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Abstract

A wide variety of applications including object recogni-
tion and terrain mapping, rely upon automatic three dimen-
sional surface modelling. The automatic correspondence
stage of the modelling process has proven challenging. In-
trinsic correspondence methods determine matching seg-
ments of partially overlapping 3D surfaces, by using prop-
erties intrinsic to the surfaces. These methods do not re-
quire initial relative orientations to begin the matching pro-
cedures. Hence, intrinsic methods are well-suited for auto-
matic matching.

This paper introduces a novel intrinsic automatic corre-
spondence algorithm. Local feature support regions are
described using distance and angular metrics, which are
used to construct cumulative distribution function signa-
tures. Local correspondences are hypothesised by compar-
ing the signatures of two surfaces. A geometric consistency
test is then applied to select the best local correspondences.
Finally, registrations are computed from the remaining cor-
respondences and the best alignment is selected. Results
demonstrating the algorithm’s accuracy in selecting corre-
spondences for mutual partially overlapping surfaces, are
presented. The algorithm’s parameters prove robust, with
only the local region size being surface dependent.

1 Introduction

Automatic correspondence is an important step in three di-
mensional (3D) modelling. Automatic correspondence is
essential in applications where the position of the sensor,
with respect to the scene, is unknown. A typical example
is terrain mapping [8]. It is desired that the images of all
views (i.e. 3D surfaces) are input into the modelling sys-
tem, where they are automatically manipulated to form a
3D model of the object/scene. This section outlines the
3D modelling process, discusses intrinsic correspondence,

and briefly highlights existing intrinsic correspondence al-
gorithms.

The 3D modelling process consists of four main stages.
First, a sensing device is used to obtain 3D surfaces of
different views of an object/scene in thedata acquisition
stage. Secondly, the matching segments of different sur-
faces are found using acorrespondencealgorithm. Thirdly,
the corresponding surfaces are aligned by applying aregis-
tration scheme. Finally, the aligned surfaces are merged to
form a complete 3D model of the object/scene, in theinte-
gration and reconstruction phase. The automatic data ac-
quisition, registration, integration and reconstruction stages
have been more or less solved. Automatic correspondence
however, has proven challenging.

Correspondence methods can be categorised as eitherin-
trinsic or extrinsic[12]. Intrinsic methods form correspon-
dences by comparing the intrinsic properties of surfaces,
whereas extrinsic methods form correspondences using the
relative orientations between the surfaces being matched.
Extrinsic methods require a rough initial alignment between
the surfaces to converge to the correct solution [3, 5]. In-
trinsic correspondence-registration methods automatically
form these initial alignments within the algorithm. There-
fore, intrinsic techniques are the key to developing auto-
matic correspondence algorithms, because theoretically no
user interaction is required. However, nofully automatic
technique exists.

Some key intrinsic methods are highlighted as follows. The
Random Sample Consensus based Data Aligned Rigidity
Constrained Exhaustive Search method defines regions on
one surfaceX , and searches for regions of similar size on
the other surfaceY [4]. Triangles comprised of selected
control points make up the regions. A similar method is
graph matching, whereby a graph using distances between
points is constructed onX [6]. The algorithm then attempts
to build the same (or part of the same) graph onY . Meth-
ods such as spin-image and geometric histogram matching
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treat the correspondence problem slightly differently. The
former creates signatures on each surface, that are based on
the horizontal and vertical distances from selected points to
every other point on the surface [9]. The latter examines
the angles and vertical distances from a given mesh facet,
to other facets within a predefined distance [2].

Aspects of the outlined correspondence methods are re-
ferred to in other sections of this paper. Intrinsic corre-
spondence is detailed in the following section. Section 3
then introduces a novel intrinsic correspondence algorithm.
Section 4 provides results of matches between mutual par-
tially overlapping surfaces. Finally, Section 5 summarises
the work outlined in this paper.

2 Background

As discussed developing an intrinsic method is the best so-
lution to constructing an automatic correspondence method.
In this section a typical intrinsic algorithm is outlined, and
its main components are reviewed in detail.

2.1 Intrinsic Correspondence Dissected

Figure 1 illustrates a typical approach to intrinsic corre-
spondence. This method assumes pairwise correspondence
and registration. When registering a set of surfaces, it is
sufficient to do the initial alignment in a pairwise manner,
matching each surface with every other surface individu-
ally. The final accurate alignment between all surfaces can
be obtained using a multiview registration scheme [14].

signatures X, Y

Computation of Signatures

goodnessof local matches

Global Correspondence

Registration & Evaluation

surface X surface Y

Local Correspondence

grouped locally−consistent matches

best correspondence and alignment X & Y

Figure 1. The steps in a typical intrinsic cor-
respondence algorithm.

Figure 1 illustrates a procedure, where the number of po-
tential correspondences between two surfaces are contin-

uously reduced, such that only a few remaining hypothe-
sised matches are passed to the registration-evaluation pro-
cess. Essentially, this algorithm is an exercise incorrespon-
dence pruning. The first step of the pruning process is to
select small local feature support regions on both surfaces
X andY . Then, these regions are given signatures based on
their local features. The signatures ofX are matched with
the signatures ofY in the local correspondence phase, and
the goodnessof each match is passed to global evaluation
procedure. Here, bad matches are discarded, reducing the
number of possible local correspondences. The remaining
matches are accumulated to provide evidence for consistent
local matches. The sets of consistent matches are then used
to compute registrations to bringX andY into common co-
ordinate systems, where their alignments are evaluated. The
best alignment gives rise to the optimal correspondence be-
tween the two surfaces.

A more detailed review of the steps shown in Figure 1 is
discussed in the following sections.

2.2 Signatures

Signatures of surface regions are constructed from intrin-
sic surface properties. The signature construction process
encompasses two very important steps: choosing a viable
descriptor of a region, and storing this descriptor in a signa-
ture that can easily be compared to other signatures. Some
considerations when selecting descriptors, region sizes and
signatures are highlighted below.

It is desired that a surface descriptor is robust, and unique to
its local neighbouring region. Regions can be uniquely de-
scribed using angular [2], distance [2, 4, 6], and differential
[10] features. The following examples concern robustness.
Distances between points are robust, as they use the original
surface properties [11]. However, features such as normals,
are less robust because smoothing is usually required so that
the descriptors are accurate [5].

Selecting the size and shape of the local support regions,
is a process that concurs with choosing a region descriptor.
In some cases the regions’ size and shape may be constant
[2], and in others variable [4]. It is essential that each local
support region is large enough to store a unique description
of the area, but not too large, as the entire region may not
be in the overlapping portion of the corresponding surfaces.

After selecting one or more surface descriptor(s) and defin-
ing the region size and shape, the descriptors of each sup-
port region must be stored as signatures. Typical signatures
include graphs [6] and histograms [2]. The signatures must
be of reasonable size to ensure that local matching is effi-
cient. Signatures such as spin-images are less favourable
because they require large data storage space [9].
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Once the signature computation process is complete, the
signatures of surfacesX andY are passed to the local match
algorithm.

2.3 Local Correspondence

The function of the local correspondence algorithm is to de-
termine how well the signatures of surfaceX match with the
signatures of surfaceY . A suitable match metric is required
for this operation. Examples include the Minkowski norm
for shape distribution matching [11], and Bhattacharyya
distance for histogram matching [2].

Local correspondences are generally computed in batches,
as shown in Figure 1, where every signature of one surface
is compared with every signature on the other. Thegood-
nessof all local matches is then passed to a global evalua-
tion algorithm.

2.4 Global Correspondence

Global correspondence algorithms prune all local matches,
so that only good locally-consistent matches are selected.
An example is pruning a probability matrix, where the en-
tries of the matrix areprobabilitiesof matches between sig-
natures onX andY . The global correspondence algorithm
is used tothin the p-matrix by only selecting matches with
a probability greater or equal to an acceptance levelp0.

There are a number of ways of selecting global corre-
spondences. This process is often integrated into the lo-
cal matching procedure, such that bad matches are dis-
carded immediately [4], and not all matches are passed in
a batch for global evaluation. However, analysing a batch
of matches can be extremely valuable when using pruning
methods, because the correspondences can then be evalu-
ated at different acceptance levels.

The correspondences that pass global evaluation are a much
smaller set of possible matches between two surfaces, and
these are passed to a registration-evaluation algorithm.

2.5 Registration and Evaluation

The final analysis of potential matches between two sur-
faces is completed by evaluating how well two surfaces
align when using selections of the remaining correspon-
dences. Three corresponding pairs of regions must be se-
lected to uniquely align two surfaces in a common coordi-
nate system.

A number of registration-evaluation methods are used to se-
lect the best possible transformations to align two surfaces.
In most cases all possible combinations of three correspond-
ing region pairs are used to compute registrations between

the surfaces. This is generally followed by another evalu-
ation where extrinsic-type metrics [3, 5] are computed to
further prune the correspondence space. The final registra-
tions are examined by using methods such as an evidence
accumulation scheme to test for consistent transformations
[2], or a model based scheme to test for good alignments
[4].

The best alignment between the two surfaces is selected
as the final outcome of the intrinsic correspondence-
registration algorithm.

3 Statistical Signature-based Matching

In this section, a novel intrinsic correspondence algorithm
is introduced. The algorithm conforms to the structure out-
lined in Section 2, and the following subsections discuss
signature selection, local and global correspondence, regis-
tration and alignment evaluation.

3.1 Signatures

In this correspondence algorithm, distance and angular de-
scriptors, and statistical signatures are used to characterise
regions on the surfaces being matched. It is assumed that
the surfaces are stored as polyhedral (generally triangular)
meshes. The following paragraphs discuss the signature
derivation process, with respect to the mesh surfaces.

Two descriptors are utilised to describe a local region on
the mesh. TheD1 distance is a robust descriptor, and was
derived for surface model matching [11]. The metric is the
Euclidean distance between a centre vertex and points on
the surface, in the local feature support region. The second
metric is theA1 descriptor, which is the angle between the
normal of the centre vertex and the normals of points, in the
local feature support region. Angles between facet normals
are used as feature metrics in geometric histogram matching
[2]. Both metrics are used in a combined fashion to more
uniquely portray each local support region on the surfaces
being matched.

Local support regions are selected around each centre ver-
tex as follows. First, theborder layersof each mesh are
determined. This is done by selecting the vertices on the
border of the mesh (layer 1), then the vertices that connect
to border vertices (layer 2), then the vertices that connect to
layer 2 vertices (layer 3), and so on as shown in Figure 2.
The mesh can now be evaluated at a certain level. For ex-
ample, if there are many points on the mesh, it would be
very inefficient to evaluate the potential match between ev-
ery point on meshX and every one onY . Therefore, only
the vertices of the innermost layers (say layer 3 and above
are selected).
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(a) layer 1
(b) layer 2
(c) layer 3
mesh

Figure 2. The border layers of a mesh, with (a)
being the outermost layer, (b) the second, (c)
the third and so forth.

Once the vertices to be evaluated have been selected, a
neighbourhood radius is chosen (this is currently a user-
defined value). This distance determines the surrounding
neighbourhood of each vertex, by including all the points
in the neighbourhood that fall into the sphere generated by
the radius. TheD1 andA1 metrics are then calculated for
each local support region. The combination of distance and
angular descriptors has proven powerful in correspondence
algorithms [2, 9].

A separate signature is then built for both theD1 and theA1
metrics. The signatures are cumulative distribution func-
tions (cdfs), and were selected in concurrence with the local
match metric discussed in the following section.

3.2 Local Correspondence

A brute force local matching algorithm is employed, where
the signature of every vertex under evaluation on meshX

is tested against the signature of every selected vertex on
Y . The match metric employed is the Kolmogorov-Smirnov
two sample test (KS-test). The KS-test tests whether two
samples, that are drawn independently, belong to the same
population [7]. The test statistic used in the two-sided KS-
test isT , which is the greatest absolute distance between the
two cdfs supplied for each match. The acceptance level, or
probability of a matchp, is calculated usingT [7].

All D1 signatures of the two surfacesX andY are com-
pared, and allA1 signatures ofX andY are compared. The
comparison results are stored in 2D probability matrices,
PD andPA respectively. The respective elements of the
matrices are then multiplied to form the p-matrixP , which
is passed to the global correspondence algorithm for further
evaluation.

3.3 Global Correspondence

The global correspondence method prunes local matches
by examining geometric consistency. The first step of the
global correspondence method however, is discarding local
matches in the p-matrix that have probabilities belowp0.

The parameterp0 is the acceptance value that supports the
hypothesis that two signatures belong to the same distribu-
tion.

Every possible combination of three local correspondences
is then chosen from the remaining matches. The local cor-
respondence pairs form triangles as shown in Figure 3. Ge-
ometric consistency must exist between the two surfaces if
the formation of local correspondences are to be accepted.
That isd1X � d1Y , d2X � d2Y , andd3X � d3Y . The
measurement used to test similarity in the three distances
is jdX � dY j � � , where� is a percentage (also user de-
fined) multiplied bymax(dX ; dY ). The varying nature of
� ensures that good matches based on larger triangles are
more acceptable then those based on smaller ones. This in-
creases the robustness of the algorithm, minimising the er-
ror introduced when considering small triangles as the best
correspondences.

Every possible combination of three local correspondences
is evaluated, and only theQ matches that pass the geomet-
ric consistency test are passed to the registration-evaluation
algorithm, for further evaluation.

~~Xd1 Yd1

~~

~~

Xd1

Yd1 d2

d3

surface Y

Y

Y

surface X

Xd2 Yd2

Yd3Xd3

d2

d3

X

X

Figure 3. Three local correspondences be-
tween surface X and Y. The distance between
the selected vertices on the surfaces must be
similar for good geometric consistency.

3.4 Registration and Evaluation

Each possible combination of three centroids, of theQ re-
maining matches, is supplied to the alignment algorithm [1].
These registrations are then analysed visually. This process
will soon be replaced by an extrinsic-type correspondence-
alignment-evaluation scheme. A typical evaluation method
is to compute the closest points from meshX to meshY ,
and then determine the distances between them [13]. Fi-
nally, the number of point-pairs whose distances fall below
a threshold� are summed, and the match with the highest
sum is selected as the best correspondence between the two
meshes.

3.5 The Algorithm Summarised

The novel intrinsic correspondence method discussed in the
previous sections is summarised in Figure 4.
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pruning:       acceptance levelp0

D1   distances,       anglesA1

mesh Ymesh X

cdf signatures X, Y

p−matrix

Global Correspondence

best correspondence and alignment X & Y

consistent triplets

Registration & Evaluation

Local Correspondence
KS−test

geometric consistency

Computation of Signatures

cdfs

selected vertices: spherical regions

Figure 4. The steps of the statistical
signature-based matching intrinsic corre-
spondence algorithm.

4 Results

In this section, the results of the statistical-based signature
matching algorithm are illustrated for surfaces with mutual
partially overlapping segments. Both visual results and an
analysis of the effects of the parameters on the algorithm
are highlighted.

The surfaces matched are triangulated meshes and are dis-
played on the left hand side in Figure 5. The best triplets of
corresponding points are shown in the right hand column.
Note that at least three matches are required to register two
surfaces.

Figure 5(a) shows two views of a Renault figurine, seen
at 90 and 135 degree viewing angles. The correspondence
triplets demonstrate accurate matches between the two sur-
faces. Figure 5(b) shows two very similar views of a toy di-
nosaur (viewing angles 0 and 360 degrees). The parameter
p0 = 0:99999999 was chosen to reduce the possible num-
ber of remaining matches to four. When two surfaces are
almost identical, the algorithm results in many accurately
matched local support regions. Layers four and above were
chosen for the match, although far fewer could have been
selected because of the similarities of the two surfaces.

Figure 5(c) illustrates the best match when two surfaces are
matched that contain a smaller percentage of mutual par-
tially overlapping segments (views 0 and 36 degrees of the
toy dinosaur) . The triplet of matches are not as accurate

(d) dino 252 (above) and dino 216 (below)

(c) dino 36 (above) and dino 0 (below)

(b) dino 360 (above) and dino 0 (below)

(a) renault 135 (above) and renault 90 (below)

Figure 5. The surfaces tested (left), and the
best resulting correspondence triplets (right).

as that in part (b), but correspond to regions of very similar
surface variation. Figure 5(d) too shows the resulting corre-
spondences when matching two surfaces contain a smaller
percentage of mutual partially overlapping segments (views
216 and 252 degrees of a toy dinosaur). The triplet of best
matches re-affirms the accuracy of the algorithm.

Table 1 summarises the parameter selection for the surfaces
used to test the algorithm. The table also includes the radius
size selected for each match procedure. The radius size was
constant for each of the dinosaur match procedures, high-
lighting the robustness of the algorithm. The radius size
selection will be the most important factor when fully au-
tomating the intrinsic algorithm. Other parameters such as�

are robust for a variety of surfaces and do not require adjust-
ment. The neighbourhood layer region is mainly selected to
increase the computational efficiency of the algorithm, and
will only affect the correspondences if too few points are
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Parameters renault dino dino dino
(90,135) (0,360) (0,36) (216,252)

p0 0.90 0.9999 9999 0.95 0.945
radius 50 25 25 25
layers � 3 � 4 � 3 � 3

tau 0.05 0.05 0.05 0.05

Table 1. The values selected for the parame-
ters of the novel correspondence algorithm.

selected for matching.

The algorithm is currently implemented in MATLAB and
takes no more than 30 minutes to run for larger meshes
(e.g. dino 0 anddino 360, with 964 and 1038 vertices re-
spectively), depending on the parameter selection. Note that
MATLAB is very slow in comparison with C or C++. The
final algorithm will be implemented in C or C++ to dramat-
ically reduce the computation time.

The results in this section highlighted that the novel intrin-
sic correspondence technique accurately selects correspon-
dences between partially overlapping surfaces. The algo-
rithm provides results that can be input into an extrinsic al-
gorithm to achieve accurate final correspondences. Some
further analysis required before the algorithm is complete
includes examining the effects of the algorithm’s parame-
ters, and the algorithm’s efficiency.

5 Conclusion

This paper highlighted the importance of intrinsic corre-
spondence techniques, and introduced a novel intrinsic al-
gorithm. The new method is a signature matching technique
that uses theD1 distances andA1 angular measurements as
descriptors of local support regions. The signatures are cdfs,
and are compared by the local correspondence algorithm.
The comparisons are made using a KS-test and are stored
in two probability matrices, whose respective elements are
multiplied. The resulting p-matrix is pruned by accept-
ing only those local matches which are greater or equal to
the acceptance valuep0. Global correspondences are then
tested for geometric consistency to further reduce the match
search space. Finally registrations are applied to the best
matches, and visual evaluations of the best alignments are
made.

The initial results of the statistical-based signature match-
ing algorithm are promising. The algorithm provided ac-
curate alignments that can be input as initial relative orien-
tations in extrinsic methods. The algorithm’s only surface
dependent parameter is the local support region radius size,
making the technique robust. Future work includes fully
automating the parameter selection process and coding a

registration-evaluation algorithm to finalise the automatic
correspondence process.
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