
Requirements Traceability for Embedded Software — an Industry
Experience Report

Leesa Murray
� ���

Alena Griffiths
�

Peter Lindsay
�

Paul Strooper
���

Abstract

Requirements traceability is an enabling capability for ver-
ification and validation of software-based systems. This
paper reports on the outcomes of an industrial pilot project
investigating the costs and potential benefits of adding re-
quirements traceability to the development lifecycle of em-
bedded software. The project forms part of an industry re-
search collaboration which aims to increase integrity assur-
ance for products containing embedded software.

KEY WORDS
Software requirements, tracing, embedded software

1 Introduction

Requirements traceability concerns the ability to identify
requirements at different levels of abstraction, and to show
that they have been implemented and tested. Traceability is
a key capability for demonstrating and assessing software
and system integrity, and is typically mandated by safety
and reliability standards [8, 16, 17]. It can also play a key
role in fault avoidance and fault removal, and for assuring
dependability of embedded software.

This paper is an experience report on a project which
used requirements traceability to analyse the development
artefacts of three existing embedded software subsystems.
The embedded software is also referred to as firmware. The
work was carried out in a pilot project within the firmware
development group of Foxboro Australia, a company which
produces software-based control and automation systems
used in transport and electricity distribution applications.
The firmware is part of a range of products, some of which
are used in safety-related systems. The project’s findings
are relevant to most high assurance software, not simply
firmware.

Besides being mandated by safety and reliability stan-
dards, requirements traceability is a requirement of some
of the company’s customers. Foxboro already performs re-
quirements tracing for some of its project-specific software,
but wanted to extend traceability into the firmware which

�
School of Information Technology and Electrical Engineering, The

University of Queensland, Brisbane, Qld 4072, Australia. email: �
leesam, pstroop � @itee.uq.edu.au�

Foxboro Australia, PO Box 4009, Eight Mile Plains, Qld 4113, Aus-
tralia. email: � leesa.murray, alena.griffiths � @invensys.com	

Software Verification Research Centre, The University of Queens-
land, Brisbane, Qld 4072, Australia. email: pal@svrc.uq.edu.au

forms part of their standard product line, to increase assur-
ance of integrity. Another motivation was to use traceabil-
ity as an enabling technology for fault avoidance and fault
removal, by supporting the following processes: check-
ing coverage of requirements during design, to reveal over-
looked requirements earlier in the lifecycle; test planning,
by ensuring that all requirements are covered and by assess-
ing the ratio of requirements to test cases; problem analysis,
by helping identify the root causes of failures in specifica-
tion, design, implementation, and/or test; and characterisa-
tion of products, product versions and product variants, by
providing tracing between diverse sources of requirements.

There are many issues to consider when determin-
ing what tracing relationships should be created and main-
tained. Firmware requirements arise from many differ-
ent sources, including core-product specifications, project-
specific and customer requirements, third-party specifica-
tions such as standardised communications protocols, and
hardware-specific requirements. The requirements typi-
cally reside in a wide range of documents, including sys-
tem and component specifications and design documenta-
tion, and at varying degrees of abstraction and granularity.
There are many possible tracing relationships both within
and between the above documents, and through design to
implementation and testing. As a result, there are many
combinations of tracing relationships to choose from, each
with associated costs and benefits.

In the pilot project, we conducted requirements trac-
ing on development artefacts associated with three existing
firmware subsystems. The project sought to include sub-
systems of different functional types, and possessing differ-
ent requirement types, including in-house and third-party
requirements. The tracing relationships included traces
from functional requirements to design requirements, de-
sign requirements to test cases, and design requirements to
source code. Rational Software Corporation’s RequisitePro
[14] requirements tracing and management tool was used,
as it was already in use in other departments at Foxboro.
Metrics were kept on resource usage, including learning
time, the requirements identification process, and the trace
creation process. At the end of the project, an assessment
was made of the value of the information that the tracing
exercise revealed. Two classes of recommendations were
made. The first class involved direct recommendations to
address the assurance gaps that the tracing information re-
vealed. The second class involved recommendations that
will permit the incorporation of requirements traceability

as a standard part of product development, going forward.
The remainder of this paper describes the pilot project

and its outcomes, and draws conclusions on the cost-
effectiveness, benefits, and feasibility of the requirements
tracing process. The paper is structured as follows: Sec-
tion 2 discusses related work; Section 3 describes the goals
of the pilot project and the nature of the subsystems to
which traceability was added; Section 4 describes the out-
comes of the pilot project; Section 5 discusses the signifi-
cance of these outcomes; and Section 6 concludes.

2 Related Work

Jarke [9] defines requirements traceability as “the ability
to describe and follow the life of a requirement, in both a
forward and backward direction, ideally through the whole
systems lifecycle.” Jarke acknowledges that establishing
and maintaining requirements traceability can be an expen-
sive and politically sensitive endeavour, as developers are
not exactly known for their love of documentation. He sug-
gests that traceability should come as a side effect of daily
productive work rather than via the imposition of additional
bureaucracy. Our tracing was performed retrospectively af-
ter the product development was complete, and we agree
with Jarke that it would be more cost-effective if incorpo-
rated as an integral part of the development process.

Ramesh et al. [13] present a framework for repre-
senting and developing a traceability scheme. Require-
ments traceability is a characteristic of a system where re-
quirements are linked to their sources (backwards trace-
ability) and to the artefacts created during the system de-
velopment lifecycle based on those requirements (forwards
traceability). A primary use of requirements traceability is
for developers to prove to the customer that the require-
ments are understood, and the product complies with the
requirements and has no unnecessary features. Therefore,
it facilitates communication among those involved in a
project. Ramesh [12] states that “requirements traceability
is viewed as a measure of system quality and is mandated
by many standards governing the development of systems.”
From his analysis of empirical studies conducted over four
years, Ramesh identifies two distinct groups — low-end
traceability users, who view traceability simply as a man-
date from project clients and management, and high-end
traceability users, who view traceability as an important
component of a quality systems engineering process.

Kotonya and Sommerville [10] identify requirements
management as “the process of managing changes to the
system requirements.” This is more easily achieved when
traceability information is explicitly recorded. They sug-
gest that an organisation maintains a set of traceability poli-
cies that should specify:

 the traceability information that should be maintained,

 the techniques that should be used to maintain the
traceability information,

 a description of when the traceability information
should be collected during the requirements engineer-
ing and system development process,

 a description of how to handle and document policy
exceptions, and,

 the process used to ensure that the traceability infor-
mation is updated after a change has occurred.

From the results of the pilot project, recommendations sim-
ilar to these policies have been made to Foxboro for adop-
tion by the firmware group.

Petty [11] recognises the two extremes of require-
ments engineering, stating that for many projects the re-
quirements effort is almost nonexistent with requirements
provided verbally and never documented, and for others re-
quirements efforts can produce formal, military-style speci-
fications. He explains that with embedded software, a prod-
uct is being developed that has some of its functionality
provided by the software. Ultimately it is the product that
is sold, not the embedded software. His work makes it clear
that a crisp distinction is essential to identify those require-
ments to be implemented in software, as opposed to those
requirements that refer to the hardware or to the product
generally.

Hammer et al. [5] and Rosenberg et al. [15] present
project data collected from NASA’s Goddard Flight Centre
on requirements definition, verification, and management.
Tools and metrics analysis are used in these three areas in
an attempt to get requirements correct, the first time. The
authors state that “prior to processing of requirements, the
schema for the requirements management database must
be developed”, and discuss some critical issues associated
with the schema design. The authors also discuss the trac-
ing of requirements to test cases, and the ratios of require-
ments to test cases.

3 Pilot Project

The pilot project trialed requirements tracing processes and
Rational Software Corporation’s tracing tool, RequisitePro
[14], for firmware subsystems. The goals of the project
were to:

 Carry out requirements tracing on the development
artefacts associated with a number of firmware sub-
systems. This included requirements traceability from
functional specifications to design specifications, from
functional and design specifications to test descrip-
tions, and from design specifications to source code.
The tracing was to be performed using a tool to store
the tracing information.

 Analyse the information obtained from the tracing ex-
ercise, to see what it revealed about product quality
and assurance, and to assess whether this information
was considered valuable, relative to the cost of obtain-
ing it.

 Investigate the feasibility and cost-effectiveness of the
different traceability relations.

 Make recommendations for the incorporation of a re-
quirements tracing process in the firmware develop-
ment lifecycle, including the definition of document
templates to assist in requirements traceability.

As the project sought to trace requirements from high
levels of abstraction through design to source code and test
cases, we use the generic term trace item to refer to a re-
quirement at any level of abstraction, a source code frag-
ment, or a test case.

A Goals-Question-Metrics (GQM) [1] exercise was
conducted to identify metrics data to be collected during
the project. The first goal for the GQM exercise was to im-
plement requirements tracing on the development artefacts
associated with a number of existing firmware subsystems.

Based on the GQM exercise, we decided to collect
data on the types and numbers of documents being traced,
the types and numbers of trace items, the types of tracing
relationships, and the number and coverage/completeness
of the traces for each of these tracing relationships.

The second goal from the GQM exercise was to as-
sess the feasibility and cost-effectiveness of requirements
tracing in the firmware group. The data collected for this
goal relate to the cost of the requirements tracing and the
problems that the requirements tracing is able to find.

The data collected during the pilot project is presented
and analysed in Section 4. The majority of the data was
gathered by using the querying facilities of RequisitePro.

For the pilot project, subsystems were selected rep-
resenting two different aspects of firmware — core prod-
uct, where the requirements and subsequent documentation
were written within the firmware group; and communica-
tions protocols, where requirements, and test procedures
and cases, were written by an industry-recognised standar-
dising body. Three firmware subsystems were selected for
this pilot: the Digital Inputs (DI) subsystem, the Power
Supply and Battery Charger (PSBC) subsystem, and the
Level 1 Slave subsystem of the Distributed Network Pro-
tocol 3.0 (DNP).

The DI and PSBC subsystems are part of one of
Foxboro’s Remote Terminal Unit (RTU) products. This
product was chosen for the pilot project as it is a prod-
uct that Foxboro continues to both maintain and evolve.
As such, the information obtained through this exercise
was expected to be of immediate value to Foxboro. All of
the product’s documentation was written by the firmware
group.

The DI subsystem was chosen to trial tracing amongst
the following trace items: functional requirements (ab-
breviated as FRS), design requirements (DRS), firmware
test cases (FTC), and source code fragments (SRC). This
allowed us to explore tracing throughout the complete
firmware development lifecycle. The lower part of Figure 1
illustrates this. The boxes represent development artefacts
which contain trace items of a certain kind, and the arrows

represent the relationships between the trace items that we
analysed.

In contrast, the PSBC subsystem was selected to trial
the tracing of functional requirements (FRS) directly to test
cases (FTC). The upper part of Figure 1 illustrates these
trace items and relationships.

Power Supply & Battery
Charger Test Cases

(FTC)

Digital Inputs
Source Code Fragments

(SRC)

Digital Inputs
Test Cases

(FTC)

Digital Inputs
Design Requirements

(DRS)

Functional Requirements
(FRS)

RTU Firmware

Digital Inputs

Power Supply & Battery Charger

Figure 1. RTU trace items and relationships.

The DNP subsystem was chosen for this pilot as it
has requirements and testing documentation that is writ-
ten by the DNP Users Group, as well as some written
by the firmware group. This provided the opportunity
to trial the tracing process on third party produced doc-
uments (that is, the DNP Users Group produced docu-
ments) as well as those written by the firmware group.
The level 1 slave subset of DNP was chosen to trial trac-
ing of subset definitions [2] (DNP Users Group) to slave
device profile requirements (firmware group) to functional
requirements (firmware group) to application layer require-
ments [3] (DNP Users Group) to test cases [4] (DNP Users
Group). Figure 2 illustrates this. Being able to show that a
product is DNP level 1 compliant, and to identify the test
cases to execute for regression testing when changes occur
to the subsystem, were the two major factors in the selec-
tion of the tracing for the DNP slave subsystem.

Document templates were developed for firmware
functional specifications and firmware test descriptions as
part of the pilot project. Prior to the pilot project, templates
did exist for these documents within the firmware group.

DNP Subset Definitions
Requirements

(PRS)

Slave Device Profile
Requirements

(FRS)

DNP Application Layer
Requirements

(PRS)

Level 1 Certification
Test Cases

(PTC)

Firmware Functional
Requirements

(FRS)

DNP User Group
Documents Foxboro Documents

Figure 2. DNP trace items and relationships.

The existing templates were enhanced to better support re-
quirements traceability for future firmware developments.

The resultant “Firmware Functional Specification
Template” was written in accordance with the “ANSI/IEEE
Standard 830-1984 IEEE Guide to Software Requirements
Specification” [7]. Guidance on what to include in each
section was provided in the form of hidden text which
can be viewed by the user. The guidance given is de-
tailed and includes examples where relevant. Specific ref-
erences are made to requirements traceability. The resul-
tant “Firmware Test Description Template” was written
in accordance with the “IEEE-829 — IEEE Standard for
Software Test Documentation” [6] and Foxboro’s company
procedure for test plans. It provided guidance on what to
include in each section, again through the use of hidden
text.

4 Outcomes and Findings

RequisitePro was chosen as the tracing tool because it was
already in use in other development groups within Foxboro.
Two databases were created in RequisitePro: one for the
tracing associated with the DI and PSBC subsystems, and
one for the DNP tracing. The majority of RequisitePro’s
functionality was used during the pilot project, except its
facilities for version control.

Following database setup, relevant firmware artefacts
(functional specifications, design specifications, source
code, and test descriptions) were gathered and added to the
database. Table 1 shows the number of each document type
used in the pilot project.

Document types Number Used
Firmware functional specification 3
Firmware design specification 2
Firmware test description 2
Protocol functional specification 2
Protocol test description 1
Source code file 9

Table 1. Document types.

Following the identification of the development arte-
facts, the trace items within those artefacts were identi-
fied. As illustrated in Figure 1, the trace item types used
in the RTU project were: firmware functional requirement
(FRS), firmware design requirement (DRS), firmware test
case (FTC), and source code fragment (SRC). The trace
item types used in the DNP project were: firmware func-
tional requirement (FRS), protocol functional requirement
(PRS), and protocol test case (PTC). Table 2 shows the
number of items identified for each trace item type and
their location, with a “—” representing that this data was
not applicable or collected.

The exercise of trace item identification revealed a

Subsystems: DI PSBC DNP
FRSs 88 7 198
FRSs in functional specs 54 0 198
FRSs in design specs 34 7 0
DRSs 95 — —
DRSs in functional specs 0 — —
DRSs in design specs 95 — —
FTCs 12 8 —
SRCs 150 — —
PRSs — — 499
PRSs in protocol func specs — — 499
PTCs — — 38

Table 2. Trace items types - identification and location.

Subsystem tracing relation Traces
DI — FRS � DRS 307
DI — DRS � FTC 46
DI — DRS � SRC 302
PSBC — FRS � FTC 16

Table 3. RTU trace relationships

number of interesting facts. Firstly, as its name suggests,
the RTU functional specification is in nature a product
specification, containing both firmware and hardware re-
quirements. For this reason, trace item types for firmware
functional requirements and hardware functional require-
ments (HRSs) were created for the RTU project in the Req-
uisitePro database. Since the HRSs were not traced any
further during this pilot project they are not included in Ta-
ble 2. Secondly, as Table 2 shows, the location of a trace
item does not always reflect its type. That is, while one
might typically expect the design specifications to collec-
tively contain all trace items of type DRS, and no trace
items of type FRS, in fact trace items of both types were
found in the design specifications. This suggests that the
RTU functional specification, encompassing both hardware
and software requirements, is too broad in scope to include
all functional firmware requirements at a level of abstrac-
tion that permits easy traceability to design. This points
to the need for an intermediate level of abstraction in the
documentation tree, which is one of the recommendations
from this pilot project.

Following trace item identification, tracing relations
between those trace items were established. This involved
one or more firmware engineers observing that a trace item
of one type, say an FRS, logically traced to one or more
other trace items, such as DRSs or FTCs.

Table 3 identifies the data for the tracing relation types
used for the RTU subsystem. Table 4 shows the tracing data
for the DNP tracing.

Subsystem tracing relation Traces
DNP — PRS � FRS 165
DNP — FRS � FRS 370
DNP — FRS � PRS 2962
DNP — PRS � PTC 527

Table 4. DNP trace relationships

4.1 Traceability analysis

Following the identification of the tracing relationships, the
database of tracing relations was then queried to reveal in-
formation about potential product or assurance deficien-
cies. For example, if one considers a trace relationship be-
tween design requirements and source code, then an obser-
vation that there are design requirements which do not trace
to source code fragments may indicate that all requirements
have not been implemented. Similarly, an observation that
there are source code fragments which do not trace from
any design requirements may indicate the introduction of
undocumented features to the product. Analogous observa-
tions about the relationship between requirements and test
cases would point to the existence of untested features, or
of unnecessary test cases, respectively. Care is always re-
quired in interpreting the trace data, however, as observa-
tions of the kind mentioned may point to product quality or
assurance deficiencies, but they can also simply point to a
deficiency in the trace relation database.

Also, where the relationship between trace items is
not one-to-one, one should not assume that because there is
a trace from a particular requirement, that the requirement
has been adequately implemented or tested. It is usually the
case that a requirement will trace to a number of test cases
and a number of lower level design requirements, so some
semantic check for coverage is required, and in the general
case, this cannot be automated.

For each tracing relation from trace items of type �
to type , the number of items of type � that were not
traced from was calculated, as was the number of items of
type that were not traced to. These two measures were
also expressed as percentages of the total number of items
of type � and respectively, to assess the extent of the
coverage deficiency or feature creep.

All “not-traced-from” and “not-traced-to” observa-
tions were then analysed by Foxboro personnel and re-
search staff. This analysis was very detailed, relating to
specific aspects of individual requirements, and for this rea-
son it is not repeated here. However, the exercise gave rise
to some more general observations.

Firstly, the observations are only as useful as the ac-
curacy of the traceability database, so it is vital that this is
accurate. The analysis of anomalies indicated that many
“anomalies” were actually attributable to misclassification
of requirements, missed traces, failure to identify all rel-
evant development artefacts, etc. Many of these problems

are due to the fact that the exercise reported in this paper in-
volved an analysis of existing development artefacts. If the
process of requirements traceability was an integral part of
development, then the trace relations could be established
during development, and the database reviewed as part of
the normal development review processes. It is expected
(and indeed, it has been Foxboro’s experience in other ar-
eas of software development) that this would lead to cleaner
levels of abstraction and improved requirements quality.

Secondly, not all trace items of a certain type will nec-
essarily participate in a particular trace relation, so more so-
phisticated trace item subtyping is required in future. For
example, a performance requirement will not usually be
traceable to a specific fragment of source code, and so does
not participate in the design to source code trace relation. It
is possible to record this information in RequisitePro, and
exclude such trace items from queries that seek to identify
tracing anomalies.

Thirdly, the analysis revealed cases where assump-
tions had been made. For example, an aspect of the design
may rest on an assumption about the operating system or
its environment. A mechanism in the traceability process
for documenting such assumptions and tracing from them
needs to be incorporated.

Fourthly, where re-use occurs, this should be made
explicit. For example, in one instance, the existence of
functional requirements that were not traceable to design
requirements was attributed to the fact that the functionality
had been ported from a previous generation of the product
and was not re-implemented. Such re-use should be made
clear and used to close out higher level requirements.

Finally, a requirements traceability graph in which the
number of traces from a particular trace item is more or
less uniform, for all trace items of a particular type, can
indicate either good use of abstraction or good test cover-
age. For example, if only a few functional requirements
trace to a disproportionately large number of the design
requirements, this may indicate under-specification, at the
functional requirements level. Similarly, a trace relation
from requirements to test cases in which some require-
ments trace to many test cases, and others trace to few or
even no test cases, may indicate an imprudent distribution
of test effort.

4.2 The cost of requirements tracing

It took 4.75 hours for one engineer to create the require-
ments database in RequisitePro for the RTU project, and
1 hour to set up the database for the DNP project. The
requirements identification in the RTU functional specifi-
cation took one engineer 16.5 hours to perform.

Table 5 shows the data for how long it took to iden-
tify the requirements (firmware functional requirements,
firmware design requirements, source code fragments, and
firmware test cases) for the RTU project, and how long it
took to perform the tracing for the different tracing rela-
tions. Table 6 shows similar cost data for the DNP trac-

ing. In both cases, the requirements identification was per-
formed by one engineer, and the tracing was performed by
two engineers working together at the same time.

Subsystems: DI PSBC
DRS identification 7.25 hrs —
FTC identification 1.5 hrs 1.5 hrs
SRC identification 3.0 hrs —
Trace FRS to DRS 11.0 hrs —
Trace FRS to FTC — 0.5 hrs
Trace DRS to FTC 1.5 hrs —
Trace DRS to SRC 5.25 hrs —

Table 5. RTU requirements identification and tracing costs.

In the case of the RTU subsystems, the analysis of the
anomalies revealed by querying the trace database took a
total of four hours, and involved a member of the research
team and a Foxboro engineer.

Subsystems: DNP
PRS ident in subset definitions document 4.25 hrs
FRS ident in slave device profile 1.5 hrs
FRS ident in firmware functional spec 2.0 hrs
PRS ident in application layer document 19.5 hrs
PTC ident in certification procedure 2.0 hrs
Trace PRS to FRS 2.5 hrs
Trace FRS to FRS 1.5 hrs
Trace FRS to PRS 3.25 hrs
Trace PRS to PTC 3.5 hrs

Table 6. DNP requirements identification and tracing costs.

In the case of the DNP subsystem, the engineers anal-
ysed the trace anomalies as they performed the tracing ex-
ercise.

Given that the engineers who performed the tasks in
this pilot project had no previous experience with require-
ments tracing, and had never used RequisitePro, the tracing
costs are considered to be quite low. This is especially so
considering the added assurance that the existing tracing
now provides, and the problems that the tracing has high-
lighted.

5 Discussion

The tasks involved in this pilot project were all accom-
plished retrospectively, that is, the requirements identifi-
cation tasks occurred after the documents had been writ-
ten, reviewed, and accepted; not during the document cre-
ation and review phases, which would be ideal. Similarly,
the tracing occurred after the subsystems had been imple-
mented. Ideally tracing would occur as part of the devel-
opment lifecycle phases, because this is the most efficient

time to do so. This catches problems at their source and
helps prevent them propagating throughout the develop-
ment.

The RTU tracing project highlighted many interesting
issues as we explored requirements identification and trac-
ing across the firmware development lifecycle. From our
experience, we believe that the RTU firmware functional
specification is more like a product specification. The lo-
cation of functional requirements in the subsystems’ de-
sign documents reinforces this and identifies the need for
another level of documentation between the current func-
tional specification and design documents.

The DNP tracing involved a mix of in-house and third
party documents. Maintaining the requirements database
when in-house documents are updated is not as big a con-
cern as for changes to third party documents. This is be-
cause the authors of in-house documents can update the
requirements databases as part of the maintenance exer-
cise and RequisitePro has facilities that recognise what
requirements have changed. However, if the third party
documents are changed, and obviously these changes will
not occur from within RequisitePro, maintenance problems
will arise. When using third party documents in require-
ments tracing, we obviously need to consider the overheads
of radical changes occurring in new versions, and identify
ways of managing these changes while keeping the require-
ments database current. These same maintenance issues
apply to source code, as source code files are not Microsoft
Word files, and therefore we cannot exploit RequisitePro’s
facilities for managing changes to source code files.

The personnel involved in the pilot project were not
always the authors of the documents being used. This per-
haps helped to highlight problems in the granularity and in-
terpretation of requirements, rather than hindering the trac-
ing exercise. To date, no independent verification of the
tracing has occurred, as this was not a goal or task of the
pilot project. However, reviewing the requirements iden-
tified and tracing as part of the document review process
would only improve the quality of the documents and the
system.

This pilot project has shown that requirements tracing
for firmware is feasible. It attracts a low cost for reasonable
benefit. Once integrated into Foxboro’s firmware develop-
ment lifecycle, the costs are expected to decrease further
because the tracing will occur when the information is fresh
in the engineers’ minds. The benefits will also be more ob-
vious as problems such as those discussed above will be
identified at their source and prevented from propagating
throughout the development.

6 Conclusions

In summary, a pilot project was used to analyse the de-
velopment artefacts of three existing embedded software
(firmware) systems. Requirements tracing was performed
for a variety of requirements, including core-product re-
quirements and third-party specifications. Requirements

tracing was carried through to firmware design specifica-
tions, source code and test descriptions.

The exercise revealed some deficiencies with exist-
ing development and testing methods, particularly with the
associated documentation. The main problems identified
were a large variation in the level of granularity of require-
ments in documents for similar type requirements, and the
tracing between requirements in industry-standard docu-
ments and in-house documents. Functional requirements
were often only recorded in design documents and not in
subsystem specifications. Another problem was that too
high a level of abstraction was used for functional require-
ments in subsystem specifications, resulting in excessive
“fan out” of requirements. One direct outcome of the exer-
cise was the development of improved document templates
and documentation procedures, to address these problems
and to assist in the adoption of the requirements tracing
process.

Metrics data collected during the pilot project re-
vealed that requirements identification and tracing is low
cost, even when applied retrospectively. Although the pre-
cise cost to develop the artefacts used in the study is not
available, the cost of requirements tracing is likely to be
small compared to the total development cost. Additional
benefits, by way of removing faults at their source, can be
anticipated if tracing is incorporated directly into the devel-
opment process during design, coding and test planning.
A proposal has been made for the integration of require-
ments identification and tracing into the firmware develop-
ment process.

Based on findings in the pilot project, we have recom-
mended that the following are the most important tracing
relationships to create and maintain: product functional re-
quirements to firmware functional requirements; firmware
functional requirements to firmware test case descriptions;
and firmware functional requirements to firmware design
requirements.

While we believe there is value in tracing from
firmware design requirements to firmware test descriptions,
we feel that the cost may not always be justified given that
the risks of not performing this tracing can be mitigated
by the recommended tracing relationships above. At this
point we do not recommend tracing to source code because
of the high cost of the tracing given that the files cannot
be maintained in RequisitePro. Note also that the risk of
unimplemented functionality can be mitigated through sys-
tematic module testing.

Acknowledgements

The work reported in this paper is supported by the ARC
Strategic Partnerships with Industry - Research and Train-
ing (SPIRT) grant C49937058. We thank the firmware
group at Foxboro for their assistance in this pilot project,
in particular Paul Ellis, Jenny Burton, Patrick Johns, An-
drew Lockwood, and Owen McNamara. We thank Brenton

Atchison and Anthony MacDonald for their comments on
previous versions of the paper.

References

[1] V. Basili and H. Rombach. The TAME project: towards
improvement-oriented software environments. IEEE Trans-
actions on Software Engineering, 14(6):759–773, 1988.

[2] DNP Users Group. DNP V3.00 Subset Definitions, 1995.
Document number: P009-01G.SUB, Version 1.0.

[3] DNP Users Group. DNP V3.00 Application Layer, 1997.
Version 0.03.

[4] DNP Users Group. DNP V3.00 Intelligent Electronic De-
vice (IED) Certification Procedure Subset Level 1, 1999.
Version 1.00.

[5] T. Hammer, L. Huffman, L. Rosenberg, W. Wilson, and
L. Hyatt. Doing requirements right the first time! In Soft-
ware Technology Conference, 1998.

[6] IEEE Computer Society. IEEE Standard for Software Test
Documentation, 1983. ANSI/IEEE Std. 829–1983.

[7] IEEE Computer Society. IEEE Guide to Software Require-
ments Specification, 1984. ANSI/IEEE Std. 830–1984.

[8] International Electrical Commission. Functional Safety:
Safety-Related Systems. International Standard IEC 61508,
1999.

[9] M. Jarke. Requirements tracing. Communications of the
ACM, 41(12):32–36, 1998.

[10] G. Kotonya and I. Sommerville. Requirements Engineering
- Processes and Techniques. Wiley, 1998.

[11] B. Petty. Requirements management using tables. Embed-
ded Systems Programming, pages 54–60, Dec. 1998.

[12] B. Ramesh. Factors influencing requirements traceability
practice. Communications of the ACM, 41(12):37–44, 1998.

[13] B. Ramesh, C. Stubbs, T. Powers, and M. Edwards. Re-
quirements traceability: Theory and practice. Annals of
Software Engineering, 3:397–415, 1997.

[14] Rational Software Corporation. RequisitePro Installation
Guide and User Manual, 1997.

[15] L. Rosenberg, T. Hammer, and L. Huffman. Requirements,
testing, and metrics. In 15th Annual Pacific Northwest Soft-
ware Quality Conference, 1998.

[16] RTCA Inc. Software Considerations in Airborne Systems
and Equipment Certification, RTCA/DO178-B, 1992.

[17] UK Ministry of Defence. Def Stan 00-55: Requirements for
Safety Related Software in Defence Equipment, 1997.

