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Abstract. Texture synthesis aims to define and reproduce discriminat-
ing image features. These features are used to associate with and dif-
ferentiate between two textures. Often texture is composed of a pattern
with an element of randomness in each feature’s appearance, position
and orientation. The goal is to imitate the sample texture in such a way
that sample and synthesised texture are perceived to be generated by
the same source. One of the recent texture synthesis methods selects an
output pixel by searching with its already generated neighbourhood for
a corresponding match in the sample image. The neighbourhood size is
fixed and blurring of texture features often results. Our method attempts
to avoid this problem by enabling a dynamic, accelerated neighbourhood
search. The window size varies with each output pixel and is determined
by the current neighbourhood intensity configuration.

1 Introduction

A texture exists as a surface description of an object. It is usually composed
of an oriented regular structure or a relationship relevant between constituent
texture elements. In computer graphics, the purpose of a texture is to depict
surface detail which does not necessarily occur in the geometry of the object
surface [4]. Mapping texture onto object models is a less intensive method of
graphical object design compared to explicit surface detailing. Texture synthesis
was initially introduced to eliminate repetition and visible seams evident in tex-
ture mapping inappropriately sized samples [10]. Tiling texture copies together
produces texture discontinuities once mapped onto the surface. On the other
hand, stretching the texture to cover a larger surface area can cause image dis-
tortion. Synthesising textures to any desired size will alleviate the shortcomings
of limited sized texture mapping.

Our approach is based on the work accomplished by Wei & Levoy [15] and
Ashikhmin [1]. They both use neighbourhood searching to find pixels with similar
neighbourhoods in the sample image to assign as the new pixel in the output
image. While Wei & Levoy’s approach tends to blend texture elements together,
the approach by Ashikhmin produces output that contains patches of the original
sample with visible seams. These are the dominant image artefacts found in
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the output images, and our approach attempts to avoid these shortcomings by
finding a compromise between these two approaches. We have implemented a
method that generates an output on a per pixel basis using an accelerated,
variable neighbourhood search.

1.1 Motivation and Applications

Synthesising textures to an arbitrary size is advantageous in computer graphics
and image processing. Generating novel views of the physical world from texture
samples is less scrupulous than recreating it from scratch [5]. Constrained syn-
thesis can be used to remove image artefacts; the surrounding texture is used as
the input sample and synthesised over the selected area. Boundary information
and a texture sample can be stored to allow image compression; each region
is reconstructed separately with its texture [6]. Texture synthesis can also be
extended to cover arbitrary 3D models.

Texture synthesis can be used to improve the artistic capabilities of graphical
designers. Recently, texture synthesis methods have been used to combine two
different textures together and transfer or swap textures between their corre-
sponding objects [5]. Texture transfer can, for example, give a polar bear the
skin of a orange. Texture mixing creates textured combinations such as moss on
a wall. This can be extended into 3D to create temporal textures, for example,
moss can creep or grow along a wall. However, this method of design cannot (yet)
emulate the interaction of the material it is representing with its surroundings,
for example, multiple ripples of water interference or shadows. Often, the size
and shape of the target object does not suit the texture sample available. The
sample can be used as a training example to generate an output, perceived to
be the same texture.

1.2 Overview

In the next section we discuss past texture synthesis methods with particular
interest in Wei & Levoy [15] and Ashikhmin’s [1] work. We describe our method-
ology in Section 3 and discuss our approach in Section 4. Section 5 covers our
results and in Section 6, we conclude with suggestions of further work.

2 Previous Work

The key to texture synthesis is to find what features and statistics must be
shared between two images to be perceived as the ‘same’ texture. Emulating
these features can give the impression that the same stochastic process pro-
duced these samples. Heeger & Bergen match histograms of multi-resolution
filter responses [8]. Bar-Joseph et al. match wavelet transforms decomposed into
a tree [2]. Portilla & Simoncelli use complex wavelet coefficients to constrain
their texture synthesis algorithm [14]. Efros & Freeman and Liang et al. match
patch edges [5,10]. Kwatra et al. initially match rectangular patches and use a
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graph cut method to calculate the optimal irregular patch shape to be pasted on
the output image [9]. De Bonet matches and shuffles regions at different resolu-
tions, sampling from the original decomposed texture corresponding to the same
resolution [3]. Efros & Leung, Harrison, Wei & Levoy, and Ashikhmin match
pixel neighbourhoods [6,7, 15, 1].

The Markov Random Field (MRF) is a popular model used to abstract the
complex properties of textures. This theory, in relation to images, states that
each pixel in an image has an independent local spatial property characterised by
its surrounding neighbours. Therefore, the generative process of textures in this
model is assumed to be stochastic, local, and stationary [10]. Several texture
synthesis methods [6,10,11,13,15,17] adopt the MRF model in their synthe-
sis process. Most of these approaches settle for an approximation to the more
time-consuming optimal solution. Due to the spatial locality of the sampling
procedure adopted by these researchers, the methods can be subdivided into
pixel-based and patch-based synthesis. Thus one can infer a pixel by analysing
its neighbourhood (pixel-based synthesis) or conversely, assign a neighbourhood
patch given a pixel (patch-based synthesis).

2.1 Patch-based Synthesis

Patch-based approaches apply the idea that once a pixel has been generated, the
next or neighbouring pixels have already been predetermined since each pixel is
characterised by its neighbours. Patches of the sample texture are pasted onto
the output image. The size of the patch must be large enough to encapsulate
the largest regular repeating pattern in the image. The shape of patch can be
square [5,10], rhombic [11], arbitrary [16], or optimally determined by a graph
cut method [9].

The arrangement of patches must preserve image fidelity by obscuring patch
seams and maintaining an element of randomness. Tiling patches with similar
overlapping edges together prevents image discontinuity. Patch edges are con-
cealed by blurring [10,16] or redefined by a minimum-cost edge function [5,
9]. Randomness can be preserved by arbitrarily selecting a patch from a set of
possible patch candidates. This approach is less computationally intensive than
pixel-based methods since synthesis is handled as a collection of pixels at a time
instead of one at a time. However, this approach can produce artefacts such as
image discontinuity caused by blending two features together located at shared
patch edges.

2.2 Pixel-based Synthesis

Pixel-based synthesis methods incrementally generate output pixels from coerc-
ing either a random noise image or an empty image to display similar intensity
statistics as the sample image. Typically, the new pixel is determined by evalu-
ating its neighbours and determining which pixel in the sample image has the
closest matching neighbourhood intensities. This sample pixel becomes the new
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output pixel thus the final texture only contains pixels originating from the
sample image.

Sample texture patterns are preserved in the output image by the size and
shape of the neighbourhood comparisons. Wei & Levoy [15] and Ashikhmin [1]
use an L-shaped causal neighbourhood where only already generated pixels are
used in the comparison. Efros & Leung [6] grow pixels from the centre, spiralling
outwards, using a square-shaped neighbourhood, but only including already gen-
erated pixels.

An image output artefact displayed by most pixel-based approaches is the
blending of texture elements. While patch-based methods preserve edge informa-
tion between texture objects, pixel-based methods tend to blur these features.
This produces the artefact of ‘blobs’ where texture features are fused or smudged.

Explicit pixel generation is often computationally expensive, requiring some
form of acceleration. Wei & Levoy [15] treat the search as a nearest neighbour
search using a tree-structured vector quantisation method (TSVQ). Each pixel
neighbourhood comprises a vector; input sample vectors are stored in a tree
determined by a generalized Lloyd algorithm. Output pixel vectors are compared
with that of the tree using a best-first search instead of an exhaustive search
(such as Efros & Leung’s method [6]).

Another approach to improve texture synthesis speed is to simplify the pixel
selection process. Ashikhmin’s greedy algorithm [1] restricts the search for a
match to a selection from valid candidates. He adopts the principles similar to the
patch-based approach where a pixel’s previously determined neighbours affect
its selection. A new pixel is generated by locating input pixels corresponding to
each neighbourhood pixel, and appropriately ‘forward-shifting’ to the candidate
pixel (controlled by the neighbourhood pixel’s position relative to the pixel being
generated). Therefore, the search for a match is reduced to a comparison of (at
most) the total number of neighbourhood pixels, instead of the entire image.
If the neighbourhood of the candidate does not lie entirely within the input
image, a candidate is selected at random. However, this method grows regions of
textures with visible seams between regions so, like patch-based synthesis, it is
only suited for natural textures composed of mostly high frequency information.

3 Methodology

One of the problems facing texture synthesis research is finding a balance be-
tween generating an output that looks too repetitive and synthesising an output
that is so random, it does not represent the original sample at all. To avoid
repeated copying of discriminating features, an element of randomness is often
introduced. Previously, this was achieved by randomly selecting a pixel or patch
from a set of candidates [1,2,5]. However, this randomness parameter must be
controlled to prevent the output texture patterns deviating too far from its sam-
ple.

Wei & Levoy [15] identify texture features by using a neighbourhood search
accelerated by TSVQ. Perhaps the blurring of object edges in the texture can
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be explained by their uniform window size used in each search. If the target
neighbourhood window lies between two elements containing edges, the match
found may contain intensity values that are an average of the target neighbour-
hood. This can be avoided by using a dynamic shaped neighbourhood window,
the size of which is dependent upon the neighbourhood intensities belonging to
the target pixel. If the size of the window is restricted to enclose a single or part
of a texture feature, then the match found would be one that closely reflects the
neighbourhood intensity values of the target pixel. However if the selection of
the window size is too small, not enough information is captured within that
window to distinguish it from the rest of the sample, and the resultant output
looks flat with little variance of colour. If the window size selected is too large,
the structure of texture features are better encapsulated, however computational
time is increased and blurring can result.

4 Our Approach

The selection of window size varies with each pixel being generated. We specified
the bounds of the variable window size to range from 2 to 10. Figure 1 illustrates
how these numbers relate to the width of the neighbourhood window. The shape
of window is causal, adapted from Wei & Levoy’s L-shaped neighbourhood. It
examines only already generated pixels to find a match. The output pixels are
initialised to noise. Each pixel is traversed in raster scan order starting from the
top left hand corner. The neighbourhood window is initially the minimum value
and the RGB intensities are compared to the average values. If the difference
between these two values exceeds a certain threshold (A) the window size is set
as its current size and a match is searched for. If it lies within the threshold
limit, the next pixel is encountered and the width of the window expands as it
reaches the final pixel corresponding to the current width. The order in which
the neighbourhood pixels are traversed is shown in Figure 1. When the window
size (w) is equal to 1, the pixels examined start from position 1 and increments
to last pixel corresponding to that size, in this case, position 4. The window size
increases to 2 and the pixels at position 5 onwards are processed.
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Fig.1. An example of causal neighbourhoods with window sizes w = 1 and 2 re-
spectively. Even though the actual maximum width of these neighbourhoods reaches
2w+1, the size w depicts the number of pixels spanning to the left, right and above the
candidate pixel. The grey pixel represents the pixel being generated. The surrounding
numbered pixels depicts the order in which the pixels are traversed to determine the
window size.
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To improve the efficiency of our algorithm, we used ANN to accelerate our
neighbourhood matching. ANN decomposes the data points into either a kd-tree
or a box-decomposition tree. In high dimensions, searching such data structures
for nearest neighbours perform significantly better with respect to time, than
a brute force method [12]. Given a degree of error (e) specified by the user, a
faster running time can be achieved. We used the kd-tree data structure since
it produced comparable results at a significantly less processing time than box-
decomposition trees (see Figure 3 for kd-tree synthesis results and Table 1 for
time comparisons).

Variables needed in the ANN search include the array of data points, total
number of points, dimension, bucket size, splitting rule, and maximum points
visited. The last three variables affect the time and accuracy of the search and
the default settings were used. The data array arrangement is illustrated in
Figure 2. The indices in the neighbourhood window correspond to the order in
which the pixels are placed in a vector. The processing is done using RGB values,
thus each pixel has three constituent values. In the example given in Figure 2,
the size of a vector of four pixels extends to twelve to cater for the RGB value
of pixels. Each pixel in the sample image has a corresponding neighbourhood
vector. The vectors are collected for each neighbourhood size and placed in the
corresponding kd-tree.

Vector of pixels corresponding
to this neighbourhood.
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Fig. 2. This figure illustrates how a neighbourhood arrangement corresponding to a
pixel is stored as a vector. The indices indicate the order in which the pixels are stored
in the vector. The extension of each pixel by 3 caters for its RGB value. Neighbourhood
vectors corresponding to each pixel is placed in a kd-tree.

Before any neighbourhood searching is conducted, kd-trees corresponding to
each neighbourhood size are determined for the texture sample using ANN. Dur-
ing the pixel generation phase, the appropriate kd-tree can be searched according
to the corresponding window size selected. The ANN search is fast and efficient.
It requires a specified error bound (€). This value determines how accurately
ANN searches for a match. A value of ¢ = 0 returns the exact nearest neigh-
bour. A value greater than 0 returns an approximate nearest neighbour and thus
introduces an element of randomness into the match found.
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5 Results

A few results gained from this approach can be viewed in Figure 4. The algorithm
was implemented in C++ and run on a Pentium IV 2.4GHz 512MB RAM PC.
We used an error bound of ¢ = 10 and all results were generated at 200x200.
We implemented a A detection method to determine the threshold value. This
value is responsible for determining the size of the window. It is defined by the
average difference between a non-edge pixel and an edge pixel. A Canny edge
detector determined the edges of the sample at a threshold of 0.5. The pixels
were then traversed in scan line order and an average of non-edge pixel intensities
was accumulated. Once an edge pixel was reached, the difference between that
average and the edge pixel was also accumulated and averaged over the whole
image. Specifying the wrong threshold value can send some parts of the pixel
generation to get stuck in the wrong search space and produce garbage; this is
similar to the problem raised by Efros & Leung [6] however the shape of these
clustered pixels have a characteristic jagged appearance. This may be due to the
direction of the pixel generation. Harrison [7] states that the direction in which
pixels are generated affects the quality of the output. The optimal direction is
dependent upon how and where a pixel is constrained by its neighbours.

Highly structured textures require window sizes that are large enough to
encapsulate the largest repeating feature. Figure 4(f) illustrates the effect of
specifying a window size that is too small. The feature elements of this texture
are captured, even the parts cut off at the edge of the image, but the structure
between these elements is not. By increasing the maximum window size to cater
for the pattern, this problem can be alleviated. However, this will require more
processing overhead, particularly memory usage and search time.

Fig. 3. A texture sample and its size is provided at the top of this figure. The results
below this sample display the effects of quality of output with varying error bound
values for the kd-tree data structure. Synthesis results are 200x200. (a) e =0 (b) € =
10 (c) € = 20.
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Kd-tree Kd-tree Bd-tree Bd-tree
€ ||Preprocessing|Synthesis||Preprocessing|Synthesis
0.0 4 secs 168 secs 11 secs 616 secs
10.0 4 secs 17 secs 11 secs 26 secs
20.0 4 secs 8 secs 11 secs 11 secs

Table 1. This table shows the preprocessing and synthesis times obtained for the
results belonging to kd-tree (Figure 3) and box decomposition tree (bd-tree).

In our approach, there is a sacrifice of quality for speed and efficiency. This
trade-off is captured in the error bound value, €, specified in the ANN search.
The effects of different error bounds with the output image is summarised in
Figure 3 and the times given in Table 1. As expected, the better output was
obtained from the smaller € value at the cost of time. The output generated at e
= 20.0 contained more noise producing a ‘fuzzy’ effect. On the other hand, the
results gained at € = 10.0 were comparable to that of ¢ = 0.0 at the fraction of
the time cost, hence we set € = 10.0 throughout our experiments.

Since the output image is initialised to white noise, early neighbourhood
measurements contain mostly noise pixels, which affects the quality of the output
image. Typically, a strip of pixels located on the top and left hand side of the
image are inconsistent with the rest of the output image. An example of this is
evident in Figure 3. However, this can be easily fixed by passing the algorithm
again over these sections.

6 Conclusion and Future Work

Our method is a compromise between the current work of Wei & Levoy [15] and
Ashikhmin [1]. This approach attempts to avoid image blurring of texture edges
of Wei & Levoy’s method and prevent seams evident in Ashikhmin’s algorithm by
allowing the size of the neighbourhood window to vary for each ANN search. We
have used a variable neighbourhood search to maintain local spatial consistency
within each texture feature. The size of the neighbourhood window is determined
by change in their intensity values from the average. Our results are comparable
to recent work but there is still room for improvement.

The window bounds unique to a texture can be measured during the pre-
processing phase when the texture edges have been located. Statistics gathered
from the edge thresholded image can assist in a educated guess of the optimal
minimum and maximum window sizes. Appropriate window sizes can prevent
the blurring of texture features and also encapsulate texture structure. The ma-
jority of an output pixel’s neighbourhood may correspond to a general texture
feature or area of the sample. Therefore the difference between non-edge pixels
and its next edge can be collected for each pixel since the difference between non-
edge pixels and pixel edges vary within each texture image. During the synthesis
phase, the majority location of a pixel’s neighbourhood in the output image can
be measured and the corresponding A (see section 4) value used accordingly.
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(d)

Fig. 4. Some results. Each pair contains the sample (top) and output (bottom). All
output images are 200x200. Samples sizes are as follows: (a) and (d) 96x96, (b) and
(e) 128x128, and (c) and (f) 192x192.
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