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Abstract. In this paper we solve the problem of computing exact con-
tinuous optimal curves and surfaces for image segmentation and 3D
reconstruction, using a maximal flow approach expressed by means of
a PDE model. Previously existing techniques yield either grid-biased
(graph-based approaches) or sub-optimal answers (active contours and
surfaces).
The proposed algorithm simulates the flow of an ideal fluid with spatially
varying velocity constraint. A proof is given that the algorithm gives the
globally maximal flow at convergence, along with an implementation
method. The globally minimal surface may be obtained trivially from its
output.
The new algorithm is applied to segmentation in 2D and 3D medical im-
ages and to 3D reconstruction from a stereo image pair. The results in 2D
agree remarkably well with an existing planar minimal surface algorithm
and the results in 3D segmentation and reconstruction demonstrate that
the new algorithm does not exhibit grid bias.

1 Introduction

Geometric optimisation techniques have been applied for some time to recon-
struction and to image segmentation. These techniques are concerned with the
extraction of curves or surfaces which are optimal according to a measure dic-
tated by the application domain. They have the distinct advantage over many
other analysis techniques that practitioners need only define an appropriate mea-
sure of ’goodness’ and then optimise accordingly.

Geometric optimisation techniques include on the one hand active contour
methods such as snakes [1], level sets [2, 3] and geodesic active contours [4, 5]; and
on the other hand graph-theoretic methods such as shortest paths and minimal
cuts.

Graph-theoretic [8] methods have enjoyed success in 3D reconstruction. Stereo
matching was first cast as a shortest path problem in the mid 1980’s by Ohta
and Kanade [9] and independently by Lloyd [10]. The approach remains much
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the same in current research [11], where the path through the correlation matrix
of maximum sum is obtained. In recent years minimal cuts have been applied to
stereo matching yielding improved spatial consistency at the cost of additional
computation [12]. These methods have also been successfully applied to image
segmentation [13].

Recently several advances have been made in extending optimal methods
from discrete graphs to continuous space. Dijkstra’s classic shortest path algo-
rithm [14] was extended by Tsitsiklis [15] and later Sethian [16] to computing
minimal geodesics and continuous distance functions. These have found broad
application to optimal control, wave propagation and computer vision.

In this paper we present an algorithm to compute optimal curves and surfaces
in arbitrary Riemannian spaces.

2 Previous work

2.1 Geodesic Active Contours and Surfaces

Geodesic Active Contours and Surfaces were introduced by Caselles et al [4, 5]
for segmentation in 2D and 3D images. They are manifolds of co-dimension one
which minimise the integral E [S] =

∫
S

g(S)dS, where E[S] is defined as the
energy of the surface S. In object segmentation g : IRN → IR+ is typically a
decreasing function of edge strength.

Geodesic Active Contours and Surfaces evolve an initial surface via a gradi-
ent descent flow toward a local minimum of the energy functional. This evolution
is implemented using a level-set embedding due to Osher and Sethian [2]. For
a function φ : IRN → IR whose zero level set is S = {x |φ(x) = 0}, we may
evolve φ so as to implement a gradient descent flow, itself derived from varia-
tional calculus: ∂φ

∂t = −(gκ−∇g ·N) |∇φ|. A fast implicit scheme has also been
presented by Goldenberg et al [17]. Unfortunately these gradient descent flows
usually stop at local minima. Numerous schemes have been introduced in an
attempt to increase robustness [6, 7]. Nonetheless active contours often require
additional user interaction, limiting their effectiveness for many image analysis
problems.

2.2 Weighted graphs and Riemannian spaces

A number of geometric optimisation techniques have been proposed for com-
puter vision based on discrete graphs [13, 12] and later continuous Riemannian
spaces [18, 19]. Due to limited space, we only introduce the most important con-
cepts and results.

Graphs and minimal paths, manifolds and geodesics A path on a posi-
tively weighted graph between two points s and t is minimal if there exists no
connected path of lower length. Such paths may be computed using Dijkstra’s
shortest path algorithm [14].
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A Riemannian space R can be seen as the continuous equivalent of a weighted
graph. It consists of a N-manifold Ω and an associated metric g : Ω → IR (we
only consider positive scalar metrics). A simple curve between two points s and t
is a minimal geodesic if there exists no curve of lower length. Minimal geodesics
may be computed using Sethian’s Fast Marching Method [16].

Minimal Cuts and Minimal Surfaces A partitioning of a graph G decom-
poses its vertex set into a collection ΓG = {V1, V2, . . .} of disjoint subsets. To each
partition ΓG we associate a cost C(ΓG) which is the total cost of the edges whose
endpoints lie in different partitions: C (ΓG) =

∑
e∈E∗ CE (e), where E∗ ⊆ E de-

notes the set of edges crossing the partition. The s-t minimal cut problem seeks
the partition of minimal cost such that the disjoint vertex sets s, t ⊆ V lie in
different partitions. Sedgewick [8] has a good introduction to algorithms solving
this problem.

Similarly, a partitioning of a Riemannian space R decomposes the space into
a collection ΓR = {Ω1, Ω2, . . .} of disjoint subsets: To each partition ΓR we
associate a cost C(ΓR) which is the integral of the metric g over the partition
surfaces ∂Ωi. In the continuous case, the s-t minimal cut problem seeks the
partition ΓR of minimal total cost such that the disjoint point sets s, t ⊆ Ω fall
in different partitions. Until now no algorithm had been proposed to solve this
general problem.

2.3 Discrete and continuous maximal flows

Let G be a graph with edge costs CE now reinterpreted as capacities. A flow
FG : E → IR from a source s ⊆ V to a sink t ⊆ V has the following properties:
– Conservation of flow: The total (signed) flow in and out of any vertex is zero.
– Capacity constraint: The flow along any edge is less than or equal to its

capacity: ∀e ∈ E, F (e) ≤ CE (e).

An edge along which the flow is equal to the capacity is saturated. In this and all
future formulations, we implicitly add a directed edge connecting t → s of infinite
capacity to conserve flow uniformly throughout G. A maximal flow in a weighted
graph G maximises the flow through the t → s edge. Ford and Fulkerson [20]
showed that the maximal flow equals the minimal cut, with the flow saturated
uniformly on the cut.

Strang [21] explored the extension of maximal flows to continuous domains,
and showed that a maximal flow saturates the minimal surface. A continuous
maximal flow has the following properties:

– Conservation of flow: ∇ · F = 0
– Capacity constraint: |F | ≤ g

The duality between maximal flows/minimal cuts and surfaces has a simple
interpretation. Every cut forms a bottleneck for the flow, limiting the maximal
flow to be less than the minimal cut. Furthermore the maximal flow is indeed
equal to the minimal cut, and on the minimal cut the maximal flow must be
saturated uniformly.
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2.4 The planar case

In the 2-D case some special properties hold. Given a planar graph G, it is
possible to define a dual graph G∗ such that each vertex in G∗ corresponds to
an open region bounded by edges in G (a face). Then minimal cut/maximal flow
problem in G corresponds to a shortest path problem in G∗. Similar, slightly
more complex properties can be expressed in the continuous case as well.

These dualities are important in the design of planar minimal cut algorithms
because the computation of shortest paths is efficient, compared to more gen-
eral maximal flow methods. They are used in Weihe’s discrete maximal flow
algorithm [22] and in Strang’s continuous maximal flow algorithm [21].

Minimal Cycles The problem of obtaining minimal cycles or closed contours
is more challenging than that of obtaining minimal paths and geodesics. The
discrete case has been investigated by Sun and Pallottino [23] and Appleton
and Sun [24]. The continuous case has been more recently studied by Apple-
ton and Talbot [19] resulting in the Globally Optimal Geodesic Active Contour
(GOGAC) algorithm.

3 Minimal surfaces in arbitrary dimensions

Unfortunately the duality between minimal paths and minimal surfaces breaks
down in higher dimensions, in part because they have different dimensions. Here
we present an algorithm for obtaining continuous maximal flows in arbitrary
spaces with scalar metric.

3.1 A continuous maximal flow algorithm

Consider the following system of partial differential equations:

∂P

∂t
= −∇ · F (1)

∂F

∂t
= −∇P (2)

subject to
|F | ≤ g (3)

Eq. 2 introduces coupling such that gradients in the scalar field P drive the flow
F . Eq. 1 and 2 form a simple system of wave equations. They may be recognised
as a linearised form of the Nav̈ıer-Stokes equations describing the dynamics of an
ideal fluid with pressure P and velocity F . Eq. 3 constitutes a harsh constraint
on the magnitude of the flow velocity F . It is unique to the maximal flow problem
and does not appear to have an immediate physical analogy.

For boundary conditions we fix the scalar field P at the source s and sink t:
Ps = 1 and Pt = 0. These values are chosen arbitrarily without loss of generality.
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3.2 Properties of the continuous maximal flow algorithm

Conservation of potential P Let PA =
∫

A
PdA denote the total integral of

P in a given region A not including s, t.
Then

∂PA

∂t
=

∫
A

∂P

∂t
dA = −

∫
A

(∇ · F ) dA = −
∮

∂A

F · N∂Ad (∂A) (4)

So P is conserved in the interior of any sourceless region A (any region not
including the source s or sink t).

Monotonic reduction of ‘energy’ P 2 + F 2 Consider the temporal rate of
change of the total quantity of P 2 + F 2 in a given region A not including s, t:

∂

∂t

∫
A

P 2 +F 2dA = −2
∫

A

P∇·F +∇P ·FdA = −2
∮

∂A

PF ·N∂Ad (∂A) (5)

Note that we have momentarily ignored the effect of the magnitude constraint
(Eq. 3). Consequently P 2 + F 2 is conserved in the interior of any sourceless
region A. Including the magnitude constraint may only decrease |F | and hence
the energy P 2 + F 2 must monotonically decrease in the interior of a sourceless
region. Since the energy is positive it must converge. To ensure convergence of
P and F independently, a dissipative term can be added to the equations. In
practice this term is not necessary.

3.3 Correctness at convergence

At convergence P is an indicator function for the interior of the (globally) mini-
mal surface Smin separating the point sets s and t. Setting temporal derivatives
to zero at convergence, we may restate the system (Eq. 1, 2, 3):

∇ · F = 0 (6)

∇P = 0 if |F | < g
∇P = −λF where λ ≥ 0 if |F | = g

(7)

Isosurfaces of P must occur in areas where ∇P is non-zero, i.e. where the
flow F is saturated. By choice of boundary conditions we know that there must
exist at least one isosurface separating the source s and sink t, because they have
fixed different values of P .

Consider a sourceless region A of constant P with locally extremal value.
Then F must be directed uniformly outward or inward on the boundary ∂A,
so ∂PA

∂t �= 0. This contradicts the assumed convergence of the system and hence
there can be no local extrema of P except on the boundaries s, t.

Consequently every isosurface of P is a simple closed curve containing the
source s and hence all isosurfaces have flows directed uniformly outward in the
direction of decreasing P . By conservation of flow, the flow into any region must
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equal the flow out of that region. Applying this observation to the region between
two sequential isosurfaces shows that they must have the same total flow, and
hence that all isosurfaces have the same total flow. Isosurfaces are saturated, so
at convergence all isosurfaces have the same total capacity. In the usual case of
a unique minimal surface, Smin will be the only isosurface at convergence and
hence P will be an indicator function for its interior.

3.4 Implementation

Eq. 1, 2 are discretised using an explicit first-order scheme in time and space. The
scalar field P is stored on grid points while the vector field F is stored by compo-
nent on grid edges. The system of equations is iterated sequentially with the flow
magnitude constraint (Eq. 3) enforced after each timestep. Timesteps are lim-
ited by the Courant-Freidrichs-Levi (CFL) stability condition to ∆t < 1/N . In
general this simulation may be replaced by any suitable iteration scheme for the
linearised Nav̈ıer-Stokes equations. The fundamental iteration is simple enough
that a single implementation may handle input data of arbitrary dimension.

Several heuristics have been found to greatly increase the speed of conver-
gence. The fields P and F are rapidly initialised using the pre-flow push dis-
crete maximal flow algorithm of Goldberg and Tarjan with both global and gap
relabelling [8]. A multiscale approach is then applied recursively for rapid con-
vergence at the finest grid resolution from a coarse grid estimate. Computation
may be avoided in the interior of the source s and sink t, yielding great savings
when they occupy a significant portion of the space.

At convergence, the pressure field P is theoretically perfectly binary with
value 1 within the volume bounded by the minimal surface, and 0 outside. In
practice convergence is deemed to be attained if the sum of the relative areas of
pressure AP≥0.97 and AP≤0.03 is greater than 0.99.

4 Applications

In this section we present results for the application of minimal surfaces to the
segmentation of 2D and 3D medical images and 3D reconstruction from stereo
images.

All tests were performed on a 700MHz Toshiba P-III laptop with 192MB of
RAM under the Linux operating system. The algorithm presented here has been
implemented in C and has not been optimised significantly.

4.1 2D Image Segmentation

Here we apply discrete minimal cuts, GOGAC [19], and the algorithm presented
in this paper to segment a microscope image of a cluster of cells (Figure 1(a))
and compare the results. In spite of its apparent simplicity this problem outlines
the challenge of delineating faint boundaries between cells without leaking.
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(a) (b) (c) (d)

Fig. 1. Segmentation of a microscope image of a cell cluster. (a) The microscope image.
(b) Segmentation via a discrete minimal cut. (c) Segmentation via Globally Optimal
Geodesic Active Contours. (d) Segmentation via continuous maximal flows.

The segmentation of each cell is performed independently in sequence. The
source sets are depicted in (Figure 1(b-d)) while the sink is the image boundary.
The discrete minimal cut solves a discretised minimal surface problem, resulting
in a clear grid bias and a poor segmentation. GOGAC and the continuous max-
imal flow algorithm solve the same continuous optimisation problem and are in
clear agreement. Note that the continuous segmentations follow the perceived
cell contours even in the absence of local cues.

The image depicted in Figure 1(a) has dimensions 231× 221. We reduce the
amount of computation required by expanding the sink to include only the cells
of interest, a region of size 150 × 100.

The discrete minimal cuts required 12.9 seconds to compute in total. GOGAC
required 1.48 seconds to compute in total. The continuous minimal surface al-
gorithm presented here required 27.3 seconds in total to converge.

4.2 3D Image Segmentation

We apply the algorithm proposed in this paper to segment the lungs in the
Computed Tomography image of a chest depicted in Figure 2, and compare this
to a segmentation using a discrete minimal cut. The same metric is used for
both the discrete and continuous minimal cut computations. The sources are
small spheres inside each lung and the sink is the boundary of the volume, not
including the uppermost face. The lungs are segmented separately in turn.

Observe the directional bias along the grid in the discrete minimal cut. This
is particularly evident at the flat boundaries in the interior surfaces at the top
of the lungs (Figure 2(b)). By contrast, the continuous minimal surface does not
exhibit such a directional bias.

The data shown in Figure 2 has dimensions 200 × 160 × 90. The discrete
minimal cut required 14 minutes to compute using Goldberg and Tarjan’s classic
pre-flow push algorithm to compute a maximal flow [8]. The continuous minimal
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(a) (b) (c)

Fig. 2. Segmentation of the lungs in a chest CT image. (a) The CT image. (b) Seg-
mentation using a discrete maximal flow algorithm. Observe the directional bias due
to the grid. (c) Segmentation from identical input using continuous maximal flows.

surface algorithm required 1 hour and 52 minutes to converge, including all
initialisation.

4.3 3D Scene Reconstruction from Stereo Images

We apply our maximal flow algorithm to the reconstruction of a scene from a
stereo image pair. The metric used here is based on the Zero-mean Normalised
Cross Correlation (ZNCC) area based matching score, popular for its good sta-
tistical basis and efficient computation [11]. Here ZNCC scores are computed
using a window of size 5 × 5. Scores are computed for integer disparities in the
range [−15, 0]. We set g = 1 − ZNCC throughout the disparity volume to con-
vert the problem of finding a maximal surface into that of finding a minimal
surface. Following Roy and Cox [12] the source and sink are the first and last
disparity layer respectively.

Figure 3 depicts the results of the reconstructions using both a discrete and
a continuous minimal cut. Both disparity maps and the corresponding textured
surfaces are shown. The results computed from the discrete minimal cut show
very distinct flat zones due to the small number of disparities considered, while
the continuous minimal surface is able to capture detail below the discrete level.
As a result additional features are visible in the continuous minimal surface,
including the third parking meter and the large scale surface texture of the
bushes. Observe the absence of bias in the shape of the frame of the car.

The stereo image pair used here has dimensions 256×240. The discrete mini-
mal cut required 3 minutes and 50 seconds to compute. The continuous minimal
surface algorithm required 16 minutes to converge including initialisation.
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(a) (b) (c)

Fig. 3. Reconstruction of a scene from two views. (a) Left view only. (b) Reconstruction
from a discrete maximal flow. (c) Reconstruction from identical input using continuous
maximal flows.

5 Conclusions

In this paper we have described a novel algorithm to compute continuous max-
imal flows in Riemannian spaces with scalar metric.

We have modelled this flow using a system of PDEs simulating the flow
of an ideal fluid with spatially varying velocity constraints. The computation
is implemented by a first order finite differences scheme. For efficiency reasons
a discrete maximal flow result is used for initialization and a multi-resolution
scheme is also used. In spite of this the total computational cost is relatively
high, especially in 3-D at high resolution.

At convergence, the solution exhibits globally maximal flow, trivially yielding
the expected minimal surface. However a full proof of convergence is not given
in this paper and requires more work.

The new algorithm has been applied to segmentation in 2D and 3D medical
images and to 3D reconstruction from a stereo image pair. The results in 2D
agreed remarkably well with an existing planar minimal surface algorithm. The
results in 3D segmentation and reconstruction demonstrated that, in constrast to
existing discrete optimisation algorithms, the new algorithm computes surfaces
which are not biased by the choice of computational grid. We believe these bene-
fits may outweigh the computational cost of the method in cases where accuracy
is paramount. The proposed algorithm also provides an accuracy benchmark for
faster methods.
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