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Abstract. A novel approach to the automatic detection of fault surface images
in 3D seismic datasets is presented. Based on the premise that seismic faulting
introduces discontinuities into the rock layering (that is, the horizons), a
coherency measure is used to detect points of significant horizon discontinuity.
A highest confidence first (HCF) merging strategy is then combined with a
flexible surface model to estimate the 3D fault surfaces iteratively.

1. Introduction

Largely fuelled by the petroleum industry, major resources are targeted at the problem
of imaging underground rock structures. Using acoustic reflection technology, large
3D datasets can be generated showing the changes in acoustic impedance as a
function of depth. Most seismic reflections in a 3D seismic dataset are manifestations
of rock layering, or horizons. These represent the subhorizontal sedimentary layering
within petroleum-bearing sedimentary basins. A typical vertical 2D slice through a
3D data set is shown in Fig. 1. (a). In this, the depth below ground is shown
vertically, with the horizontal axis representing a horizontal position on the ground.
The barcode-like pattern clearly shows the sedimentary layers of the rocks. To the
geologically-trained eye the patterns present in these 3D data sets provide useful
insights into the rock formation and geological structure, as well as such things as the
location and shape of geological structures in which hydrocarbons are trapped.

Due to the complexity and size of these data sets it is perhaps not surprising that
image processing techniques have been brought to bear on a number of 3D seismic
data interpretation problems. Most notable of these are horizon-trackers [1]. In this
context, horizons are surfaces representing individual sedimentary layers of rock.
Referring to Fig. 1(a), each black and white stripe represents an horizon (noting of
course that the horizon is 3D not 2D). A number of horizon trackers have been
successfully developed, and commercial products are available exploiting this
technology. Research has now moved to the more difficult problem of seismic fault-
detection. A fault is caused by the near-vertical, relative movement of adjacent rocks,
resulting in the termination of horizons. This effect is shown in Fig. 1(b).
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Fig. 1. (a) 2D slice of 3D seismic data set, (b) Illustration of a seismic fault
(highlighted)

Seismic data sets typically contain a large number of faults at many different spatial
scales. Knowledge of the location of the faults is critical to understanding a
geological system. One effect that faults have, which is of real commercial
significance, is that they act as membranes to the movement of hydrocarbons.
Therefore having a good understanding of the fault positions is critical for the
effective planning of drilling sites in order to maximise output efficiency. However,
despite the significant progress in the development of horizon autotrackers, current
approaches for épickingi faults are largely manual, and involve laborious hand-
picking of discontinuities on a slice-by-slice basis, one fault at a time. This is time
consuming resulting in hundreds of man-hours of work, performed by trained
geologists. It is estimated that for every six months saved in the work leading up to
the onset of production from a new oilfield, 5% will be saved from the total
production bill. Hence, there is a strong financial imperative for this work. Our
proposal is for an automatic strategy for fault surface detection [2,3]. In practice this
proves to be an extremely difficult problem to solve due to noise, imaging artefacts,
and large numbers of interacting faults at different spatial scales.

2. Proposed Approach

The proposed approach aims to exploit the idea that the presence of seismic faulting
will result in discontinuities in the horizons. Detection of the consistency of the
horizons constitutes the first step of the process. Following this, small planar patches
representing small parts of the fault surfaces are generated. Finally, these small
planar patches are merged into larger surfaces, using a highest confidence first (HCF)
merging strategy. These steps are described in more detail in the following sections.
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2.1 Semblance Matching

Firstly we make the assumption that seismic horizons can be modelled as locally
planar, in the absence of seismic faulting. For a given point (x,y,z) on the image, this
assumption is then tested. This is done by considering a series of 4 slices of seismic
data, centred around (x,y,z), orientated with a normal n. This is illustrated in Fig. 2.
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Fig. 2. Illustration of # slices of data, orientated with normal n, centred around point
(x.y,2)

The data contained in the w by w array of interpolated data for slice » (0<r<h-1) is
represented by the vector v,. A normalised measure of the data variability averaged
over the 4 slices is then computed using:
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where the normal n is the estimated localised normal to the seismic horizons
estimated from the structural tensor [5] as follows :
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where u,, u,, u., are the respective seismic image gradients, G5 is a Gaussian kernel,
&*1 is the convolution operation, and n is the eigenvector corresponding to the largest
eigenvalue of 7.

823



Proc. VIlth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

The net result is a semblance map S which gives a measure of horizon continuity,
with S(x,y,2)=0 representing the worst case fit, and S(x,y,z)=1 indicating the ideal
horizon continuity case. This semblance map, however, is only based on local
constraints, given by the dimensions of the box used for the estimation (A*w*w). As
fault surfaces, by definition, are not isolated phenomena, we can use this fact as an
addition contextual constraint. In practice this can be achieved by applying a directed
spatial filter to the semblance map S, as a post-processing step. The filter kernel is
directed to concentrate the filtering action along the direction of the fault surfaces,
which in turn is estimated using the same procedure as that used to estimate the
normal to the horizons (using equation (2), but this time using the semblance map and
not the raw seismic data). The filtered result, S, is illustrated alongside the original
seismic slice in Fig. 3, and shows good correlation between the areas of faultiness on
the left image, with darkened areas (lower semblance match) on the right image.

(b)

Fig. 3. (a) 2D slice of seismic data, (b) Equivalent semblance match (darker areas
indicate increasing horizon discontinuity)

2.2 Patch Estimation

The semblance data is then thresholded against a pre-defined threshold. This is done
on a point-by-point basis, with points having a semblance value below a predefined
threshold being labelled as fault points. This 3D binary map of fault points is then
spatially sub-sampled to give a set of seed points as shown in Fig. 4.
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Fig. 4. Seed points overlaid onto a seismic slice

Given a set of seed points, these can be grouped into small planar patches,
representing small sections of a fault surface. More formally, for a set of seed points
P, a neighbourhood relationship is defined, so that two points p; and p, taken from P
are neighbours if they fall within a spatial distance d.

p € N(p,) and p,e N(p) if |p, - p,|<d A

where N(p,) represents the set of points neighbouring p,.

A proposed planar model centred around each point, p,€ P is generated based on p,
and all of the neighbours of p,. A compatibility function C(p,) gives an indication of
how well a group of points, centred on p,, would be represented by a planar model,
where,

>.C(p,.p,)

C(Px) — PyeN(p,)
#N(p,) 4)

This results in the mean compatibility value between p, and all of its neighbours,
where C(p;, p,) defines the compatibility of a pair of points p, and p, and can be
calculated as:

C(p,.p,) =(1— —|ny.rmnx.ny|) (5)

where n, and n, are the estimated normal unit-vectors to the points p, and p,
respectively (as calculated earlier), and r is the unit position vector between p, and p,.
C(p, p,) tends towards unity when the estimated surface normals to the points p, and
p, line up, and are perpendicular to the position vector between p, and p,.

Starting with the planar model with the corresponding highest confidence value,
the planar model is constructed, and the points removed from P. This is repeated until
the confidence value of all remaining clusters is below a pre-specified threshold.

n r
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2.3 Surface Merging

Although a planar model can well describe a small patch of a much larger fault
surface, it is inadequate for describing larger segments, or complete faults. To
describe larger fault surfaces we make use of a combined parametric and residual
field [4], the parametric model (in our case planar) models the basic structure of the
fault surface, with the residual field modelling the surface irregularities and curvature.

More formally, a planar model is described by a set of vectors {€2,, €y, Q,, Q,},
where €., Q, and Q,, are mutually perpendicular vectors, with €, representing the
normal to the plane. A known point on the plane is denoted €2,, and represents the
approximate centre of the subsequent fault surface model. This is illustrated in Fig.
5(a).

In combination with this planar model is a residual field, constructed using a 2D
mesh of vectors, normal to the plane and of varying lengths (see Fig. 5(b)).
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(b)
Fig. 5. (a) Illustration of the planar model, (b) Planar model plus residual mesh field

The resultant surface is then formed by interpolating this mesh, an illustrated in Fig.
6.

Planar Model (side view)

Surface Model (side view)

S\

Residual Field

Fig. 6. Illustration of the surface formation as an interpolation of the residual field
overlaid onto the planar model
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Given a set a points, P, a surface model can be generated by firstly computing the
planar model based on a simple least squares fit of the points in P. The distance of
each point p,€ P from the planar surface is then computed, and is denoted €,. The
residual field can be described as a mesh of vectors M, as shown by the arrows in Fig.
5(b). The end position of the (i, /)" vector in M will then be of the form,

m,  =[Q, +iAQ +jAQy]+f,.,an (6)

where f;; represents the length of the vector m;; [QHAQ+ jAQ,] is the start
position, on the plane, of the vector corresponding to the index (i, j), and A is a
constant which specifies the residual field mesh spacing. The values of f;; for all
values of 7 and j can then be calculated as a weighted average,

> ew(p,)
J?,,- _ PP @)
> w(p,)

pEP
where w(p,) is a weighting function which diminishes with distance,
w(p,) =exp(-a’/ o7 (®)

for which  is the distance between the point p, and the point [Q,+iAQ,+ jACQ,]. The
net result is a completely defined fault surface made up of a combination of the planar
and residual models.

Given a surface model definition, a merging strategy based on the HCF principle is
adopted, in much the same manner as in the last section. Firstly, all of the planar
patches from the previous section are promoted into surfaces. All possible pairs of
surfaces are considered for merging, with a compatibility function for two surfaces s;
and s, defined as,

K+ mean(‘g(sl)‘)+ mean(‘g(sz)‘) 9)

C(sy,8,) = mean(\é‘(Sl &SZ)D

where mean(|e(s,)|) is the mean residual field magnitude value, (s; & s,) represents the
combination of surfaces, and K is a constant which encourages small surfaces to
merge.

The merging of surfaces is continued iteratively until the confidence value falls
below a predefined value.

3. Results

Natural fault systems are present at a wide range of spatial scales, from faults that
cover the entire data set under consideration, to faults that are smaller than the spatial
resolution of the data. Our aim is to estimate the set of large faults that make up the
general structure of the fault field. In order to evaluate the performance of the method
a manually labelled set of fault surfaces have been identified by a geologist. An
example set or results showing vertical 2D slices of the seismic data are presented

827



Proc. VIlth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney

providing a comparison between the automatically generated results produced using
the proposed method, with manually labelled images. These results are shown in Fig.
7, with the automatically generated and manually generated results overlaid in white
and black respectively. It should be noted, of course, that the lines shown on the
figures are the result of slicing the surfaces. In effect, the surfaces can be imagined
coming out of, and going into the page.

Fig. 7. (a) Estimated faults, (b) Equivalent, manually labelled faults

As can be seen from the comparative results there is a broad agreement between
the placement of many of the faults from the automatic detection and manually
labelled methods. A 3D view of the detected surfaces along with the equivalent
manually labelled faults is shown in Fig. 8.

The proposed method performs well at detecting the larger faults, although it misses
some of the smaller, less well-defined faults. Problems can also occur if two faults
are spatially very close together. This can result in over-merging of faults, the net
result being one surface poorly representing two faults.

4. Conclusions and Future Work

A method has been presented to tackle the difficult and resource consuming task of
fault detection in 3D seismic datasets. Based on a multi-stage approach, it first
detects points of horizon discontinuity, and progressively groups these points into
larger surfaces. The final surface representation is a combined parametric and
residual field model, which allows for a highly flexible surface representation.
Comparative results with manually labelled faults show promising results.

One of the key questions not addressed in this work is that of combining the
automatic fault detection approach with some element of human input, to give a semi-
automatic fault detection tool. We believe that such an ability to edit, refine, direct, or
impose prior constraints on the problem could provide considerable productivity gains
over and above a manual approach, whilst allowing the flexibility required for
complex data sets with low signal to noise ratio and multiple interacting faulting.
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(b)
Fig. 8. (a) Estimated faults, (b) Equivalent, manually labelled faults
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