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Abstract. This paper introduces a multiresolution image segmentation algorithm
for scalable object-based wavelet coding applications. This algorithm is based on
discrete wavelet transform and multiresolution Markov random field (MMRF)
modelling. The major contribution of this work is to add spatial scalability and
border smoothness in the segmentation algorithm usable for object-based wavelet
coding algorithm. To optimize the segmentation/extraction of objects/regions of
interest in all scales of the wavelet pyramid, with scalability constraint, a mul-
tiresolution analysis is incorporated into the objective function of MMRF seg-
mentation algorithm. The proposed algorithm improves border smoothness in all
regions, particularly in lower resolutions. In addition to scalability between ob-
jects/regions in different levels, the proposed algorithm outperforms the standard
multiresolution segmentation algorithms, in both objective and subjective tests,
in yielding an effective segmentation that supports scalable object-based wavelet
coding.

1 Introduction

Object based coding has provided a large degree of flexibility in digital image and video
processing and is expected to play a major role in future multimedia, computer games
and related applications. It facilitates object interactivity, manipulations and scalability
in a highly flexible manner [1]. Meanwhile, wavelet transform has become increasingly
important and gained widespread acceptance in object-based coding. An example is the
new JPEG-2000 still image compression standard [2].

One major pre-processing objective for any object-based coding is image segmen-
tation and shape extraction. Therefore, bearing in mind spatial scalability, it is nec-
essary to extract the image objects in multiple resolutions in a way that is useful for
scalable wavelet based coding. In this paper, we propose an image segmentation al-
gorithm which fits multiresolution Markov random field segmentation to object-based
scalable wavelet coding. The objects/regions of interest are extracted in different reso-
lutions while keeping wavelet scalability as a constraint. A multiresolution analysis is
incorporated into the objective function of the MMRF segmentation algorithm, in order
to align the segmentation with the wavelet scalability constraints. To extract more en-
hanced shapes/regions, border smoothness, as a criterion of shape analysis and image
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segmentation [3], has also been included in the objective function. In order to improve
the borders in the lower level, where border smoothness suffers in the conventional
segmentation, augmented smoothness coefficients are used in lower resolutions. For
optimization, the iterated condition mode (ICM) algorithm according to [4] , adapted to
the scalable multiresolution analysis, has been used.

This paper is organized as follows. Section 2 refers to the scalability in wavelet
coding. In Section 3 we discuss about MMRF segmentation, including the statistical
image modelling and optimization processes. Some experimental results and discussion
are presented in Section 4, and finally, conclusions are drawn in Section 5.
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Fig. 1. Decomposition of a non rectangular object with odd-length filters; (a) the object, shown
in dark gray; (b) the decomposed object after horizontal filtering; (c) decomposed object after
vertical filtering. The letters ”E” and ”O” indicate the position(even or odd) of a pixel in the
horizontal and vertical dimensions.

2 Object-Based Wavelet Coding Scalability

Scalability means the capability of partially decoding a compressed bitstream to achieve
various resolutions and/or quality of the original sequences. It is useful for image/video
communication over heterogenous networks which require high degree of flexibility
from the coding system. Scalable image/video coding has also different applications
such as web browsing, image/video database systems, video telephony, etc.

In wavelet based spatial scalability applications, due to the self similarity feature of
the wavelet transform, the shape in lower scale is the shape in the lowpass (LL) sub-
band. The exact relationship between the full-resolution shape and its low-resolution
versions depends on the kind of wavelet transform used for the decomposition. In this
paper we use an odd length filter (e.g. 9/7), where all shape points with even indices3 are
downsampled for the lowpass band [5]. Fig. 1 further illustrates the wavelet decompo-
sition of arbitrarily shaped objects when using an odd-length filter. The final four-band
decomposition is depicted in Fig. 1(c). By considering the self similarity of the wavelet
transform, it is straightforward to suppose that the points of a shape with even index
have the same segmentation classification as the corresponding points on the it’s lower
level.

3 Suppose indices start from zero or an even number
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The wavelet self similarity extends to all low pass subband shapes of different lev-
els. Therefore the discussed relationship between corresponding pixels is extended to
shapes on different scales. Corresponding pixels on different levels have the same seg-
mentation class.

3 Image Segmentation Algorithm

To solve an image processing problem by MRF technique, a statistical image model has
to be fitted to the application which captures the intrinsic character of the image in a few
parameters. Then the image/video processing problem, including all uncertainties and
constraints, can be converted to a mathematical parameter optimization problem [6].

3.1 Statistical image model

The main challenge in multiresolution segmentation for wavelet-based object coding,
is to keep the same relation between extracted objects in different levels as it exists be-
tween the decomposed objects in different resolutions in the arbitrarily shaped wavelet
transform. The other constraint is border smoothness particularly in lower resolutions.
To meet these challenges, Markov Random Field modelling is selected because it in-
cludes low level processing on pixel levels and has enough flexibility in defining ob-
jective functions matched with the problem at hand [6]. In a regular single level image
segmentation based on Bayes’ theorem the objective or energy function is [4] :

E(X) =
∑

s

{ 1
2σ2

(Y (s) − µX(s)
s )2 −

∑
r∈∂s

Vc(s, r)} (1)

where The main summation is over all pixels, Y (s) is the grey level of pixel s, X

is the pixel classification, µ
X(s)
s is the mean of grey level values of pixels with class

X(s) in a window centered at s, Vc(s, r) is a clique of two pixels defined at s and the
internal summation is over all neighboring pixels around s. It is clear that the objective
function has two terms. One constrains the region intensity to be close to the data; the
other imposes spatial continuity. Increasing s is equivalent to increasing Vc. Thus, to
simplify the expression, the parameter 2σ2 is set to one, and the segmentation result is
controlled by the value of Vc. To obtain the final segmentation, this objective function
is minimized by one of the several MRF objective minimization methods [6].

To tailor this objective function to our application, the wavelet transform is applied
to the original image and a pyramid of decomposed images at various scales is created.
Let Y be the grey levels of this pyramid’s pixels and Yp(s) be the intensity of pixel s
in scale p. Similarly, segmentation of image into regions at different resolutions will be
denoted by X , where Xp(s) = i means that the pixel s at scale p is set to i.

A clique is a set of neighboring pixels. A clique function depends only on the pix-
els that belong to the clique. In single level segmentation, usually one and two pixels
cliques are used as in figure 2(a), and one assumes that the one pixel clique potentials
are zero, which means that all region types are alike [4].

979

Proc. VIIth Digital Image Computing: Techniques and Applications, Sun C., Talbot H., Ourselin S. and Adriaansen T. (Eds.), 10-12 Dec. 2003, Sydney



As mentioned, with regard to scalability, a pixel and its corresponding pixels on the
other levels have the same segmentation class. Therefore they can change only together
during segmentation. To change the class of a pixel, the pixel and all its corresponding
pixels on the other levels have to be analyzed together. As a result, a set of pixels
or a vector4 analysis instead of a single pixel analysis needs to be used. The cliques
are extended to act on the vector space. A vector is a combination of a pixel and its
corresponding pixels on all other levels. The dimension of a vector depends on the
index of its pixels and it can be 1, 2 or more. In this work, we use cliques of two arrays
instead of two pixels. Fig. 2(a) shows regular one and two pixel clique sets. In Fig. 2(b),
the extension of one of these cliques to the array mode can be seen.

The extension of clique functions is achieved through the following steps: equation
(2) is used for cliques with length one on the level P where pixels sp and rp are two
neighboring pixels on the scale P . Equation (3) is defined for multiple levels, where
{sp} and {rp} vectors correspond to two neighboring pixels sp and rp on level P . The
lowest scale, the clique vector is M with its dimension denoted as N . β is a positive
parameter, so that two neighboring pixels on the same scale are more likely to have
the same class than two different classes. Increasing the value of β has the effect of
decreasing sensitivity to grey level changes [4].

Vc1(sp, rp) =
{−β if X(sp) = X(rp) (sp, rp) ∈ c1

+β if X(sp) �= X(rp) (sp, rp) ∈ c1
(2)

VcN
({sp}, {rp}) =

M+N−1∑
k=M

(−1)Lk .β , Lk =
{

1 if X(sk) = X(qk) (sk, qk) ∈ cN

0 if X(sk) �= X(qk) (sk, qk) ∈ cN

(3)
Instead of an image in one resolution, we have decomposed the image into different

levels and the summation on pixels is over different pixels on different levels. Therefore
the objective function can be written as the following

∑
{S}

{||Y ({s}) − µ
X({s})
{s} ({s})||2 +

∑
rp∈∂sp

Vc{sp}({sp}, {rp})} (4)

The first summation is over vectors while the second summation is over all possible
cliques of vector {s}. The gray level of points {s} form a vector Y ({s}) similarly
µ({s}) and X({s}) are mean and classification vectors.

Smoothness of the regions’ border is one of the main features considered for the
region extraction [3]. Therefore in the proposed algorithm, objects’/regions’ border
smoothness constraint has also been considered. Ideally these borders are the edges
in the image. Edge is one of the most important properties for visual perception. Most
natural objects exhibit smooth edges. Edge smoothness is enhanced in high resolution
and that’s why some objects/regions are visually pleasing only at high resolution and

4 Direction is not important and the word ”vector” is used for convenience.
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(a) (b)

Fig. 2. (a) Normal one and two pixels cliques sets. (b) A clique of two arrays with the arrays’
dimension equal to two.

the visual quality suffers at low resolution. To reduce this effect, we have enhanced
the smoothness at low resolution more rigorously than high resolutions. The priority is
considered by the bigger smoothness coefficients for lower resolution. The smoothness
is measured by curvature value [7] at each pixel. Therefore the objective function is
updated to the following equation:

E(X) =
∑
{S}

{||Y ({s})−µ
X({s})
{s} ({s})||2+

∑
rp∈∂sp

Vc{sp}({sp}, {rp})+
∑

q∈{s}
lp∗ν(q)}

(5)
where ν(q) shows curvature of pixel q and lp is a coefficient which decreases with

resolutions.

3.2 Algorithm to find the MAP estimation

A method to minimize the probability function equation (4) has to be used. After ini-
tial segmentation with k-means clustering algorithm, the optimization method, iteration
condition mode (ICM) [8], improves the accuracy of the segmentation estimation. ICM
optimizes the objective function pixel by pixel until convergence. At each pixel, seg-
mentation of the processed pixel is optimized given the current X at all other pixels.
Therefore the only term of objective function related to the current pixel needs to be
minimized which are

Es(X) = (Y (s) − µX(s)
s )2 −

∑
r∈∂s

Vc(s, r) (6)

In multiresolution scalable mode the objective function term corresponding to a
vector of pixels is optimized given the segmentation of all other vectors on the pyramid.
And with smoothness constraint the term is:

E{s}(X) = {||Y ({s})−µ
X({s})
{s} ({s})||2 +

∑
rp∈∂sp

Vc{sp}({sp}, {rp})+
∑

q∈{s}
lq.ν(q)}

(7)

Details of the used ICM is similar to the single level segmentation algorithm of Pap-
pas [4], but it is changed to adapt to scalable multiresolution segmentation algorithm.

First, the estimation of µi
p(s) is explained. It is estimated by averaging the gray of

all pixels that belong to the region i and inside a window with width w centered at pixels
s in the level p. The window size w is halved when we move to the next lower level.
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Now we consider the overall algorithm. The initial segmentation of the pyramid is
obtained by k-means clustering algorithm. The average of any point S and its corre-
spondence on the other levels {S} is used to classify the points of {S} to one label.
Now given the regions label X we process the pyramid’s vectors’ points, progressively
from low to high resolutions. At each resolution we estimate the intensity µi

p(s) at each
pixel s in the frame for all possible class i with a pre-determined window size w used
for estimation. Then we update the estimate of Xp using the ICM approach with a multi
level analysis by minimizing the energy equation (7). By updating the class points at
level p the corresponding points in the other scales are also updated. The algorithm then
moves to the next level and updates the estimates of µp+1 and Xp+1 and so on, until all
resolutions are processed. Then, the process is repeated until convergence. The stopping
criterion is that the update of X in each resolution changes a number of class indexes
that are below a pre-defined threshold. To reduce the number of iterations, other con-
vergence criterion can also be used. The whole procedure may be repeated with smaller
window size until the minimum window size of the lowest level is reached.

4 Experimental Results and Discussion

The proposed algorithm is tested using frame 15 of the CIF sequence Claire and frame
5 of SIF sequence Table tennis and CIF sequence Miss America. The results are com-
pared with a regular single and multi-resolution segmentation algorithm [4]. At the first
step, in each level of decomposition, the image is segmented and the objects of interest
(such as Claire’s head and shoulders) are extracted according to the proposed algorithm.
Scalability between objects/regions in different levels, as required by the arbitrary shape
wavelet transform, is achieved in the proposed algorithm. Figs. 3 - 5 represent the results
achieved by the proposed algorithm compared with a well known single and multireso-
lution segmentation algorithms [4] using standard test images Claire and Table tennis.

(a) (b) (c)

Fig. 3. Claire image segmentation with k = 5 clusters and β = 50; (a) the main image; (b)
segmentation by the proposed algorithm; (c) regular multiresolution segmentation;

One of the applications of the proposed segmentation algorithm is object based
image coding. To facilitate this, the user determine the rough boundary of the object
of interest through a graphic user interface (GUI) program. Then all the regions with
a predetermined percentage of their area inside this closed contour are selected as the
region of the extracted object. Joining of all selected regions create the final object.
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(a) (b) (c)
Fig. 4. Table tennis image segmentation with k = 6 clusters and β = 100; (a) the main image;
(b) segmentation by the proposed algorithm; (c) regular single level segmentation;

(a) (b) (c)
Fig. 5. Normal multiresolution segmentation of Table tennis image with k = 6 clusters and
β = 100; (a) 240 × 352 segmentation ; (b) 120 × 176 segmentation; (c) 60 × 88 segmentation;

As an example, a user has roughly determined the objects of interest in Fig. 6(a). The
algorithm then determines the exact borders of the object in different resolutions as
shown in Fig. 6. And finally the extracted image object, Claire head and shoulder, is
then coded by a highly scalable object-based SPIHT algorithm [9]. Table 1 shows peak
signal-to-noise ratio (PSNR) results obtained for three spatial resolutions at different bit
rates, all decoded from a single bit-stream.

(a) (b) (c) (d)
Fig. 6. Claire object extraction; (a) First selection; (b) object at 288×352; (c) object at 144×176;
(d) object at 72 × 88;

In lower scales of regular multiresolution segmentation, brief and compact versions
of the image are processed, therefore, some small size or low contrast regions are not
detected. But in the proposed algorithm the effects of high resolutions on low resolu-
tions results in the detection of more significant number of regions than regular multi-
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Table 1. SPIHT PSNR results for Claire object.
Resolution Rate (BPP)

0.05 0.1 0.25 0.5 1.0

72 × 88 23.7 27.3 32.2 34.7 42.3

144 × 176 24.4 28.5 34.2 36.7 46.8

288 × 352 26.1 31.4 37.3 44.5 57.8

resolution segmentation. In other words, sensitivity to grey level changes are increased
resulting in a better detection of small or low contrast objects especially in low resolu-
tions. Table 2 shows the number of detected regions of Claire and Table tennis images
in three spatial resolutions for different segmentation algorithms. The proposed scalable
segmentation detects more relevant regions than the regular multiresolution algorithm.
For example consider the segmentation of the textured wall and the detection of the
ball in the table tennis image as presented in Figs. 4 and 5 by scalable segmentation,
multiresolution and single level segmentation algorithms.

Table 2. Number of regions detected in Claire and table tennis images segmentation.
Frame Claire Table Tennis

Seg. algorithm 72 × 88 144 × 176 288 × 352 60 × 120 120 × 176 240 × 352

Multi Resolution 46 71 93 19 55 164

Scalable 72 98 108 42 83 184

Single level – – 138 – – 314

To compare the segmentations obtained with different algorithms, the result of a
standard single-level segmentation at each level of wavelet decomposition is accepted
as a ground truth. Note that this ground truth does not satisfy the shape constraints in-
flicted by the arbitrary shape wavelet transform, but at each level, it gives an appealing
segmentation. For the proposed algorithm and the standard multi resolution technique,
the segmentations at different resolution levels are determined by down sampling the
highest-level segmentations. The misclassified pixel numbers that occur when compar-
ing the two scalable segmentation algorithms with the ground truth are given in Table
3. The results confirm that the proposed algorithm has lower number of pixel misclas-
sifications in lower resolutions.

Table 3. Number of Misclassified pixels.
image Claire Table Tennis

Resolution 72 × 88 144 × 176 288 × 352 60 × 88 120 × 176 240 × 352

Down sample. %7.59 %4.85 %1.57 %4.9 %5.26 %5.34

Scalable %4.95 %2.45 %0.92 %3.3 %2.87 %2.72

Border smoothness is one of the contributory factors in presenting a visually pleas-
ing extracted objects/regions. Specially in low resolutions, the lower number of pixels
intensifies the importance of smoothness in the subjective and objective test of shape
quality. In high resolution levels, however, large number of pixels ensure the visual
quality of the shapes. The introduced algorithm increases the smoothness in lower lev-
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els by sacrificing it in higher levels. This is a direct result of tying the pixels of different
level together. The smoothness of segmented regions’ borders are measured with an
estimation of curvature [7]. A low curvature value is indicative of a smooth edge. Ta-
ble 4 shows the average smoothness for all borders pixels in scalable segmentation and
multi resolution segmentation down sampled to lower levels at 3 different resolutions.
The results show that, the proposed algorithm ensures smoother edges than the down
sampled multi resolution segmentation.

Table 4. Means of curvature estimation.
Image Claire Table Tennis

Resolution 72 × 88 144 × 176 288 × 352 60 × 88 120 × 176 240 × 352

Downsample. 0.52 0.54 0.51 0.63 0.51 0.35

Scalable 0.48 0.47 0.45 0.47 0.37 0.38

Improvement %7.7 %16.13 %12.8 %25 %26 −%9.9

Segmentation optimization algorithms often find locally optimum results. Multi
scale analysis and smoothness term improves the segmentation results. Classification of
the low contrast border pixels with grey level close to both surrounding regions/classes
is affected by smoothness term resulting in softer borders. This is interesting if we con-
sider that the edge of most objects exhibits smoothness. Therefore, smoothness term
helps the borders to resemble the normal objects/regions edges more closely. This will
overcome the shortcomings of some region based segmentation algorithms in terms of
border quality. In the next example with the segmentation of Miss America image the
positive effect of smoothness term on the optimality of segmentation comes into view.
The image and its regular Baysian-based segmentation [4] are shown in Fig. 7(a,b).
Spurious edges can be seen in the left side of image where the intensity contrast is
very low. Fig. 7(c) shows the final scalable segmentation with smoothness effect result-
ing in eliminating the spurious borders. Fig. 7(c) indicates superior performance of the
proposed algorithm in subjective test.

(a) (b) (c)

Fig. 7. Miss America image segmentation with k = 5 clusters and β = 50; (a) Miss America
image 288×352; (b) scalable segmentation; (c) scalable segmentation with smoothing constraint.

To test the scalable segmentation algorithm on noisy images, first a uniform noise
in the range (−30 , +30) is added to the Claire and table Tennis images then different
segmentation algorithms are performed. The number of misclassified pixels for Claire
object including head and shoulder (70553 pixels in high resolution of scalable segmen-
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tation) and Table tennis object including arm, racket and ball(11033 pixels) as well as
the entire images pixels are counted. The results in Table 5 shows that the proposed al-
gorithm can deal with noisy images as effectively as multi resolution segmentation and
much better than single level segmentation. It is significant to note while maintaining
noise tolerance, this algorithm has improved sensitivity to grey level variation.

Table 5. Misclassified pixels in noisy images.
Image Claire Table Tennis

Algorithm Multiresolution Scalable Single Level Multiresolution Scalable Single Level
Object. %11.98 %9.8 %15.48 %2.2 %1.74 %3.67

Image %17.34 %17.8 %33 %3.94 %4.0 %14.64

5 Conclusions

We have presented a scalable image segmentation algorithm that is optimized to extract
regions/objects, useful for object-based wavelet coding applications such as multimedia
transmission over the heterogenous networks. In addition to scalability, the multi scale
analysis gives better results than standard single and multi resolution segmentation in
objective and subjective tests, especially at low resolutions. Smoothness constraints re-
sults in softer edges and better localization of regions borders. The presented algorithm
gives better shape quality or smoothness and less number of misclassified pixels in low
resolutions compared to down sampling of regular segmentations. The proposed mul-
tiresolution analysis improves sensitivity to grey level variation but still performs well
in noisy environment. In the future, we are going to work on the effect of different
wavelet filters on the scalable segmentation algorithm and extend the work to the video
domain.
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