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Abstract.  A multi-resolution image matching technique based on multi-
wavelets followed by a coarse to fine strategy is presented. The technique 
addresses the estimation of optimal corresponding points and the corresponding 
disparity maps in the presence of occlusion, ambiguity and illuminative 
variations in the two perspective views taken by two different cameras or at 
different lighting conditions. The problem of occlusion and ambiguity is 
addressed by a geometric topological refining approach along with the 
uniqueness constraint whereas the illuminative variation is dealt by using 
windowed normalized correlation.  

1 Introduction 

The 3D reconstruction [4,8,9] process can be categorized into three main 
categories, calibration (calculating the intrinsic and extrinsic parameters 
of the camera) [1,3], finding the corresponding pairs of points projected 
from the same 3D point on to the two perspective views 
[2,5,6,7,10,18,19], and triangulation to project the 2D information back 
to the 3D space in order to create a 3D model [4,8,9,11]. The calibration 
and triangulation strategies are quite mature in both theoretical and 
applicative perspective but finding correct corresponding points from 
more than one perspective views still suffers from many problems like 
occlusion, ambiguity, illuminative variations and radial distortions, etc. 
 The motivation for using multi-wavelets (wavelets with more 
than one scaling and wavelet functions) is because of the fact that ever 
since their discovery, multi-wavelets have been the focus of a lot of 
research in signal processing and pure mathematics. The interest in 
multi-wavelets is mainly due to the fact that they produce promising 
results in many applications such as speech, image and video 
compression, denoising, communications, computer and machine vision 
[12,13,15-21]. Their success stems from the fact that they can 
simultaneously possess the good properties of orthogonality, symmetry, 
high approximation order and short support which is not possible in the 
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scalar case. Multi-wavelets already have been proven to perform better, 
than scalar wavelets, in applications like image compression and 
denoising [16,17,21] etc. In the application of correspondence matching 
some work has already been done using complex scalar wavelets [18,19] 
and convincing results have been achieved. As multi-wavelets have 
proven to perform better than scalar ones, due to their extra properties, 
there is a great deal of motivation to apply them in the application of 
correspondence matching. For that purpose a multi-resolution approach 
based on Multi-wavelets is used to decompose the images in order to 
perform the coarse to fine matching process.  
 The rest of the work is organized as follows: in the next section a 
brief explanation of achieving translation invariance from discrete 
dyadic wavelet transform presented by Mallat [12]. Section 3 is about 
the image matching algorithm proposed in that work with complete 
description of different parts involved in the algorithm. Some results of 
disparity maps along with the ground truth disparities are shown in 
section 4. Section 5 is about the conclusion followed by the references.  

2 Need of Translation Invariance 

The main drawback of the discrete dyadic wavelet or multi-wavelet 
transform is their shift and rotation variability [20,21], which are the 
common factors involved in the process of stereo vision. Translation and 
rotation variance means there is no direct relation between the wavelet 
coefficients of a transformed image and its translated or rotated versions. 
Thus using multi-resolution analysis without taking these factors in 
account will end up with catastrophic results and will be useless in the 
context of finding optimal corresponding points. The rotational 
variations can be dealt with physical alignment of the cameras along the 
base line (the line joining the two cameras) or more precisely by 
rectifying the two views. In order to deal with the translation variation a 
simplified procedure is performed to get Translation Invariant multi-
wavelet (TIMW) coefficients from a non TI-MW transform introduced 
by many authors [20,21]. The TIMW transform used in that work is the 
modified version of V. Strela’s technique [16]. The problem of 
translation variance arises due to the fact of factor-2 decimation 
involved in the decomposition process, and is solved by filtering 4 
circular shifts of the preprocessed signal into the filter bank instead of 
one, for each level of decomposition. For the sake of minimizing the 
computational complexity of the matching process the details are 
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averaged over the 4 circular shifts after decomposition at each level. 
One level of TIMW decomposition is shown below 
 
 
 

 

 

  

Fig. 1 1-level TI Multi-Wavelet transform 

In Fig.1, jiCS ,  represents the circular shifts with respect to ]1  0[∈i  (row 

wise) and ]1  0[∈j  (column wise) with 0 as no shift whereas 1 for one 
shift in respective direction. 

3 Image Matching Algorithm 

The first step of the matching process is the TIMW transform up to a 
desired level N, which is taken 4 in the proposed work, ends up with 
3Nr2 matrices of numbers which in fact are TIMW coefficients 
representing the details or discontinuities of the images at different 
resolutions respective to the decomposition level. Where r is the 
multiplicity of the multi-wavelets where as scalar wavelets has unit 
multiplicity. For example using “Chui-Lian” multi-wavelets [22] ends 
up with 12 whereas “mw112_r3_p2” [13] ends up with 27 TIMW 
coefficient matrices, due to the multiplicity 2 and 3 respectively. For 
simplicity, TIMW coefficient matrices will be denoted by CMr and CM 
for reference and other image, respectively. 
 The TIMW decomposition is followed by a coarse to fine 
strategy, which involves the initial search of points at the coarsest level 
of decomposition and then their interpolation up to the finest level. In 
cases where   more than one candidate matches, for any point in the 
reference space, a geometric topological refinement is performed to pick 
the optimal one. Uniqueness constraint is used, on the other hand, to 
choose the optimal one if more than one points in the reference space 
pairing with same point in the right. A block diagram representing the 
complete matching algorithm is shown below. 
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Fig. 2. Complete matching algorithm 

3.1 Correlation 

After TIMW transform, matching process starts at the coarsest level 
with the area based search, involving the calculation of normalized 
correlation (NC) for each coefficient of CMr through CM. Instead of 
single coefficients a window of (2n×1, 2n×1), n is usually taken within 
the range of [3 5], is used centered at the coefficient under 
consideration. The NC score is defined as  
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  The main purpose of subtracting the averages is to minimize the 
effect of illuminative variations between the two images. Another good 
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feature of that correlation expression is that it is invariant to the changes 
from W1, W2 to 111 bWa + , 222 bWa +  respectively [10].  The correlation 
process can be better visualized by Fig 3. 

 

 

 

 

 

 

Fig. 3. Windowed normalized correlation process 

As it is quite obvious from (1) that the values of ),,(, dyxCS kN lie within 

[-1 1], with -1 for anti-correlated and 1 for the identical correlation 
windows. The coefficients with the maximum correlation score, from 
each CM, will be taken as the candidate match, having a set of at most 
3r2 candidates for each coefficient in the CMr. A constraint is then 
applied to select the most consistent matches. A coefficient with 
correlation score higher than a predefined threshold t will be selected as 
a candidate match and will be used for further processing. The threshold 
is usually taken within the range [0.5 0.8].  

3.2 Geometric Topological Refining 

After the correlation process, each coefficient of CMr will have a set of 
candidate matches. These candidate matches can either be pointing to 
the same location or different in CM and vice versa. Here an assumption 
is used, which gives some reference locations for further refinement. 
 If all the candidates are pointing to the same location and the size of the set of 
candidates is bigger than or equal to 3r2/2, that coefficient will be considered as true 
match.  
In order to find an optimal one from the set of candidates, containing 
different locations, geometric features like relative distances and angles 
(slopes of lines for simplicity) are calculated, which are the invariant 
features through many geometric transformations like Euclidean, metric, 
etc. The occurrence of these transformations is very common in the 
applications of stereo vision and 3D modeling, which is the ultimate 
goal of that work. The candidate having closest geometric topology w.r.t 
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the coefficient in CMr will be counted an optimal match, while 
considering true matches as a reference. In other words candidate with 
highest match strength among all others will be selected as an optimal 
match. The match strength is defined as 
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where k is the number of candidate matches for a specific coefficient in 
CMr and kCS  is the average correlation score of kth candidate defined as 

∑=
k
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rddk is the average relative distance difference between the coefficient in 
CMr and its kth candidate with reference to the true matches, related to 
both left and right images, as given in (5). 
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where ),( rir pPd  and ),( ipPd  are the Euclidian distances between points 
Pr and pri in the reference space and points P and pi in the other space 
respectively, where as pri and pi are the true matches. Similarly spdk is 
the relative slope difference between the coefficient in CMr and its kth 
candidate with reference to the true matches and is defined as 
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In order to minimize the effect of a wrong true match, chosen after the 
correlation step, rddk and spdk are calculated m times, instead of one, by 
picking a random point every time from the bin of true matches and 
averaging over m. The complete geometric topological approach can be 
visualized by a diagram shown below 
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Fig. 4. Geometric topological refining technique 

3.3 Interpolation 

The matching process at the coarsest level ends up with a number of 
matching pairs which needs to be interpolated to the finer level. The 
constellation relation between the coefficients at coarser and finer levels 
can be visualized by taking the decimation of factor 2 into consideration 
as can be seen in Fig 5. From this constellation, it is quite clear that each 
pixel at coarser level represents 4 pixels at finer scale. At that stage 
(finer) only those sets of pixels will be considered, which has their 
corresponding matched pairs at the coarser level as shown in figure 
below with shaded area. After the matches are interpolated to the finer 
level correlation process is performed again to check the consistency of 
the matches. The matches fulfilling the criterion will be taken as 
credible matches for further processing whereas rest of the matches are 
discarded, hence refining the matches up to the finest level and leaving 
most consistent matches at the end of the process. 
 
 
 
 

 

 

 

 

 

Fig. 5. Constellation Relation between coarser and finer level coefficients (left), Interpolated 
coefficient locations at finer level (right) 
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4 Results 

As there is no independent and absolute way of checking the 
performance of the matching algorithm, a comparative performance 
check based on the calculation of first order re-projection error, which 
involves the calculation of fundamental matrix [2, 14] is performed and 
is given in Table 1.  

Table 1. Statistical Comparison of matching processes 

Tool Images matches Error [min max] 
Variance of 

error 

M-wavelets Venus(320×416) 22915 [1.0487e-35  7.7637e-28] 4.0181e-57 
 Pentagon(512×512) 48525 [2.1098e-33  2.3957e-28] 9.1162e-57 

wavelets Venus(320×416) 19595 [1.6673e-33   1.1419e-27] 2.1950e-56 
 Pentagon(512×512) 37242 [2.5148e-35   8.8560e-28] 3.0770e-56 

Torr-tool Venus(320×416) 1000 [1.8342e-29   0.0039] 6.2411e-08 
 Pentagon(512×512) 999 [8.3120e-029   0.5084] 0.0010 

 
Three different statistics are shown in table.1, obtained by applying 
proposed algorithm on two different pair of images shown in Fig.6, 
using Daubechies’s wavelet [15] and mw112_r3_p2 MW [13], whereas 
the last two rows of the table are the results of the technique presented 
by P. Torr in [14] which involves feature extraction followed by 
correlation matching and has been fixed to find 1000 best features. 
Accordingly the calculated disparity maps of two different image pairs 
are also shown. First pair of images is taken from http://vasc.ri.cmu.edu/ 
idb/images/ster-eo/pentagon which is an aerial image pair of famous 
“Pentagon” building and second image pair is known by the name 
Venus and is taken from http://cat.middlebury.edu/stereo/data.html. 
Reasonably promising results are obtained in both cases. Due to the 
space shortage ground truth disparities are not shown and can be found 
from their respective websites. No special procedure, except linear 
interpolation, is performed to fill the gap between the matched points, 
which can be improved by applying the techniques like [23].  
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Fig. 6. Top 1-2: Stereo pair of Pentagon images, Top 3: MW disparity map, Top 4: Wavelet 
disparity map, Bottom 1-2: Stereo pair of Venus images Bottom 3: MW disparity map, Bottom 4: 

Wavelet disparity map. (1-4 is from left to right). 

Multi-wavelets have performed well in criteria like re-projection error 
and producing disparity maps while applying to completely two 
different categories of images. On the other hand the performance of 
Daubechies’ Wavelets is reasonably well in terms of calculating re-
projection error but lost the track especially while calculating the 
disparity map of Venus image as can be seen in Fig 6 (bottom 4).  

5 Conclusion  

A multi-resolution image matching technique based on TIMW transform 
is presented. Multi-wavelets have performed well and proved to have the 
potential, as a good tool, for solving the problems of finding optimal 
corresponding points. It’s also shown that multi-wavelets perform better 
than scalar ones as it has been shown by many authors in many other 
applications like compression, denoising, etc.  
A geometric topological refining approach is also presented which is 
quite useful and has performed well in finding the optimal 
corresponding points even in the presence of occlusion, ambiguity and 
illuminative variations, which are few of the major problems involved in 
the stereo vision applications.   
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