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Abstract. This paper proposes a new adaptive wavelet-based Mag-
netic Resonance images denoising algorithm. A Rician distribution for
background-noise modelling is introduced and a Maximum-Likelihood
method for the parameter estimation procedure is used. Further dis-
crimination between edge- and noise-related coefficients is achieved by
updating the shrinkage function along consecutive scales and applying
spatial constraints. The efficacy of the algorithm is demonstrated on both
simulated and real Magnetic Resonance images. The results is shown to
be promising and outperform other denoising approaches.

1 Introduction

In Magnetic Resonance Imaging (MRI), there is a trade off between the signal-
to-noise ratio (SNR), spatial resolution and acquisition time required by clinical
application. The acquired complex dates is known to be corrupted by white
noise. The noise contribution to each of real and imaginary parts of k-space
date are additive Gaussian and to be uncorrelated, however the corresponding
noise in magnitude MR image is Rician, which is signal-depending. Some of the
noise originates in the acquisition hardware, others are of physiological origin.
These noise artifacts affect the quality and interpretation of medical image date
in varying degrees. Therefore, it is important to take advantage of useful date
while simultaneously reduce noise artifacts.

Numerous approaches to recover Magnetic Resonance image from its noise
have been proposed, which starting from the classic (e.g. Wiener filtering [11])
to the more modern, and usually non-linear, such as wavelets analysis. Appli-
cation of wavelets for denosing of MR images has been pioneered by Weaver
et al[l]. They applied their scheme on MR images of the human neck which
reduced noise from 10% to 50% without reducing edge sharpness. A recent ar-
ticle by Wood and Johnson[13] employed wavelet packets to treat the real and
imaginary parts of MR date separately, but this method would induce the distor-
tions of both phase and amplitude. Some methods combining wavelets analysis
with Wiener filtering algorithm have been developed. Alexander[8] developed
a wavelet domain Wiener-type denoising algorithm that analyzes the real and
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imaginary parts together as a complex signal. Nowak[6] used wavelet domain fil-
tering on the square-magnitude image, and employed a threshold scheme based
on a wavelet domain analog of the classical wiener filter.

In the above application of wavelet denoising of MRI date, the denosing was
performed on the each component of the complex MR dates separately or to-
gether, and the noise was treated as Gaussian. In this paper, we propose a new
adaptive wavelet-based Magnetic Resonance images denoising algorithm on the
image themselves. Rather, Henkelman R.M [7] has demonstrated that the corre-
sponding noise in magnitude MR images is Rician not Gaussian. This assumption
applies more correctly to the magnitude images. A Maximum-likelihood (ML)
method for the parameter estimation procedure is used. Further discrimination
between edge- and noise-related coefficients is achieved by updating the shrink-
age function along consecutive scales and applying spatial constraints. Finally,
the efficacy of the algorithm is demonstrated on both simulated and real Mag-
netic Resonance images.

2 Methods

The most common method for acquiring MR image is to sample the object of
interest in the k-space, and the reconstruction technique in MRI is to computer
the inverse discrete Fourier transform (DFT) of the raw frequency-domain date:

y[m,n] = (s[m,n] cos(8]m, n|) + ngr|m,n]) +
i(s[m, n] sin(0[m, n]) + nrar[m,n]) (1)

Here s denotes the signal of interest, and nrg and nyys denote Gaussian white
noises with variance o2 in real and imaginary channels, separately. 6[m, n] rep-
resents the phase error in the m,n-th pixel. From Eq.(1), we can obtain the
magnitude of y[m,n] through the square-root of the sum of two independent
Gaussian random variables;

lylm, n]| = [(s[m,n] cos(6[m,n]) + nrrlm,n])* +
(s[m, n]sin(@[m, n]) + nram, n])Q]% (2)

In this paper, we mainly focus on methods of denoising for the images obtained
from magnitude reconstruction.

2.1 Wavelet Shrinkage

In this paper, we perform the image multiresolution decomposition by a re-
dundant wavelet transform, and the 2-D wavelet transform decomposition uses
only two detail images (horizontal and vertical details). We first use the term
2-D smoothing function 6(z,y), whose integral over z and y is equal to 1 and
converges to 0 at infinity, to define two wavelet functions given by:

0 0
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The wavelet transform of f(z,y) € L*(R?) at the scale 2/ has two component
given by:

W3 f(x,y) = f(@,y) * P4, (2, y) (4)

Where ¢}, (z,y) = (37)*0" (&, %) j =1,2. Thus the multi-resolution wavelet

coefficients are as following:

Vg = [nga [z, y), szj f(z,y)] (5)

The edge magnitudes can be calculated from the image gradient as follows:

My f(2,9) = /(W) 1) + (W3, f)? (6)
The edge orientation is given by the gradient direction, which is expressed by:

Wg%f(x,y))

Wavelet shrinkage is a well known approach for noise reduction. It estimates
the degree about the coefficients contaminated by noise and introduce some mea-
surement, such as probability and degree of membership, to gain the shrinkage
proportion. In this paper, we propose an updating shrinkage method based on
wavelet multi-scale decomposition and its local adaptivity. For each scale, we
aim to find a nonnegative and nondecreasing shrinkage function g; (0 < g < 1)
in order to update the wavelet coefficients W' and W? according the following
rule:

Ay f(z,y) = arctan < (7)

ngf’(m,n) = Wzlﬂf(m’n) * gj<m7n) (8)

Where ¢ = 1,2. g;(m,n) is the shrinkage factor. g;(m,n) = g;[Ma; f(m,n)]. We
will analyze how to obtain this function in the following sections.

2.2 Mixture Model

By analyzing the magnitude image M»;, we find that some of these coefficients
are related to noise and others to edge. We assume that the real and imaginary
parts of these complex components are independently Gaussian distribution with
the noise variance oy,0isc. The probability density functions (p.d.f) of the noise-
related coefficients is modelled as random variable following a Rician distribution
of the squared root of the squared-sum of Gaussian random variables:

M, (S AM
. i G i
fj(Z»Unoise) = 0_2 4 € T noise IO( 2 )U’(Mz) (9)

Here Ij is the modified zeroth-order Bessel function of the first kind. M; denote
the ith date point of the magnitude image. The unit step function u is used to
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indicate that the expression for the p.d.f of M; is valid for only nonnegative val-
ues. Furthermore, Parameter A is given by A = /A% + A%. From Eq.(9) we can
find that in low intensity regions of the magnitude image the noise distribution
tends to the Rayleigh distribution, while in regions of high intensity tends to a
Gaussian distribution.

In practice, the noise-free images typically consist of homogeneous regions
and not many edges. The wavelet coeflicients W21j and W22] related exclusively
to edge is only a small proportion of the intensity frequency histogram. Hence,
for simplicity, we could approximate it by a simple Rayleigh model:

2

M?
. M; —( — )
fJ'(ZvUed!JE): 5 € *cage (10)
Uedge

The noise- and edge-related coefficients can be combined into a mixture model:
fj (Z) = wfzoisefj(i’ Unoise) + (1 - wfloise)fj (Z’ Uedge) (11)

J
where w;, ;..

is the a priori probability for the noise-related gradient magnitude
distribution and (1—w? . ) is the one related to edges. Based on Eq.(9)(10)(11),
the shrinkage function g;(i) for each resolution 27 is given by the posterior prob-
ability function:

(1 — wfzoise)fj <Z7 Uedge)

93(0) = f;(0edger) = = (12)

2.3 Parameter Estimation

noise and A.
Conventional estimation methods that are optimal for Gaussian distributed date
yield biased results when applied to Rician distributed date. In this paper, we
perform a novel estimated technique for optimal estimation of signal as well as
noise from Rician distribution based on Maximum Likelihood (ML) estimation.

Initialization can be performed using estimators derived via the method of
moments. The second and fourth moment of the Rician variable M are E[M?] =
A% 4202 and E[M*] = A% + 802 A? + 8¢*. Solving for A and o, both of which
are non-negative, and replacing the expected values with sample averages yields

In all above equations, the unknown parameters are oeqge; Onoises w?

1
1 1 n 1 n 1 n 4
DY CL SR ) 13)
=1 =1 =1

The log-likelihood function of N independent Rician distributed date points

is given by
- M; AM; NA? ~ M
pr— - - - 1
log(Ll) z—zl log U?Loise IO ( 72101'86 ) 207210i56 z:zl 0.72107:86 ( 4)
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" M; NA? " M?
log(Ls) = log —— — — ¢ (15)
i:ZI Ugdge 2Ugdge ; 2Ugdge

Based on the Eq.(14)(15), we can obtain the outcome given by

Ay = arg {m}x(log L1)} (16)
agdge = arg max (log Lo) (17)
AIWL’G-zdge

Wi = arg{ max  (log f; (i))} (18)

AML o Tnoise

edge’
noise noise and A are

estimated, the shrinkage function g;(x) can be calculated using Bayes theorem

by Eq.(12). In the following section, we will introduce a method to update it.

Here (0 < w’ < 1). Once the parameters Gedge, Onoise, W,

2.4 Function Updating

It is known that coefficients associated with noise tend to vanish as the level
increases, while coefficients related to edges tend to be preserved. Likewise, if the
value is close to unity for several consecutive levels 27, it is more likely that Ms; f
is associated with an edge, otherwise belong to noise. Further discrimination
between edge- and noise-related coefficients is achieved by updating the shrinkage
function along consecutive scales and applying spatial constraints. Xu. etal [3]
used the direct multiplication of the subband decompositions of an image to
locate important edges and suppress noise, however he also noticed that involving
more than two scales in direct multiplication had a negative impact on the result.

To solve this problem, we compress the dynamic range of the correlation
image. Given the relative sizes of the dynamic range of the correlation coeflicients
between the strong and weak edges we chose to use a logarithmic transform in
this prototype

I'(a,y) =k =log(1 + [I(z,y)]) (19)

Where I(z,y) is the pixel intensity at location (z,y) of correlation image, and
I'(x,y) is the compressed dynamic range correlation image. Then we combine
the shrinkage factor g;(7) in consecutive scales, obtaining the updating shrinkage
factor g} (i) given by

20

g;(z) _ <[gj(7;)]'y + [gj+1(7;)]'y +...+ [gj+k(7;)]’y>

K+1 (20)
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Fig. 1. (a) Original iamge. (b) Filtering image through our method. (c) Filtered image,
using Wiener filtering

Fig. 2. Effects of various denoising operations are shown on MR images. (a) Original
noise image. Filtering operations are performed using (b) our proposed method and
(c) the adaptive wiener technique

Where « is an adjustable parameter, and (K + 1) is the number of consecutive
scales under consideration. When v = 1, the function above is exactly the average
of the shrinkage functions. For v < 1, smaller shrinkage factor carry more weight
and tend to dominate the summation. This process is applied from coarser to
finer resolution. The factor g;(z) corresponding to the coarsest level 27 is defined
as g;j(4). Other resolutions depend on Eq.(20) defined.

3 Results

Our algorithm was implemented in MATLAB on a PC with Intel Pentium 4
1.7GHz processor and 256M RAM. We applied our techniuge to image with
natural and artificial noise, and compared the result with those obtained by
adaptive Wiener denosing method. Furthermore, in this section, we compare
two images with low Signal-to-Noise Ratio (SNR) because at high SNRs, Rician
noise is well-approximated as Gaussian, which can not show the advantages of
our method.

We first apply the quantitative evaluation of performance by defining the
signal-to-noise ratio, which is given by:

S2
SNR = 1010g10 (%) (21)
N
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In Fig.(1), we examine the performance of the filtering algorithms with a low
SNR MRI date. Fig.(1) shows the original (SNR=9 dB) and filtered images.
These parameters are estimated by Section(2.3). Both algorithms reduce the
noise without loss of image details, while the SNR of filtered images is about
12.41 dB for our method and 10.26 dB for Wiener filtering.

We also evaluate the visual performance on MR data. A simulated brain
Magnetic Resonance Image is show in Fig.(2) with the SNR~ 6.0 dB, and the
denoised images corresponding to the proposed and Wiener filtering are shown,
respectively in Fig.2(b) and Fig.2(c). It can be noticed that our algorithm can
filter most noise, preserve more details and have a sharpener edges. Wiener
algorithm, however, blurs some edges and makes many noise remained.

The above results demonstrate that the proposed algorithm can outperform
the Wiener method and obtain more better result with low SNR images because
of the noise nature of Rician distribution model.

4 Conclusions

This paper derives a novel wavelet-domain filter that adapt to variations in both
the signal and the noise of MR images. Our denosing procedure consists basically
of three steps. Initially, the image multiresolution decomposition is performed
by a redundant wavelet transform and we obtain the mixture model of noise
and edge coefficients. Next, the shrinkage function is calculated through the
posterior probability function and all the parameters are Estimated by Maximum
Likelihood method. Finally, the shrinkage function is updated by using scale
consistency and sequentially the final filtered image is reconstructed by using
the modified coefficients. The experimental results obtained are promising.

We acknowledge that the results is preliminary and more research are re-
quired in the future. Further work will concentrate on how to adopt more precise
coefficient model and more efficient parameter estimation algorithm to reduce
operation time and improve the performance.
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