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Abstract. Application areas such as medical imaging or satellite imaging often
store large collections of similar images. Lossless compression techniques are
usually needed in such critical applications. Previous researches have introduced
the centroid method, which gets benefit from the inter-image redundancy ithe set
redundancyl. In this paper a new algorithm is proposed as an extension of the
centroid method. Experimental results with two sets of CT and MRI brain
images demonstrate the efficiency and superiority of the proposed algorithm in
respect to compression ratio.

1. Introduction

The field of digital image processing is continually evolving in two principle
application areas: improvement of pictorial information for human interpretation such
as in medical imaging, archeology and astronomy, and processing of scene data for
autonomous machine perception such as in processing of fingerprints, screening of x-
rays and blood samples.

Increasingly, medical images are acquired or stored digitally. This is especially true
of grayscale images that are used in radiology applications. These images may be very
large in size and number, hence compression offers a perfect mean to reduce the cost
of storage and increase the speed of transmission [1]. In addition, medical images must
be stored without any lose of information since the fidelity of the image is quite
critical in diagnosis. This requires lossless compression techniques. Recent techniques
for compressing images concentrate on how to reduce the redundancy presented in
individual images. Whereas few research has focused on how to get benefit from
redundancy between set of similar images which appears in many application areas
such as in medical images inside a hospital database or in geographical information
systems.

In this paper a new algorithm is proposed as an extension to the existing centroid
algorithm [2] for compressing a set of similar medical images. The rest of this paper is
organized as follows. Section 2 contains a review on related work. In section 3, the
proposed algorithm is introduced. The experimental results on CT (Computed
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Tomography) and MRI (Magnetic Resonance Imaging) data sets are presented in
section 4. Finally, conclusions are discussed in section 5.

2. Related work

Approaches for compressing similar images can be classified into two main categories.
The set redundancy category [2,8,9], which is based on predictive coding to get benefit
from the inter-image redundancy and statistical correlation between images. While the
second category defines different methods based on quadtrees for the representation
and manipulation of clusters of images [10,11,13,14,15,16].

2.1 Set Redundancy Based Approaches

The term set redundancy were introduced in [17] which is defined as: the inter-image
redundancy that exists in a set of similar images, and refers to the common
information found in more than one image in the set. This can be similar pixel
intensity in the same areas, comparable histograms, similar edge distributions, or
analogous distributions of features. In order to incorporate the concept of set
redundancy, a two- step procedure can be used. In the first step, the images are
decorrelated from the set by extracting the set redundancy; in the second step, the
images are compressed by using any compression method. The next sections introduce
different compression methods based on set redundancy.

2.1.1 The Min-Max Differential (MMD) method

The MMD method [8] creates a iminl and imaxi image from a set of similar images.
To create the imini image, MMD chooses the smallest value across all images for
every pixel position. Similarly, choosing the largest pixel value for every pixel
position creates the imaxi image. Then, the MMD processes every image in the set by
replacing the original pixel values with the differences from either the imini or the
imaxi image (whichever is smaller). This operation reduces the dynamic range of
pixel values, so that applying any standard entropy coder on the MMD-processed
images can improve the results.

2.1.2 The Min-Max Predictive (MMP) method
The MMP method [9] also uses imini and imaxi images such as in the MMD
method. The possible value of pixel P; is assumed to lic between min; and max;.
Neighboring pixels tend to fall in approximately the same area between the minimum
and maximum values. The position of every pixel between its corresponding minimum
and maximum values can be represented by ileveli L;
L; =N ((P; - min;) / (max; i min;)) (1)

Where N is the number of levels between the maximum and minimum values.
Neighboring pixels usually have approximately the same ileveli, so the ileveli values
have smaller variation than the pixel values. Therefore the ilevelsi are better
predictors for the next pixel values than the pixel values themselves. The MMP
method predicts levels using the formula:
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Li = (Lupper + Lleft) /2 (2)

Where L, is the level of the upper neighbor pixel and L, is the level of the left

neighbor. L;, min; and max; are used to predict a value for pixel P. The difference

between the predicted value and the original value is stored and compressed using
standard entropy coders.

2.1.3 Centroid method
The centroid method [2] depends on predictive decorrelation where an estimate of the
image is obtained and then subtracted from the original image. If the prediction is
efficient enough, the difference image will contain small values and has a laplacian
distribution with most of the values very close to zero.
For a set of k images with N pixels per image, the formula for predicting the value of a
pixel 7 in image j can be expressed as follows:

Ci; = my 3)

Where C;; is the predicted value and m; is the average value of position i across all
images. This model is simple but not very efficient. A more advanced model is also
proposed as follows:

Cirrj=my +x55-m; 4)
Dis1j = Xis1j i Cigy (5)

Where C;4; is an estimate at position i+/ in image j, x;; is the pixel at position 7 in
image j, m; is the average value of position i across all images, and D,,;; is the
difference value of position i+/ in image j between the original value and the
predicted one. The detailed derivation of equations 4 and 5 is shown in [2]. Eq. (4) is
so called the centroid method.

The problem with the minimum, maximum and average images is their sensitivity
to outliers [17]. The median image can be used instead of the average image in the
centroid method to reduce the influence of outliers. On the other hand, the set
redundancy methods are fast, lossless, easy to implement, and can compress and
decompress individual images from the set without requiring global calculations on the
whole set.

2.2 Quadtree Based Approaches

The quadtree [4,5] is one of the widely used structures for image representation. This
structure is efficient to store 2D images and has been frequently used in the field of
computer graphics [6] and content-based image retrieval [7]. A quadtree is built by
recursive division of the space in four quadrants or squares of the same size so that a
node of the quadtree represents a quadrant. The root node represents the initial
quadrant containing the whole image. The most widely known quadtree allows cutting
an image in regions or quadrants according to a given criterion. If an image is not
homogeneous (according to a particular criterion), the quadtree root has four
descendant nodes representing the four first level image quadrants. A node is a leaf
when its corresponding image quadrant is homogeneous; otherwise the node is internal
[3]. In general, the quadtree is unbalanced.
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2.2.1 Overlapping of hierarchical quadtrees

The overlapping mechanism is used to store images in sequence: when a new image i
is inserted, its quadtree overlapps the last quadtree of the sequence, i.e. the quadtree of
image i-/, if parts of the two image quadtrees have the same value. The quadtree i
reference common nodes of quadtree i-/. Other different leaf nodes appear with their
path from the root in quadtree i. This approach [14] uses pointers to reference nodes
and can be extended to linear quadtrees by storing node identifiers in B" trees and
apply overlapping mechanism to the B trees.

In this approach, reading an image is as much time consuming as using independent
quadtrees, i.e. one quadtree for each image. Any image insertion must be at the end of
the sequence and any modification in any image quadtree leads to a new quadtree that
must be stored at the end of the sequence. No quadtree deletion is permitted if its
quadrants are referenced by other quadtrees. Using pointers to reference nodes is
costly in managing memory space. Main areas of application are compaction and
delivery of video.

2.2.2 Inverted Quadtrees

Two inverted quadtrees are proposed in [10,13], called Fully (FI-Quadtree) and
Dynamic (DI-Quadtree). In those structures, a set of binary images is encoded in a
single quadtree. The FI-Quadtree [10] consists of a full quadtree where each node has
four children except the leaf nodes. Each node holds a bit string of maximum length #
for representing n images. Each bit is associated with a separate image. A black node
in the quadtree of any image is identified by a 1 in the bit corresponding to the image
in the corresponding node of the full quadtree. On the other hand, in the DI-quadtree
[13], each node of the full quadtree points to a list containing only the identifiers of the
images that have the corresponding black node in their quadtree. In comparison, the
DI-quadtree is dynamic because any number of images can be represented while in FI-
quadtree, number of images is limited to the length of the node bit string.

2.2.3 Generic Quadtrees

The generic quadtrees [11] are based on two principles of sharing of quadrant values
between images: explicit and implicit. Sharing is explicit if a quadrant value is stored
and associated with all image identifiers that share the same value. Implicit sharing is
built by constructing a tree structure called /mage Tree where images are arranged in
the tree according to their similarity. Image i implicitly shares a quadrant value with its
parent image if it is not explicitly associated with another value. The generic quadtree
is a single quadtree whose generic nodes represent the quadtree nodes of a cluster of
images. Each generic node n contains the information needed to rebuild the value of
the node n in each image quadtree. Each generic node can be seen as a table of two
columns and one or more lines. Each line / of a generic node » contains a list of image
identifiers and a value v of quadtree node. v is the value of node n in each image
quadtree whose identifier i appears in line /. a generic node can take the following
values, 1/ meaning that the node is internal iit has four descendantsi; black if it is
black leaf; white if it is white leaf; or i1 meaning that the node does not exist. This
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approach can be used to represent grayscale images by storing quadrant values
separately in another data structure like files.

3. Proposed Algorithm

The proposed Multilevel Centroid algorithm is a set redundancy based approach that is
following the concept of the centroid method [2]. The algorithm was tested using two
sets of medical images: CT and MRI and has shown an improved performance with
respect to compression ratio.

3.1 Multilevel Centroid Technique

In this section, the Multilevel Centroid algorithm is introduced. The proposed
algorithm applies the centroid method [2] on multilevel. Fig. 1 shows the multilevel
centroid model. In that model, given a set of similar images X = {x,x,O..xy}, the
corresponding median image (median;) is calculated. Applying the centroid method on
the given input set, the difference; set (difference images at level 1) is obtained.
Repeating the process recursively, the median, is calculated for the difference, set and
applying the centroid method again, the difference, set is also obtained. The process
stops when all levels are processed. The first level is exactly the same as the ordinary
centroid method, which produces a difference image by subtracting a predicted image
from the original one using level I median image. The last difference; set are
compressed using any standard entropy compression method. Only / median images
are needed and stored in order to compress individual images or used reversibly in the
decompressing process.

Multilevel Centroid equations are as follows:

Ci+1jy=my+ Dy - my; (6)
FDi+1,j,1 = Di+1,j fi Ci+12j,l (7

Where C;4;;,1s the predicted value of position i+/ in image j at level /, my;, is the
pixel value of position i+/ in the median image at level /, D;; is the value of position i
in the input image j, and FD,,, ;,is the final difference value between the predicted and
input value at position i + / in image j at level /. For maximum / levels, the model
equations are applied / times to compress any image.

Applying the centroid method on multilevel helps to obtain smaller values that are
much closer to the zero than applying only one level such as in [2], thus reducing the
dynamic gray level range that helps in improving the process of compression. Fig. 2
shows an example of applying two centroid levels on part of a CT brain image, where
Fig. 2-a is a 16x16 8 b/p original image data taken from a CT brain image. Fig. 2-b is
the 16x16 corresponding level 1 median image. By applying the centroid method in
level 1, the output difference image is obtained using equations 4 and 5 and can be
shown in Fig. 2-c with minimum and maximum values of fi§ and 9 respectively. Fig.
2-d shows the level 2 median image while Fig. 2-e shows the output difference image
after applying the centroid method in level 2 and it can be noticed that the minimum
and maximum values in the second difference image are fi3 and 3 respectively. This
example shows that level 1 difference image requires 5 bits / pixel while level 2
difference image requires 3 bits / pixel. On the other hand, with entropy measures,
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level 1 difference image entropy = 2.7500 while level 2 difference image entropy =

1.5000.
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Fig. 1. Multilevel Centroid Compression Model

796



Proc. VIlth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

-2[-1]0

2.7500)

-2/1]-1/1]0]0

-2|-3|-1|3|1/|-1]0]0

-2(1]0[-1]1/0]|0|0|0]|0|1

a- Original data

1]10/0/0(/0]0[0|0O]|-1]|-4|-1[1]4|1]{0]0

0{1|-1]1]0/0|0|0|0|-5]-1|0[|6]|0]-1]1
1]-1]1/0/0]0[0|0]|0]|-2|-4/6]-1]0]{0]|0

0|0j0[1]0f0[1]1

1/0(0]-1j0]|1[0[2]|-1]-2/|0]|0|1]-1]0 1

1]0]-1/0|/0|0[1]2]-1]-1|0|0|-1]0]|-1]-2

0/0/0]|0|0|0O]|1[1]0|-2{0|0|0]|-1]-1]-3
0/0[0|0[0]|0|0|0O|1]-3]0]|2]|0]|0O]|-1/|-1

0/0|/0]|0|0|-1]-1/1]0|0|-2|3[0]|0|0]|-1
0/0[0]|0[-1]-3|1[1[1]-1]0[1]1]0]|0[-1

0/0[0]|0][-5]|1|1[1]0]0]-2|3]|0|-1|1]1
0/0[|0]|-3]-1|1|1|0[0|0]|-7]|9]|-1|0]-1]0
0/0]-1]-3][1]1|0|/0|0|0|-8{9]|0]1|-1|-1

0/0|-3]-1]2[{0|0|0|0]|0|-8]9]|1

0/0]-5]2]1]0|0[1]-1]-1]-7]9]-1|-2][1]-3

1]-1]-3]1]/0]1/0|0|-1]-1]|-8/8]-1|-2|0|-5

c- Level 1 difference image (entropy

1]-1/0]0 |1

1]-1]0/1|-1/0[0]|0|0]|0|0|0|0[0O|O]|1
1]-1]0/0(/0]0[0|0]|0|0O|0O[0O-1]1]0]0

1]-1]0|/0 |01 [-1{1]-2]1|-1[1]0]-1{1]0
1]-1]0|0(0|1|-1]1]|-1]-1|0|1]|0|0]O|O

0/0|/0]/0|0|O[1|0O|-1)-1[1]0|-1[1]0]|0

-1/1(1]-1]0]|0]|1]0|-1-1[1]0|-1]1]|0|0
-1/1/0[1]-1]0]0|1|0|-2[1]|0|-1]1]|0|0

-1/1]0(1]-1/0[0]1[-1]1

-1/1]0(1]-1/0|0|0[1]0|-2|1[0[-1|1]0
-1/0]1/0{0|0|0|0[0]1[0]-1/-1{0|1]0

-1/1/0/0]/0|0]|0|0|0O[1][0]|-1]-1]0|1]|0

-2/2|0]/0]{0]|0]|0|-1|2|-1[1]-1]{0]0|-1|0

-3/3]0(0[{0|0|0|0[O0]|O[1]-1{O[-1]1]1

-3/3]0(/0[{0|0|0|0[-1]1[1]-1{0[0|0]|-1

-2/1/1]0]/0]{0]0|0|-1/1][0|0]|0]O|O-1

-2

£ge

6|/6[(7|7|8|7|7|7|6|6|6|6|6|6|6|7
6|6(6|7|7|7|7|7|7|7|7|7|7|6|6]|7

6|/6(6|6|7|7|7|7|7|7|7|7|6|6|6]|6
6/6/6|/6|6|7|7|8|7|7|6]|6|6|6|6|6
6/6/6|/6|6|7|7|/8|8|7]|6|6|6|6|6|6
6/6/6|/6|6|6|7|8|8|7|7|7|6|6|6|6

5/5/6|/6|6|6|7|8|8|7|7|7|6|6|6|6

5/5/5|/6|6|6|6|7|8|7|7|7|6|6|6|6
5/5/5|/6|6|6|6|7|7|8|7|7|6|6|6|6
5/5/5|/6|6|6|6|6|7|8|7|7|7|6|6|6

6/5/6/6|6|/6|6|/6|6|7|8|8|7|6|6|6

6/6/6|/6|6|6|6/6|6|7|8|8|7|6|6|6

6/6/6|/6|6|6|6/5|6|6|7|7|7|7|6|5

6/6/6|/6|6|6|6/6|6|6|7|7|7|6|6|5

6/6/6|/6|6|6|6/6|/5|/5|6]|6|6|6|6|5

7|/6/6|/6|6|/6|6|/6|5|/5|5|5|6|6|6]|5

b- Level 1 median ima

5/5|6|6|7|6|/6[/6|6|10[11]10/]6|5|5|6
6|5/6|6|/6(6|6[/6]|6[11|12[12/6|5|6|6
5/6|5|5|6|6|6|/6|/6|8(12|6|6|6|6|6
6|6/6|5|/5(6|/5[/5|6/9|9|6|5|6|6]|6
5|5/5|6|6(/6|6/5|6|7|6|6|5|6(6]|7
5/5|6|6|6|/6|/6/5/6|6(6]|6|6|6|7|9
5|5/6|6|/6|/6|6[/6|6|7|7|7|6|7|8]|11
5/5|5|6|6|6|6[7|7]|9(9|7]|6|6|7]|8

5/5|5|6|6|7|8[8[8[9[10]7|6|6|6]|7
5/5|5|6]|710/9|8|8(10(9]|8|7|6|6|7
6/5|6]|6]11110/9(8|8|9(12/9|8|8|7|6

6|6/6/9/10(9|8(8[8|9(17|8|8|7|8]8
6(6|7]10/]9/8|8|7(8|8[17|8]|8|7|7]|7

6|6/9(10/8(8|8[8|8|8(17|8|7|8]9]|8

6/6(1119|8|8|8|7|7|8]16/7|8[10/9 |11
6|6/9(8|8|7|7|7]|7]|8]|16/8]|10/12]12|16

0|0|0|0|-1[1]0[0]|0|-4|-1/1]4]|1]0]-1
-1/1/-1]0]|0]|0|0|0|0|-5|-1|0|6|0|-1]|0

0[-1]1]0|0|0|0|0|0|-2|-4|6]|0|0|0]|O
-1/0/0[1]{0]-1]1|0|-1]-3]0[3]|1|0|0|O

0/{0[0|-1/0[0]|O|1]-1[-1{1|0|1]|-1]0]-1

1]0(-1]0|/0|0|0[1]-1/0]|0|0|0|0]|-1]-2

1{0]-1]0|/0|0|0[0|0[-1]0|0O|1|-1]-1]-3

110]0|-1/0|0]0|-1{0]-2|0|2[1]0]|-1]-1
1]10(0]-1/0|-1|-1]|0|0-1]-1{3|1[0|0 -1

1]10(0]-1[-1]-3[1[1]0[-2|1[1]1[1][0]-1

1]11/0]{0|-5{1]1[1]0|-1]-3/3|1|0|1]1
110]0|-3|-1(1]1]0|0]-1]-8/9|0[1]-1]0
2(0]-1]-3]|1|1|0[1]-1]0[-9]9]0|1|0]|0
3|0(-3]-1/2]|0|0[0]|0[0[-9]9|1|-1]-1]1
3|0(-5(2|1]0|0[1]0|-1]-8/9]-1]|-2]1

3/0]-3]/1]0|1/0]|0|0|-1]-8|8|-1]-2|0|-4

ge (entropy = 1.5000)

Fig. 2 Multilevel Centroid example on a 16x16 CT brain image
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4. Experimental results

The performance of the proposed algorithm was tested using 10 512x512 brain CT
images, and 10 256x256 MRI brain images. Figures 3 and 4 show the test images used
of each group. Both group of images are 8 bits/pixel gray-level images, each set of
images are similar to each other, and are the same test images that were used by [2] in
testing the centroid method. They were collected at M.D. Anderson Cancer Center in
Houston, Texas out of a small image database with 51 CT brain images and 57 MRI
brain images, from random patients of both sexes, different ages, and a variety of
pathological conditions [2]. Each method was tested in combination with the most
widely used entropy-based compression techniques [12]: Huffman encoding and
Arithmetic coding.
The compression ratio is defined as
C = original image size / compressed image size ®)

The multilevel centroid algorithm has been tested on different levels, starting from one
level which is identical to centroid method [2] and up to three levels, that to
demonstrate the performance of the new algorithm in different levels.

4.1 CT Experiment Results

Table 1. shows the experimental results of the average compression ratio achieved
when applying the traditional centroid method [2] and the proposed multilevel centroid
algorithm using two and three levels on the ten CT brain images shown in Fig. 3 using
Huffman and Arithmetic entropy encoders. It can be shown that the compression ratio
improvement range of /evel-2 is about 38% to 40% while level-3 is about 19.5% to
21% in comparison to the centroid method[2].

The improvement of using the multilevel centroid method is 160% and 127% for
both /evel 2 and level 3 respectively in comparison to standard Huffman compression
method. Meanwhile, the improvement in comparison to Arithmetic compression
method, is about 121% and 88% for level 2 and level 3 respectively.

CTO8
Fig. 3. CT brain test images
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Huffman Arithmetic

CR CR
Regular compression method 1.3790: 1 1.7010:1
Centroid method [2] (1 level) 2.5940: 1 2.6734 :1
Multilevel Centroid (2 levels) 3.5824 :1 3.7521 :1
Multilevel Centroid (3 levels) 3.1310:1 3.1978 : 1

Table 1. Average compression ratio of CT images

4.2 MRI Experimental Results

Table 2 shows the experimental results of the average compression ratio achieved
when applying the traditional centroid method [2,17] and the proposed multilevel
centroid algorithm using two and three levels on the ten MRI brain images shown in
Fig. 4 using Huffman and arithmetic entropy encoders. It can be shown that the
compression ratio improvement range is about 6.6% to 9.8% for level-2 while for
level-3 no improvement has been achieved. The achieved compression ratio is small
with respect to the CT images due to the low signal to noise ratio of the MRI images.
The improvement of using the multilevel centroid method is 36% and 22% for both
level 2 and level 3 respectively in comparison to standard Huffman compression
method. Meanwhile, the improvement in comparison to Arithmetic compression
method is about 26% and 13% for level 2 and level 3 respectively.

MRI06 MRI07 MRIOS MRI0O9
Fig. 4. MRI brain test images

Huffman Arithmetic

C.R C.R
Regular compression method 1.2940: 1 1.4040:1
Centroid method [2] (1 level) 1.6500 : 1 1.6097 : 1
Multilevel Centroid (2 levels) 1.7589 : 1 1.7678 : 1
Multilevel Centroid (3 levels) 1.5786 : 1 1.5826 : 1

Table 2. average compression ratio of MRI images
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5. Discussions and Conclusions

Testing the new algorithm on CT and MRI test images has shown that applying the
centroid method recursively on more than one level improves the average compression
ratio. Level 2 gives the best results while level 3 does not give further improvements.
The objective of the algorithm is to reduce the dynamic range of gray-level values to
improve compression performance; this is achieved in level 2 difference image
values, while in level 3 the difference values become more sensitive to change, as the
prediction model does not predict close values to the original data, thus obtaining more
overhead than level 2.
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