1] → εa0a1a2a3x
a0a1 = x[a2a3] 2 P

5

Planes x[a0a1a2] x[a0a1a2] → εa0a1a2a3x
a0a1a2 = xa3 1 P

3

Table 3. Linear features and their duals in P
3

These tables also demonstrate the process of dualization for linear feature types via
the dualization mapping (→). The antisymmetrization operator should be considered
as a determinantal method to generate the algebra for linear features, by performing an
alternating tensor contraction (εα0...αn

) over the space to which the operator is applied
(xα ∈ P

n) [4].
The other fundamental feature type is the hypersurface, which we will construct

from the symmetric operator (. . .) as demonstrated in Table 4. Hypersurfaces embedded
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in P
3 depict the equation of a surface and those embedded in P

2 depict the equation of
a planar curve. In the Algebraic-Geometry literature hypersurfaces are referred to as
the Degree-d Veronese Embedding of a vector space xα ∈ P

n [6]. This results in a
degree-d surface satisfying the equation Sa(d)xa(d)

= 0.

Hypersurface Regular Dual DOF Embedding

P
2 x(A...A) x(A...A) → x(A...A) νd

2 P
νd
2

P
3 x(a...a) x(a...a) → x(a...a) νd

3 P
νd
3

Table 4. Degree-d hypersurfaces and their duals in P
2 & P

3

Dualization of a hypersurface is performed as the tensor adjoint of the symmetric
tensor form representing the hypersurface. This can be achieved by evaluating all the
cofactors of the tensor. If the tensor is singular then the corresponding surface is de-
generate which is to say that it contains a ruling. Surfaces that contain a ruling are not
irreducible and thus the dual does not exist. From this point on we will always consider
the hypersurfaces to be irreducible and thus the dual must exist.

The £nal feature type of interest is the curve embedded in P
3. Typically a curve

is thought of as the intersection of two or more surfaces, in which case it would seem
logical to depict the curve as the intersection of several surfaces in embedded P

3. This
however is not suitable for the purposes of reconstruction as the coef£cient ring for
the curve will contain terms from several different surfaces, which would be hard to
constrain in a practical setting. So for this purpose we represent the equation of a curve
embedded in P

3 as the degree-d embedding of the Plucker line xω ∈ P
5 (Table 3). This

results in a degree-d curve satisfying the equation Cω(d)xω(d)
= 0 we will refer to this

equation as the Chow Polynomial of the curve. Due to the redundancy of the Plucker
equation for a line the DOF of the Chow Polynomial is given as ξd

5 =
(
d+5

d

)−(
d+3
d−2

)−1
[5].

2 Linear Multiview Geometry

In this section we seek to review the multiview geometry of linear features. By linear
we envisage features of degree 1, namely points, lines and planes in P

2 and P
3 (Table

2 & 3). This review is by no means exhaustive (see [7]) however it does serve to de-
velop some of the mechanisms we use to specify the multiview geometry of curves and
surfaces in subsequent sections of this paper.

The two main problems we look to address are the triangulation of linear features
observed by two or more cameras and the camera resectioning problem. Resectioning
is the process of determining the cameras position through an arbitrary movement/s,
from the observed correspondences between features segmented in the images and their
corresponding location in the scene. It is also possible to resection the camera’s position
and orientation directly from the matching constraint tensors. We are more interested in
this method since it derives a solution via a direct closed form linear computation.
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2.1 Triangulation

Linear Projection Operators Generally it may be stated that the projection of a feature
xβ embedded in P

3 to its location in image m (P2) may be found up to an arbitrary scale
factor λm as λmxmα = Pmα

β xβ . Since all our geometry is projective we will usually
assume equality up to scale as a regular artifact of the vector spaces and denote the
relationship as xmα ∼ Pmα

β xβ . The range of projection operators for linear features is
given in Table 5, these operators assume that xβ does not intersect the camera center eβ

where Pmα
β eβ = 0, except for the last operator (Line-to-Point) which explicity assumes

that the line passes through the camera center and intersects the image plane in a single
point.

Type P
3 ∗

P
3

Point-to-Point xA ∼ PA
a xa -

Line-to-Line x[A0A1] ∼ P
[A0
[a0

P
A1]

a1] x
[a0a1] xA ∼ P

[a2a3]
A x[a2a3]

Line-to-Point xA ∼ PA
[a0a1]x

[a0ea1] x[A0A1] ∼ P
[a2
[A0

P
a3]

A1]x[a2ea3]

Table 5. Projection operators for linear features

Reconstruction Equations The reconstruction equations provide a form to represent
the triangulation of a scene feature observed in m images,




P1A
a x1A 0 · · · 0

P2A
a 0 x2A · · · 0
...

...
...

...
...

PmA
a 0 0 · · · xmA







xa

−λ1

−λ2

...
−λm




= 0 (4)

where the resulting nullvector of these equations presents a solution for the scene fea-
ture and the scale factors λm. The stack of camera matrices on the left hand side of
(4) is referred to as the joint image projection matrix (Pγ

a ≡ P1A2A...mA
a ) and can be

thought of as a vector of camera matrices that projects a common feature from the scene
(xa) to its joint image feature location (xγ ≡ x1A2A...1A).

The reconstruction equations have,

(
∑
m

(DOFm
i + 1) − (DOFs + 1))(DOFs + 1) − m + 1 (5)

DOF, where DOFm
i and DOFs denote the DOF of the mth image feature and scene

features respectively. Furthermore the reconstruction equations are rank-(DOFs +m),
which implies that any (DOFs + m) − 1 minor of the reconstruction equation must
vanish.
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2.2 Multiview Constraints

Mutliview constraints provide a multilinear relationship between projections of scene
features observed in two or more images. We show here the general method of deter-
mining the matching constraint for a set of views by an antisymmetrization of elements
from the reconstruction equations (4).

The Joint Image Grassmannian The approach to building multiview constraints stems
from the representation of a subspace in the Grassmann or anti-symmetric algebra. Here
we wish to £nd a ds-dimensional subspace for the scene (where the scene is embedded
in P

dw ), from the joint image projection matrix. This is achieved by antisymmetriz-
ing over ds + 1 of the joint image’s scene indeterminants, with corresponding unique
choices of any ds + 1 of the images’ indeterminants.

Iγ0...γds ≡ 1
(ds + 1)!

Pγ0
d0

· · ·Pγds

ds
εd0...ds ≡ Pγ0

[d0
· · ·Pγds

ds] (6)

Equation (6) is known as the Joint Image Grassmannian. The selection of the image
indeterminants γ0 . . . γds

from the rows of the joint image projection matrix determines
which images the resulting matching constraint will represent. The choice of rows obey
the simple rules that for an image to be included in the matching constraint, it must be
represented by at least one row, and less than di+1 rows (where the feature in the image
plane is embedded in P

di). This leads to well known sets of matching tensors (Table 6)
and also explains why there is at most 4-view matching constraints for points and lines.

Views Constraint
2 I[1A11A22A12A2x1A0x2A0] = 0

3 I[1A11A22A13A1x1A0x2A0x3A0] = 0[2A23A2]

4 I[1A12A13A14A1x1A0x2A0x3A0x4A0] = 0[1A22A23A04A0]

Table 6. Linear Matching Constraints for Points

There are many variations of the atypical matching constraints given in Table 6, see
[13, 7]. Closed-form solutions to the matching constraints of linear features are well
known [7].

3 Mutliview Geometry of Surfaces

In this section we present some novel theoretical work on the multiview constraints
of surfaces. The general formulation for the triangualtion problem follows the abstract
setting given by [9], however the extension into to the anti-symmetric tensor algebra and
the eventual matching constraints represents a new setting for theoretical framework.
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3.1 Triangulation

As in the previous section on the linear mathcing our £rst step in solving the triangula-
tion problem is addressing the nature of projection operators for degree-d hypersurfaces.
Since the camera is observing a surface the projection into the image results in the curve
formed by the intersection of the surfaces tangent cone with the camera center and the
image plane. This curve is known as the apparent contour (cA(d)

) and the curve formed
by the intersection of the tangent cone with the surface is called the contour generator.
The contour generator sweeps out the surface as the perspective of the camera changes.

We also know that [9] the degree of the dual surface in the scene will be the common
degree of the dual curves observed in the image planes. Algebraically the tangent cone
is denoted as Sa(d)

which is the dual surface thus the only projection operator of interest
is for the projection of degree-d dual hypersurfaces. The projection is given as cA(d) ∼
PA(d)

a(d) Sa(d)
We can also state that these projection matrices are the d-fold symmetric

powers of the dual point projection matrix and the dimensions of tensor are [(νd
2 +1)×

(νd
3 + 1)] respectively.

Since we are concerned with £nding the the equation of the surface generating the
apparent contour in the image. We must take the intersection of the dual hypersurfaces
tangent cone with the image plane. This leads us to the equivalent set of dual recon-
struction equations for degree d hypersurfaces,




P1A(d)

a(d) c1A(d) · · · 0
...

...
...

...

PmA(d)

a(d) 0 · · · cmA(d)







Sa(d)

−λ1

...
−λm


 = 0 (7)

again the resulting nullvector of these equations presents a solution for the dual surface
(Sa(d)

) in the scene and the scale factors λm.
We also know that the minimum number of image dual hypersurfaces required to

reconstruct the corresponding scene hypersurface is given as the lower bound of,

νd
3 + 1 ≥ m ≥ (d2 + 6d + 11)

3(d + 3)
(8)

[9] the lower bound m must be rounded up to the closest integer value. The upper bound
is the limit on the number of images for the resulting matching constraint. The DOF
of these reconstruction equations and their rank are analogous to those stated for (4).

3.2 Multiview Constraints

Firslty, we should note that several degree-2 matching constraints have been cited by
[11, 8, 3] using an equivalent dual formulation. We extend these results to the degree-d
formulation.
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Degree-2 Before we address the general formulation for the degree-d matching con-
straints for dual hypersurfaces, we will tred gently by outlining the concepts for degree-
2.

An application of (8) suggests the presence of degree-2 matching constraints for 2
through to 10 image projections. Again, the object in building the matching constraints
is select ν2

3 + 1 unique rows from the joint image projection matrix to make up the
matching constraints. The corresponding matching constraints are given in Table 7.

Views Constraint

2 I [1A
(2)
1 1A

(2)
2 1A

(2)
3 1A

(2)
4 1A

(2)
5 2A

(2)
1 2A

(2)
2 2A

(2)
3 2A

(2)
4 2A

(2)
5 x1A

(2)
0 x2A

(2)
0 ] = 0

3 I [1A
(2)
1 ···1A

(2)
5 2A

(2)
1 2A

(2)
2 2A

(2)
3 2A

(2)
4 3A

(2)
1 x1A

(2)
0 x2A

(2)
0 x3A

(2)
0 ] = 0

[2A
(2)
5 3A

(2)
2 3A

(2)
3 3A

(2)
4 ]

4 I [1A
(2)
1 1A

(2)
2 1A

(2)
3 1A

(2)
4 1A

(2)
5 2A

(2)
1 2A

(2)
2 2A

(2)
3 3A

(2)
1 4A

(2)
1 x1A

(2)
0 x2A

(2)
0 x3A

(2)
0 x4A

(2)
0 ] = 0[... ]

5 I [1A
(2)
1 2A

(2)
1 3A

(2)
1 4A

(2)
1 4A

(2)
2 5A

(2)
1 5A

(2)
2 5A

(2)
3 5A

(2)
4 5A

(2)
5 x1A

(2)
0 x2A

(2)
0 . . . x5A

(2)
0 ] = 0[... ]

6 I [1A
(2)
1 2A

(2)
1 3A

(2)
1 4A

(2)
1 5A

(2)
1 6A

(2)
1 6A

(2)
2 6A

(2)
3 6A

(2)
4 6A

(2)
5 x1A

(2)
0 x2A

(2)
0 . . . x6A

(2)
0 ] = 0[... ]

7 I [1A
(2)
1 2A

(2)
1 3A

(2)
1 4A

(2)
1 5A

(2)
1 6A

(2)
1 7A

(2)
1 7A

(2)
2 7A

(2)
2 7A

(2)
3 x1A

(2)
0 x2A

(2)
0 . . . x7A

(2)
0 ] = 0[... ]

8 I [1A
(2)
1 2A

(2)
1 3A

(2)
1 4A

(2)
1 5A

(2)
1 6A

(2)
1 7A

(2)
1 8A

(2)
1 8A

(2)
2 8A

(2)
3 x1A

(2)
0 x2A

(2)
0 . . . x8A

(2)
0 ] = 0[... ]

9 I [1A
(2)
1 2A

(2)
1 3A

(2)
1 4A

(2)
1 5A

(2)
1 6A

(2)
1 7A

(2)
1 8A

(2)
1 9A

(2)
1 9A

(2)
2 x1A

(2)
0 x2A

(2)
0 . . . x9A

(2)
0 ] = 0[... ]

10 I [1A
(2)
1 2A

(2)
1 3A

(2)
1 4A

(2)
1 5A

(2)
1 6A

(2)
1 7A

(2)
1 8A

(2)
1 9A

(2)
1 10A

(2)
1 x1A

(2)
0 x2A

(2)
0 . . . x10A

(2)
0 ] = 0[... ]

Table 7. Degree-2 Matching Constraint Tensors for Surfaces

In initial experimentation we have found that any combination of rows that meets
the aforementioned requirements for de£ning a Grassmann subspace is adequate to
construct the matching tensor. The most pertinent factor in selecting a number of rows
to form the matching constraints, is minimizing the size of the actual matching tensor.
The selection of k rows from an image space of size n will result in the size of associated
dimension of the matching tensor being

(
n+1

k

)
, so naturally values close to either n or

1 will yield smaller matching constraints.

Degree-n Finally, we can now see that an application of equation (8) will give the
upper and lower bounds for the degree-d multi-view constraints and an application of
equation (7) will generate the reconstruction equations for the problem. Any selection
of rows from the reconstruction equations meeting the aforementioned criteria of a valid
subspace, will be adequate to reconstruct the degree-d matching constraints.

4 Mutliview Geometry of Curves

In this section we will focus initially upon the triangulation problem, or more specif-
ically how the Chow polynomial may be solved resulting in a method to determine a
space curve from multiple image correspondences [9]. We will then extend the frame-
work for matching constraints to case of space curves.
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4.1 Triangulation

Determining a space curve from image correspondences can be achieved by £rst making
the simple observation that the equation for the resulting Chow polynomial is equivalent
up to a scale factor to the expression for the space curve when projected into the image,

xA(d) � PA(d)

ω(d) xω(d)
(9)

where the projection operator use here is the degree-d symmetrization of the (Line-to-
Point) operator given in Table 5. We see that the relationship given above will result in
νd
2 independant equations for each image curve which contribute to solving the Chow

polynomial, there are a total of νd
5 monomial coef£cients but only ξd

5 DOF. This means
that solving for a degree-d space curve requires image points from,

ξd
5 + 1 ≥ m ≥ d3 + 5d2 + 8d + 4

6d
(10)

images, where no more than νd
2 image points from any one image curve may be

used in the reconstruction.

4.2 Multiview Constraints

In this section we will sketch the general picture for the multiview constraints of space
curves. We follow exactly the path taken in the preceeding analysis for the multiview
constraints of surfaces.

Degree-2 By application of equation (10) we see that for degree-2 space curves the
mutliview constraints extend from 4 to 20 views. The 4 view constraint is particularly
appealing as it contracts exactly to a single scalar (0 in the ideal case). For degree-3
curves the matching constraints exist for 6 through to 50 views.

The general program that has been outlined for the calculation of the matching
constraints in the linear and surface cases can be used here in the case of curves to
realise the degree-d matching constraints.

5 Discussion and Future Work

The multiview constraints for surfaces have been simulated in MATLAB in the noise
free case however we are still currently working on an implementation of the multiview
constraints for curves. Future work will also consider the ef£cacy of the matching con-
straints in the presence noise. The major dif£culty in testing the constraints in a noisy
setting is translating a noise model into a real valued implicit functions coef£cients.
Progress in this direction is well advanced will be a feature of future work.

In the numerical simulations we found that any surfaces of degree greater than 3
had such large matching constraints associated with them that computation was very
expensive. In practice we don’t expect that higher degree curves and surfaces will be
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particulary useful for reconstruction purposes. This is because 4TH order polynomials
have a signi£cantly higher complexity than 3RD and 2ND order polynomials, as well
as an increase in the size of the corresponding vector spaces.

The are many effective algorithms to £t explicit/parametric cubic curves to 2D point
and derivative data [10], a 3RD order polynomial £tted in a piecewise fashion is capable
capturing the complexity standard edge string obtained from an edge £lter. Algorithm
9.10 from [10] is a good way set the complexity as parameter that can be traded off
against the accuracy of the segmentation. This method of segmentation of curves from
the images will form the basis for a practical assesment of the reconstruction and mul-
tiview constraints of curves. The process of implicitization [2, 12] is required to convert
the explicit polynomials from the segmentation into implicit polynomials.

Future work will involve testing of the constraints which have been presented in
the presence of noise to determine how well this formulation can cope with erroneous
segmentations and discriminate against mismatches. Also the problem of extracting the
camera matrices from the matching tensors will need to be analysed in greater detail.
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