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Abstract This paper presents a segmentation technique based on pre-
diction and adaptive region merging.

While many techniques for segmentation exist, few of them are suited for
the segmentation of natural images containing regular textures defined
on non-rectangular segments. In this paper, we propose a description of
regions based on a deconvolution algorithm whose purpose is to remove
the influence of the shape on region contents. The decoupling of shape
and texture information is achieved either by adapting waveforms to
the segment shape, which is a time-consuming task that needs to be
repeated for each segment shape, or by the extrapolation of a signal to
fit a rectangular window, which is the chosen path.

The deconvolution algorithm is the key of a new segmentation technique
that uses extrapolation as a prediction of neighbouring regions. When the
prediction of a region fits the actual content of a connected region rea-
sonably well, both regions are merged. The segmentation process starts
with an over-segmented image. It progressively merges neighbouring re-
gions whose extrapolations fit according to an energy criterion. After
each merge, the algorithm updates the values of the merging criterion
for regions connected to the merged region pair. It stops when no fur-
ther gain is achieved in merging regions or when mean values of adjacent
regions are too different. Simulation results indicate that, although our
technique is tailored for natural images containing periodic signals and
flat regions, it is in fact usable for a large set of natural images.

1 Introduction

Image segmentation is an essential tool for most image analysis tasks. In par-
ticular, many of the existing techniques for object-based image compression or
image interpretation rely strongly on segmentation results. According to [8], im-
age segmentation techniques can be grouped in three different classes: (1) local
techniques, (2) global techniques, and (3) split, merge and growing techniques.
The last family of techniques consider two regions to be merged if they are
similar and are adjacent or connected to each other.
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The segmentation algorithm presented in this paper is part of the third fam-
ily of techniques except that it is limited to splitting and merging. Following
SALEMBIER and GARRIDO [9], our algorithm relies on three notions, addressed
in this paper in the following order: a model for the description of a region’s
content, a merging criterion and a merging order.

Although developed independently, our method has a few similarities with
the work presented by PARK and Ra [7].

2 A region model

The region model defines how regions are represented. The major challenge is
to define the notion of texture because there is no unique interpretation of tex-
tures [10] and because one can rarely cope with signals defined on arbitrary
shaped windows.

When dealing with natural images, a segmentation technique should essen-
tially be able to handle flat regions, textures or disorganised regions. Segmenta-
tion techniques are generally not able to treat disorganised regions. Even worse,
most techniques restrict themselves to flat regions in which case the image is
first simplified.

2.1 Definition of texture

Texture is observed in many natural images. It can be seen as a the repetition of
basic texture elements called tezels or textons [5] made of pixels whose placement
obey some rule. If we restrict ourselves to periodic textures, there are essentially
two methods to describe these signals on arbitrary shaped windows: (1) adapt
waveforms to the shape of each region as proposed by GILGE et al. [4] or (2)
perform an extrapolation. We opted for solution (2) as solution (1) implies that
waveforms be adapted for each shape, which is time-consuming.

In this paper, we refer to texture as a signal that can be extended in the
spatial domain by an extrapolation mechanism (see Figure 1). Note that the ex-
trapolation does not need to be unique. Also the definition is open for any type
of extrapolation. For example, we may want to use texture synthesis methods
likewise to the method proposed by EFROS and LEUNG [1] to handle random
textures. Also, we could try to determine the periodic proportion and the ran-
dom proportion of textures (see for example [6]), perform two extrapolations and
combine the results. However, in this paper, we did not implement a mixed ex-
trapolation scheme because the extrapolation of random textures is particularly
slow.

In the next section, we propose to model regions defined on arbitrarily shaped
windows as a restricted set of spectral coefficients after extrapolation. The model
is effective for textures but it will be used to describe other types of regions as
well.

562



Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

Figure 1. Two textures (the left-hand side texture was provided by LANTUEJOUL).

2.2 A spectral representation of textures

Textures that are periodic in nature are well suited for a spectral characterisa-
tion. Unfortunately, in most cases the signal is provided on an arbitrarily shaped
window. Therefore we need to develop a model for texture defined on an arbi-
trarily shaped window or a technique that can remove the windowing effect. The
algorithm presented hereafter belongs to a family of descriptors that extrapolate
the signal to fit a rectangular window.

Let an initial texture signal be defined on the original window domain R,;
we assume that the texture is not known outside R,,. The texture signal is given
by p(x), where & = (x,y), and the window function w(x) associated with R,, is

defined by
_JlifxzeR,
w(@) = { 0 otherwise

The aim of an extrapolation is to enlarge R,, or, equivalently, to have more
locations & where w(x) is equal to 1. As such the extrapolation process may be
modelled as a convolution. Indeed, let f(x) be the function to extrapolate and
g(x) the values observed over R,,. The functions f(x) and g(x) are related by
the expression

9(x) = w(@) x f(z) (1)

With the transform formalism, the equation is equivalent to the convolution
G(u) = W(u) ®@ F(u) ()

It is clear from this equation that the desired spectrum F(u) is affected by the
window spectrum W(w). This is why spectral extrapolation techniques are also
referred to as deconvolution techniques. GERCHBERG [3] and other authors have
developed algorithms for the extrapolation of bandwidth-limited signals. Unfor-
tunately one can not generally assume that a texture is a bandwidth-limited
signal. Furthermore a deconvolution with respect to the spectrum analysis is an
iterative process (except for particular types of signals), which makes it time con-
suming. In our work, we have used the algorithm proposed by FRANKE [2]. This
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Figure 2. A 256 x 256 synthetic texture restricted to a flower shape and extrapo-
lated signals with respectively 3, 5 and 500 spectral lines (FOURIER coefficients) after
extrapolation.

method, called selective deconvolution, progressively selects the largest spectral
lines by iteration.

The selective deconvolution method produces a fairly satisfactory approxi-
mation of f(x) for textures. This is illustrated in Figure 2.

It should be to emphasised that the spectral transformation used for ex-
trapolation has to be equally sensitive to all directions, which means that the
DCT should be avoided. Therefore we have chosen the FOURIER transform. Our
experiments have shown that:

— a small number of spectral coefficients (typically 5%) is sufficient to extrap-
olate a regular texture, even if it results that f(x) slightly differs from g(x)
on R,,. This small number of coefficients is sufficient to describe and model
a region.
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Figure 3. Extrapolation of two original textures 512 x 512 (left) with 500 spectral
lines.

— outside the window, the extrapolation is more reliable for locations close to
R, and
— larger or convex windows provide better extrapolation results.

Ilustrations of the extrapolation on textures taken from the public VisTex
database are shown in Figure 3.

3 Segmentation scheme

Our segmentation scheme follows a bottom-up approach starting from an over-
segmented partition of the image. Initial partitions are obtained by the watershed
algorithm. The input image to the watershed is the result of BEUCHER’s mor-
phological gradient [11] in 8-connectivity thresholded to 5. Figure 4 shows the
contours of two initial partitions superimposed on the corresponding images.
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Figure 4. The contours of two over-segmented images.

It is usual for region merging techniques to be conditioned by the original
partitions. Therefore it is important to ensure that all contours have been iden-
tified.

The initial partition is used for the construction of an directed adjacency
graph G = (N, FE), whose nodes N and edges E represent regions and connec-
tivity links in space. Afterwards each edge will be given a merging value.

3.1 Merging criterion

The basis for merging regions is that, if the difference between an extrapolated
neighbouring signal and the original signal is smaller than the energy of the
original signal, regions should be merged.

Let us assume that R, and R,9 are two neighbouring regions. The knowl-
edge of p(x) on R, yields the extrapolated texture signal denoted f(x). We
extrapolate p(x) — p,1 (where g, is the statistical mean of p(x) on Ry1) in-
stead of p(x) to save time and to reduce the influence of the DC coefficient that
is the largest coefficient. After extrapolation, the signal f(x) is compared to
the original values of R,2. More precisely, we compare the original variance of
a region 02,[p — fiwa) to 025[p — prw2 — f], which is the residual energy after
extrapolation. When o2 ,[p — w2 — f] < 025[p — pw2], the extrapolation results
in an extrapolation gain EG defined as

EG:Uiz[P_Nwﬂ_Uiﬂp—liwz—f] (3)

From PARSEVAL’s equality, we observe that a similar gain is obtained in the
FOURIER domain or, more generally, in any spectral domain. However the quality
of the extrapolation and, hence the quality of the prediction, relies on the number
of selected coefficients. We have found that the average extrapolation gain for
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positive EG increases with the amount of selected coefficients, but the number
of extrapolations leading to positive FG decreases. As a compromise, we have
chosen to limit the number of coefficients to 10% of the area of the region to be
extrapolated, with an absolute minimum of 3, and maximum of 30 coefficients.
Also, we have observed that relying only on the variance leads to unsuitable
segmentation results. Therefore the statistical mean difference pia;rf = flwz — fw1
was used. Note that pq;rf is equal to the statistical expectation of p — f — pu1
on Rys2, as FEya[p] = tw2 and Eys[f] = 0. In order to obtain a merging criterion,
we adopted the following rules:

— very small regions should have a large probability for merging with larger
regions.

— small adjacent regions with low variance and close mean values should be
merged, even if EG < 0.

— EG is more suitable for merging than the mean difference.

— although E'G might be positive, regions should not be merged when pq;fy is
too large.

This led us to propose the merging criterion, called Merging Factor (M F) here-
after, that combines the effects of EG and pig; ¢

TEG >0 MF =aq (1- - £6— x tarr)
o'wz[pfﬂuﬂ] 5 B
clse if pair <, MF:QQW
else MF = —1

with g—; > 1. Four typical situations, summarised in Table 1, occur. The first
column corresponds to regions that have the same texture, while the first row
holds for regions with similar means.

EG>0 EG<LO0

pairs < B|Good extrapolation, close means:|No extrapolation gain, close means:
MF >0 MF >0

wairs > B|Good  extrapolation,  different|No extrapolation gain, different
means: MF < 0or MF >0 means: MF <0

Table 1. Typical combinations of EG and fa:fy-

3.2 Merging order

As a direct application of the defined merging factor, we have developed a region
merging segmentation algorithm. The proposed region merging algorithm and
merging order work as follows:
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Evaluate all the edge values of graph GG. Note that we have to evaluate both
the edges from R; to R; and from R; to R; as they differ.

Select the edge with the largest M F and merge the corresponding regions.

Update all the edges of regions previously connected to the merged regions.

Repeat steps 2 and 3 as long as the largest M F' is positive.

There are many possible strategies for extrapolation and merging but the
baseline is that the algorithm should favour regions with a large EG before
regions with similar means.

4 Simulation results

All the simulations were performed with the same set of parameter values:
ai/ay = 10%, 8 = 30 and v = 3/2 = 15. Figure 5 provides some segmenta-
tion results for natural images containing textures.

Images (a) and (b) show that the algorithm gradually merges regions be-
longing to the same texture; it stops when all regions have been merged. The
same behaviour is observed in images (d) where large areas in the roof and the
wall have been identified. Image (f) shows that textures with similar means but
different orientations are not merged. This was the expected behaviour when
choosing the FOURIER transform.

5 Discussion and future work

This algorithm does not perform object recognition, thus for example the shirt in
Fig. 5(e) and (f) is not segmented as a single object. The textured regions present
in the shirt detected by the proposed algorithm are all similar, but modified via
affine tranforms. Further work is needed to perform this analyis. However since
the number of regions is much reduced from the original, a region comparison
approach invariant under affine transform might be feasible.

The starting point of the segmentation is the result of a watershed, which is
debatable as the watershed uses edge cues, possibly producing too many small
regions from which extracting texture information might be challenging. In prac-
tice it doesn’t seem that this starting point is a problem.

The texture extrapolation method is relatively slow but the other techniques
investigated so far are slower still.

We plan to investigate the possiblity of using a more sophisticated, MDL-
based approach for region merging after extrapolation.

6 Conclusions

In this paper, we propose a model for the description of regions and a region
merging segmentation technique. The algorithm is based on a merging criterion
that compares the variances and the means of a signal to an extrapolated neigh-
bouring region content on the same support. It has been shown to work well for
images that contain flat regions or textures.
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Figure 5. Initial partitions (on the left) and final segmented natural images (on the
right).
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