
SOFTWARE VERIFICATION RESEARCH CENTRE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072

Australia

TECHNICAL REPORT

No. 01-25

Specification-based Retrieval Strategies for
Module Reuse

David Hemer and Peter Lindsay

August, 2001

Phone: +61 7 3365 1003

Fax: +61 7 3365 1533

http://svrc.it.uq.edu.au

Appears in theProceedings of Australian Software Engineering Conference (ASWEC’2001), D. Grant and L. Stirling
eds., IEEE Computer Society Press, pp 235-243, August 2001

Note: Most SVRC technical reports are available via anony-
mous ftp, from svrc.it.uq.edu.au in the directory
/pub/techreports . Abstracts and compressed postscript
files are available viahttp://svrc.it.uq.edu.au

Specification-based Retrieval Strategies for Module Reuse

David Hemer and Peter Lindsay

Abstract

Formal specifications have been proposed as a basis for
accessing reusable components from libraries, and vari-
ous fine-grained specification-matching approaches have
been developed to assist in searching libraries. Typically,
however, the granularity of matching has been too fine for
reuse to be effective. Compounding the problem is the
fact that coarse-grained items usually require adaptation
before reuse. This paper explains some of the problems
and presents a generic solution to a key problem: adapta-
tion of modules through parameter instantiation and sub-
setting. It shows how unit-matching strategies can be
lifted to module level in a generic fashion.
Keywords: component reuse, retrieval, adaptation, spec-
ification matching.

1 Introduction

With the increasing interest in component-based tech-
nologies [3] comes renewed interest in formal specifi-
cations of components and development of libraries of
reusable, formally specified components. Formal specifi-
cations allow components and their interfaces to be char-
acterised concisely and precisely. Also, because formal
specifications are machine parseable, they are ideal can-
didates as search keys [21]. In theory then, such specifica-
tions should make it easier to search component libraries,
to check component properties, and to retrieve compo-
nents for reuse.

In practice, however, it is not quite so easy. One reason
is the multitude of different ways of specifying a com-
ponent (or even of structuring its specification): it is rare
that, in the absence of prior knowledge, a person search-
ing a large library of components would formulate their
search query in a way that exactly matches the possible
solutions. Another reason is that the reusable component

often requires adaptation for its new context, and (with
some debatable exceptions) existing formal specification
languages are generally weak in their support for adap-
tation of coarse-grained objects. These problems are ex-
plored in more detail below.

1.1 Specification-based search strategies

To date, most specification-matching and retrieval re-
search has concentrated on the level of individual func-
tional units within a formally specified component: e.g.
function signatures in functional-language programming
systems [13, 15]; definitions, axioms and theorems in
theorem-proving systems [9]; and individual specification
statements in formal software development environments.
The typical approach is to search library modules (also
referred to aspatternsin this paper) unit-by-unit; when a
matching unit is found, the module and the instantiation
are returned, for manual adaptation – in other words, the
formal specifications are being used as search keys only.

In practice however, reuse is more effective when it
can be carried out at coarser-grained levels than units –
namely, at the level ofmodules(structured collections
of interdependent units) and above: e.g. function suites
in functional-language programming systems [17]; whole
theories or theory extensions in theorem-proving systems
[4]; object classes in object-oriented programming sys-
tems [19]; and whole specifications in formal software
development environments [21].

This paper is concerned with extending unit matching
to module level and supporting multiple parallel queries.
Searches can be narrowed significantly, and instantiations
made more specific, by matching two or more units at a
time, rather than unit by unit. This is analogous to en-
hancing the effectiveness of a web browser by allowing
the use of multiple keywords.

1.2 Module adaptation

Searching is only one half of the retrieval problem: to
reuse a module it can be just as difficult to indicate how
the module should be adapted for its new context. Here it
is more difficult to propose general solutions, since mod-
ule adaptation is strongly dependent on the programming
language being used.

This paper focuses on two key generic approaches
to adaptation: parameter instantiation and extraction of
functional subsets from modules. The first of these
will be familiar to most readers, and relates to paramet-
ric polymorphism as supported by most modern formal-
specification languages [11].

The motivation for exploring subsetting is the observa-
tion that library modules often contain far more units than
would ever be used at one time. Consider for example
the C “string” library [8] containing a variety of functions
for manipulating strings. The library includes functions
for comparing strings, concatenating strings, calculating
the length of a string etc. Instead of including the en-
tire library, it is often desirable to include only those parts
of the library required by the application. In the context
of formal languages, restricting a module to a necessary
subset can result in less proof. Subsetting can also result
in the ability to generate more efficient code, and reduce
cluttering of the application code.

In practice, modules generally have richer structure
than simply being a collection of mutually dependent
units, as they are treated in this paper. For example, many
object oriented languages have a notion of submodules,
with importation, inheritance, and so on. Because of the
diversity of such structures it is impossible to give gen-
eral solutions, but the subset-extraction solution proposed
here should generalise well in most cases.

1.3 Outline of this paper

Section 2 surveys a number of existing examples where
specification matching is used to retrieve fine-grained
components. From these examples a general framework
for adapting and retrieving fine-grained components is de-
fined.

Section 3 extends the framework defined in Section 2
to include coarser-grained components. A module adap-
tation technique, referred to as subsetting, and a general

model for adapting and matching coarse grained compo-
nents are formulated.

Section 4 describes three different strategies for match-
ing modules. Section 5 gives an example application of
the module reuse framework.

A KIDS notation [16] is used for many of the exam-
ples. The general framework presented in this paper has
been applied to extend the CARE toolset [6]. CARE con-
sists of methods and tools for developing formally verified
code from high-level formal specifications. Included are
a number of reusable modules which capture commonly
used algorithms, data structures or lower level coding con-
structs. By applying the general framework described in
this paper, we have extended the support for adaptation of
modules, as well as developing a retrieval tool — based on
the module matching framework — to assist the software
engineer in semi-automating the development process.

2 Matching fine-grained compo-
nents

2.1 Existing approaches

2.1.1 Signature matching

In functional programming languages, functionsigna-
turesdescribe the types and numbers of inputs and out-
puts. Signature matching[20], uses the signature as a
query in searching the library. A library of functions can
be searched by giving the signature of a desired compo-
nent (the query) and attempting to match this signature
against the signatures of the library components (the pat-
terns).

Example 2.1 Suppose the user wants to implement a
function for inserting an integer in a (sorted) set of in-
tegers. In ML [17], the signature for such as function is:

insert int : int × int set→ int set

Assuming the ML library contains the functioninsert for
inserting an element in a set, with the following signature:

insert : a × a set→ a set

wherea is a type parameter. Then a signature-matching
based search tool, usinginsert int as the query would

match the library functioninsert, by instantiating the pa-
rametera ; int. 2

The shortcoming of this approach is that while the tech-
nique successfully matches the desired library function,
in general many other functions will also have a signature
that matches the query.

2.1.2 Specification matching

Specification matching[21, 14, 12, 7], goes some way
towards addressing the major shortcoming of signature
matching, by specifying functions more precisely using
pre- and post-conditions. Matching involves comparing
the pre- and post-conditions of the query against those of
the library functions.

Zaremski and Wing [21] describe a variety of ways that
a function can satisfy a query, where the function and
query are both specified using pre- and postconditions.
Exact pre/postis where the corresponding preconditions
and postconditions are equivalent;plug-in matchis where
the precondition of the library component is weaker than
that of the query, and the postcondition of the library
component is stronger; andexact predicateis where the
conjunction of the precondition and postcondition for the
query and library component are equivalent.

Example 2.2 Consider the four KIDS-like functions [16]
shown in Fig. 1. Each function returns the first integer in a
list of numbers, provided certain conditions are satisfied.
The first functionhd1 includes a precondition stating that
the list contains at least one element and returns the el-
ement with index “1” in the list (i.e., the first element).
Functionhd2, has a precondition stating that the list is
non-empty and returns the head of the list. Functionhd3
returns the head of a non-empty list, or returns “0” for an
empty list. Functionhd4 has a precondition stating that
the list contains at least two elements and returns the ele-
ment with index “1”.

The pre- and post-conditions of the functionshd1 and
hd2 are logically equivalent, and therefore match using all
three of the strategies described above. The functionhd3
has a weaker pre-condition and stronger post-condition
than the functionshd1, hd2 and hd4, therefore each of
the these functions used as queries will match the library
functionhd3 using plug-in match. The conjunction of the

function hd1(x: seq(integer)): integer
where #x> 0
returns {z | x(1) = z}.

function hd2(x: seq(integer)) : integer
where x 6= 〈 〉
returns {z | z = head(x)}.

function hd3(x: seq(integer)) : integer
where true
returns {z | z = if z 6= 〈 〉 then head(x) else0}.

function hd4(x: seq(integer)) : integer
where #x> 2
returns {z | x(1) = z}.

Figure 1: Functions for returning the head of a list, in
KIDS notation

pre- and post-conditions inhd1, hd2 andhd3 are logically
equivalent, and therefore these functions match using ex-
act predicate.2

2.1.3 Rule matching

Matching of logical inference rules occurs in theorem
provers (e.g., Isabelle [1]). The query will typically be
formed from the proof goal — it may be the entire goal,
a subpart of the goal, or one or more of the local assump-
tions. The patterns are definitions and theorems from the-
ories currently in scope. Both query and pattern are pred-
icates, possibly containing higher-order parameters. The
pattern is said to satisfy the query if there is some instan-
tiation of formal parameters in the two predicates, such
that the instantiated predicates are equal up to renaming
of bound variables (i.e.alpha-equivalent).

Example 2.3 Suppose the user, in Isabelle, is required to
prove that removing numbers less than 5 from a list of
numbers results in a list with length equal to or less that
the original list, i.e.,

length (filter (λ x • x ≥ 5)
[a,b,c]) ≤ length [a,b,c]

To do this the user can apply the rulelength filter ,
stating that the length of a filtered list is less than or equal
to the length of the original, i.e.:

length (filter P xs) ≤ length xs

The rule includes the first-order parameterxs, represent-
ing the list of elements being filtered, and the higher-order
parameterP, representing relation over the list.

In applying the rule, the Isabelle theorem prover at-
tempts to match the rule against the subgoal. It suc-
ceeds by instantiating the parametersxs ; [a,b, c] and
P ; (λ x • x≥ 5). 2

2.2 A generalised model

This section defines a general framework for adapting and
retrieving units. The Z specification language [18] is used
to define the framework, with certain concepts left under-
defined. The framework is built up gradually, starting
with unit-level “primitives” (generic data types and func-
tions, and a minimal set of assumptions about their prop-
erties) upon which higher-level constructs will be defined.

2.2.1 Units and queries

First, we introduce generic types to represent the compo-
nents retrieved and used by the user (also referred to as
patterns), and the queries used to search for these compo-
nents. These are modeled in Z using “generic” types:

[Unit,UnitQuery]

Units are those components that reside in the library. Ex-
amples of units include functions in ML [17] and C [8];
axioms and theorems in Isabelle [1]; state and operational
schemas as well as axiomatic definitions in Z [18]; func-
tional statements in KIDS [16]; and abstract state ma-
chines in B [2]. A unit query encapsulates the user’s re-
quirements. Quite often the query contains a subset of
the information associated with a unit. For example, for
signature matching, the query only contains information
about the prospective function’s type signature. Similarly,
for specification matching the query includes the pre- and
post-conditions of the required function, but not any im-
plementation details.

Next, we assume there is a relationshipSatisfieswhich
captures the notion of a unit satisfying the requirements
expressed in a unit query.

Satisfies: Unit↔ UnitQuery

For example, for signature matching, a function satisfies
a query, if the signature of the function is equal to the

signature given by the query. For more examples, con-
sider specification matching: Section 2.1.2 describes three
satisfies relations, as used in the exact pre/post, plug-in
match and exact predicate strategies. For exact pre/post
a function satisfies a query if the corresponding pre- and
post-conditions are logically equivalent. For exact pred-
icate, a function satisfies a query if the conjunction of
the pre- and post-conditions are logically equivalent. For
plug-in match, a function satisfies a query if the pre-
condition of the function is weaker than that of the query,
and the post-condition of the function is stronger than that
of the query. For the exact pre/post and exact predicate
strategies the satisfies relation is an equivalence relation
(i.e., the relation is reflexive, transitive and symmetric).
However for the plug-in match strategy, the satisfies rela-
tion is not an equivalence relation (it is not symmetric),
instead the relation is a pre-order.

2.2.2 Adaptation

By making units adaptable, a library of units can solve
a wider range of problems than a similar sized library of
rigid units. This has the flow-on effect of decreasing the
library and subsequently making the search space smaller.
Let the following Z type represent the possible ways a unit
can be adapted:

[UnitAdapt]

and let the following function represent the effect of ap-
plying an adaptation:

adapt: Unit × UnitAdapt→ Unit

Unit adaptations are dependent on the application lan-
guage; however there are general classes of adaptations
that can be applied to most languages. The majority of
current approaches only consider instantiation of formal
parameters, e.g., Isabelle includes instantiation of higher-
order parameters. However our framework supports an
arbitrary set of adaptations, restricted only by the proviso
that the adaptation returns a unit obeying the syntactic
and semantic constraints of the application language. As
well as instantiation of formal parameters, other examples
of adaptations of functions include renaming of function,
type and variable names, and reordering of the inputs of
the function.

Example 2.4 Consider the functionfun, parameterised
over the relationsP andQ:

function fun(x:X,y:Y):Z
where P(x, y)
returns {z | Q(x, y, z)}

This function can for example be adapted by: renaming
the function namefun to div; instantiating the typesX, Y
andZ by integer; renaming the variablesx, y andz to a, b
andc; swapping the input variables; and instantiating the
parametersP ; λ a,b • a 6= 0 andQ ; λ a,b, c • c =
b div a. The resulting adapted function is:

function div(b:integer,a:integer):integer
where a 6= 0
returns {c | c = b div a}

Notice that the result is a valid (syntactically and seman-
tically correct) function.2

2.2.3 Matching

Next we assume there is a 3-place predicatematches
which represents the fact that a given unit matches a given
unit query via a given adaptation:

matches: P(Unit × UnitQuery× UnitAdapt)

∀u : Unit; q : UnitQuery; a : UnitAdapt•
matches(u,q,a)⇔ adapt(u,a) Satisfies q

Note that a unit may match a query in many different
ways.

Example 2.5 Consider query of the form:

function Query(x:integer,y:integer):integer
where x + y> 0
returns {z | z = x + y + 1}

and a library function

function Pattern(a:X,b:Y):X
where P(a, b)
returns {c | c = f (a, g(b))}

wheref : X × Y → X, g : Y → Y andP are formal pa-
rameters.Query matchesPattern by: renaming the types
X andY to integer; renaming the function namePattern to
Query; renaming the variablesa, b andc to x, y andz; and

instantiatingf ; λ x, y • x+ y, g ; λ y • y+ 1 andP ;

λ x, y • x + y > 0. Alternatively, they can be matched by
instantiating the parameters tof ; λ x, y • x + y + 1 and
g ; λ y • y instead.2

Finally, we assume there is a functionmatch, that
returns a set of matches between a query and unit.
The defining property of thematch function states that
any matches between a unit and query must satisfy the
matchesrelation (we make no assumptions about com-
pleteness of the function however):

match: Unit × UnitQuery→ FUnitAdapt

∀u : Unit; q : UnitQuery; a : UnitAdapt•
a ∈ match(u,q)⇒ matches(u,q,a)

This completes our description of the primitives of the
framework. Note that the framework is very general and
covers all of the examples in Section 2.1.

3 Matching coarse-grained compo-
nents

Many languages employ module-like structures to store
a number of related units together in a library. However
the majority of specification matching approaches are re-
stricted to individual units. This section describes how the
unit matching primitives in Section 2.2 can be lifted to the
module level.

3.1 Modules

The framework for matching units is extended to handle
coarser-grained components, referred to here asmodules.
Examples of modules include theories in Isabelle; classes
in Object-Z and C++; templates in CARE; and packages in
Ada. For generality, no assumptions will be made about
the structure of modules, other than that there is a finite
set of units associated with the module which take part in
retrieval and adaptation. (Such units would typically re-
side in the module’s interface: e.g., declarations in an Ada
package header). To maintain generality, we shall not for-
mally model modules here; in particular no assumptions
shall be made about the structuring of modules.

[Module]

To access this set of units we assume that the function
unitsOf, which returns the set of units contained within a
module, has been provided.

unitsOf : Module→ FUnit

The exact nature of this function will depend on the par-
ticular modules in question. For a flat module,unitsOf
will just return the set of units contained in the mod-
ule. However for hierarchically structured modulesunit-
sOfmay represent a recursive function which returns the
set of units contained within the nested modules. Simi-
larly, in object-oriented programming, the function may
need to traverse the inheritance structure.

3.2 Adapting modules

The two general forms of module adaptation considered in
this paper concern adapting individual units, and module
subsetting.

Subsetting is useful when the user only requires some
of the functionality offered by a module. Subsetting re-
turns a submodule, itself a module, obeying the same
syntactic and semantic constraints of its parent. Proper-
ties that applied to the parent module, should also hold
for any submodules. For example if a module is self-
contained (i.e., any unit used in the module is also defined
in the module), then any submodules should also be self-
contained. In this case, when the user nominates a subset
of the module, the adaptation tool adds any further units
from the module to ensure that a self-contained submod-
ule is returned.

The exact details of the mechanisms required to extract
the submodules are highly application-language specific.
Consider the following two examples.

Example 3.1 Templates in CARE [6] have a flat structure,
in that they do not inherit other templates, and they are
self-contained, in that any units used in the template are
also declared in the template. Subsetting in this case is
fairly straightforward — the user specifies a subset of the
units in the template, and the adaptation tool calculates
the closure of this set, by ensuring that any unit used in
the subset is also declared in the subset.2

Example 3.2 A theory in Isabelle consists of a set of con-
structs (such as rules, definitions, type declarations etc.),

as well as a listing of inherited theories (the so-calledpar-
ents). The parent theories can in turn inherit other theo-
ries; theancestorsof a theory are the union of the parent
theories and ancestors of the parents.

Extracting a sub-theory of an Isabelle theory would
firstly involve restricting the constructs in the current the-
ory to a subset. Next it may be possible to restrict the an-
cestors to a subset of the original ancestors. To do this, we
require knowledge of fine-grained dependencies between
theories (i.e. at the level of individual theory constructs).

Limiting a theory to a subset can result in a theory with
a smaller search space, that requires less memory to save,
and is quicker to load.2

We define amodule adaptationto consist of a single
unit adaptation and a set of module units. The unit adap-
tation describes how the individual units within the mod-
ule are adapted; a single adaptation is used to ensure that
adaptations are applied consistently throughout the entire
module — for example it ensures that parameters are in-
stantiated to the same value throughout the module. The
set of module units describes, for the purpose of module
subsetting, what module units to include.

ModAdapt== UnitAdapt× FUnit

3.3 Module matching

A query for matching modules consists of a set of unit
queries.

ModQuery== FUnitQuery

This is a useful way of factoring a problem into individual
requirements. For example, suppose the user is searching
for a module that includes functions for reversing a list,
concatenating two lists, and calculating the length of a
list. Such a requirement can be broken down into three
individual requirements in this framework. Section 4 il-
lustrates that breaking the query down into individual re-
quirements allows the user to search for modules that sat-
isfy only some of the requirements (i.e. SOME-match) or
exactly one of the requirements (i.e. ONE-match).

The retrieval tool is based onmatchinga set of unit
queries against a module (so-calledmodule matching).
Section 4 describes three different strategies for matching
modules: ALL-match, SOME-match and ONE-match.

4 Module matching strategies

4.1 ALL-match

The first module matching strategy described is ALL-
match, in which each of the unit queries must be matched
against a module unit.

matchesall : P(Module×ModQuery×ModAdapt)

∀m : Module; qs : ModQuery; a : ModAdapt•
matchesall(m,qs,a)⇔
∀q ∈ qs• ∃u : Unit • u ∈ unitsOf(m) ∧

matchesunit(u,q, π1a) ∧ u ∈ π2a

This search strategy is useful when the user requires
a number of units with one or more shared requirements
(e.g., a number of functions for manipulating an abstract
data type that are based on the same underlying type).
By specifying the individual requirements in separate unit
queries, and searching the library using the ALL-match
strategy, only modules that satisfy each of the require-
ments are returned.

Suppose, for example, the user wishes to find imple-
mentations for a number of list manipulating primitives.
Suppose the library contains abstract data types for ma-
nipulating lists based on three different underlying repre-
sentations — linked lists, doubly linked lists and arrays.
In searching the library for functions which implement
the user’s primitives, we need to ensure that the imple-
mentations returned share the same underlying represen-
tation, i.e., all of the functions should come from the same
ADT. To do this the required functions can be specified
in a single (module) query, and a search conducted using
the ALL-match strategy, such that all of the functional re-
quirements are satisfied by a single library module.

4.2 SOME-match

Matchingsomeunit queries against a module is a relax-
ation of the stricter ALL-match strategy given in the pre-
vious section. Of interest here are modules which con-
taining units which match a nonempty subset of the query
set. This will include the set of matches formed by the
ALL-match strategy. As would be expected, this kind of
search is less precise that the previous one, and results
in more matches being found. In contrast to ALL-match

where an increase in the number of unit queries results in
a decrease in matches; for the SOME-match an increase
in the number of unit queries results in an increase in the
number of matches. For this reason the user needs to be
somewhat judicious in the number of units in the query
given for this kind of match.

matchessome: P(Module×ModQuery×ModAdapt)

∀m : Module; qs : ModQuery; a : ModAdapt•
matchessome(m,qs,a)⇔
∃ ss⊆ qs• ss 6= ∅ ∧ matchesall(m, ss,a)

Consider development of programs using a step-wise
refinement approach as used in systems such as CARE [6]
and B [2]. The starting point is a specification of the de-
sired component, represented by one or more unit specifi-
cations. At each stage in the development one or more of
the specified-only units are implemented by other (more
concrete) units, with these new units added to the pro-
gram. The process continues until all units in the pro-
gram are implemented. To semi-automate each stage in
the development a search of a library of predefined mod-
ules could be done to find units satisfying the specifica-
tions of the unimplemented units in the program. The
search query is the set of specified-only units in the pro-
gram. Attempting to match each of the query units (using
the ALL-match strategy) is too strict a requirement in this
case. Matching just some of the query units (i.e. using the
SOME-match strategy) is sufficient, since the step-wise
refinement approach only requires that at least one unit is
implemented at each stage.

A similar situation occurs with theorem provers, where
a set of conditions need to be discharged. At each stage in
the proof one or more of these conditions must be proved,
with each proof step possibly introducing new conditions.
To automate the proof process a search tool could be used
to find assertions from a library of theories which satisfy
one or more of the conditions. The SOME-match strategy
again could be used to find theories which satisfy some of
these conditions.

4.3 ONE-match

A third strategy for module matching is to matchexactly
onequery unit; this strategy is referred to as ONE-match.
This can be thought of as being at the other end of the

spectrum to matching all units. Note that the subset de-
scription part of the module adaptation contains exactly
one unit.

matchesone : P(Module×ModQuery×ModAdapt)

∀m : Module; qs : ModQuery; a : ModAdapt•
matchesone(m,qs,a)⇔
∃q ∈ qs; u : Unit • u ∈ unitsOf(m) ∧

matchesunit(u,q, π1a) ∧ π2a = {u}

The ONE-match strategy enables the user to include a
number of alternate unit queries in order to find a single
desired unit. This could be used when there are a num-
ber of equivalent ways of specifying a unit; for example
the user might desire a unit for manipulating a lists, with
a precondition stating that the list is nonempty — such a
precondition could be given as either#s 6= 0 or s 6= 〈 〉.
In the case where logical equivalence is used, a single
query, using either of the pre-conditions could be used.
However when the satisfies relation is stronger — alpha-
equivalence for example — it would be necessary to for-
mulate two queries with the preconditions given above,
but only one would be expected to match at a time.

In CARE, the specifications of fragments can contain
a number of branches, each returning a different type
of result. The retrieval tool for CARE uses the ONE-
match strategy to search for these so-called “branching
fragments”. The query for searching for such a fragment,
consists of multiple unit queries representing the different
ways of ordering the specification branches. This module
query is generated automatically by the tool after the user
has entered any one of the possible branch permutations.
Note that the CARE retrieval tool could have alternatively
handled this problem by including reordering of specifi-
cation branches as an adaptation (of fragments). However
the point to be made here is that the framework allows for
this flexibility.

Another application of the ONE-match strategy is in a
theorem prover, where the goal is a disjunction of condi-
tions

c1 ∨ c2 ∨ . . . ∨ cN

To prove such a goal, it is sufficient to find a rule match-
ing exactly one of the conditions. The implementation of
the matching function employed would involve lazy eval-
uation of the matches, in that the match function would
terminate once a match is found.

5 Applying the framework

Within a functional programming language, related func-
tions that collectively implement an algorithm, or manip-
ulate a particular data structure could be grouped together
using a modular mechanism (cf.templatesin CARE).
Such an idea could easily be applied in KIDS — the fol-
lowing module is actually a CARE template that has been
translated into KIDS notation [10]. Consider the module
given in Fig. 2 consisting of a set of functions, collectively
implementing a generic accumulator algorithm.

function Main(s: seq(X)) : Y
returns {z | z = m(s)}

= if s = 〈 〉
then Base
else Step(Head(s),Main(Tail(s)))

function Step(x: X, y:Y) : Y
returns {z | z = f (x, y)}

function Base(): Y
returns {z | z = b}

function Head(s: seq(X)) : X
where #s> 0
returns {z | z = head(s)}

function Tail(s : seq(X)) : seq(X)
where #s> 0
returns {z | z = tail(s)}

Figure 2: An accumulator module in KIDS

The module is parameterised over the typesX andY,
functionsm : seqX → Y and f : X × Y → Y, and the
constantb : Y such that the following conditions are sat-
isfied:

m(〈 〉) = b

m(〈h〉a t) = f (h,m(t))

For an empty list, the accumulator functionm returns the
base elementb. For a non-empty list,m applies the step
functionf to the head of the list and the result of applying
the accumulator function recursively to the remainder of
the list.

In this section a program for summing the elements
in a list of integers is developed. Initially a top-level
specification of the problem, in terms of the function

sum: seqZ→ Z is given:

sum(〈 〉) = 0

sum(〈h〉a t) = h + sum(t)

For a non-empty list,sumadds the head of the list to the
sum of the remainder of the list. The sum of an empty list
is defined to be zero.

A specification of the KIDS functionSumlist is given,
which represents summing the elements of a list. The
top-level specification indicates that a function for adding
two integers, and a function for returning zero are also
required. These two requirements are represented in the
function queriesAdd andZero.

function Sumlist(s: seq(integer)) : integer
returns {z | z = sum(s)}

function Add(n,m:integer) : integer
returns {z | z = n + m}

function Zero() : integer
returns {z | z = 0}

With the above functions as a search query, and using the
ALL-match strategy, a match with the accumulator mod-
ule is returned.Sumlist matchesMain, Add matchesStep
andZero matchesBase. The query matches the module
by renaming the function namesMain to Sumlist, Step to
Add and Base to Zero. The parameters are instantiated
asm ; λ s • sum(s), base; 0, f ; λ a,b • a + b,
X ; integer andY ; integer. The conditions on the
module parameters must hold for any values that the pa-
rameters are instantiated to; in this case the instantiated
conditions correspond to the definition ofsum, and so are
trivially satisfied.

There are now four unimplemented functions. Suppose
these functions are used as the next search query, this
time using the SOME-match strategy, indicating that only
some of the functions need to be implemented. Assum-
ing that there exists a module containing primitives for
manipulating lists, and another module containing primi-
tives that manipulate integers. Then the query matches the
functionsHead andTail against the list module, or match
the functionsAdd andZero against appropriate functions
in the integer module. The development is completed by
applying the results of each of these matches in turn.

6 Conclusions

Formal specifications allow components and their inter-
faces to be characterised concisely and precisely. Also,
because formal specifications are machine parseable, they
are ideal candidates as search keys. This paper discusses
strategies for retrieving formally specified software com-
ponents from reusable libraries. The solutions presented
are quite general and apply across a range of different
component types and formal specification approaches.
They presume only that unit-level matching algorithms
are available, and show how such algorithms can be lifted
to module level to yield a range of different retrieval
strategies.

Strategies are presented for matching all, some and
one of multiple unit queries. The strategies are formally
specified; for implementation details and and sketches
of proofs of correctness the reader is referred to David
Hemer’s thesis [5]. It is shown that the algorithms are
complete, in the sense that they return all “most general”
matches, modulo completeness of the underlying unit-
matching algorithms.

The design of a general interactive search tool is out-
lined in the thesis, and its use illustrated on specific re-
trieval support tools. A prototype of the search engine
has been implemented in Prolog and applied to yield a
template-library browser and retrieval tool for the CARE

tool-set.
The approach and solution are expected to be of in-

terest to tool-builders for applications involving libraries
of reusable modules, such as formal theories in theorem-
proving environments and formally specified components
in software development support environments.

References

[1] Isabelle home page.http://www.cl.cam.ac.uk/
Research/HVG/Isabelle/index.html .

[2] J.-R. Abrial. The B Book: Assigning Programs to Mean-
ings. Cambridge University Press, 1996.

[3] A. W. Brown, editor. Component-Based Software Engi-
neering. IEEE Computer Society, Carnegie Mellon Uni-
versity, Software Engineering Institute, 1996.

[4] D. Good. Reusable problem domain theories. Technical
Report 31, ICSCA, University of Texas at Austin, 1982.

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/index.html
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/index.html

[5] D. Hemer. A Unified Approach to Adapting and Retriev-
ing Formally Specified Components for Reuse. PhD thesis,
Department of Computer Science and Electrical Engineer-
ing, University of Queensland, April 2000.

[6] D. Hemer and P. Lindsay. The CARE toolset for devel-
oping verified programs from formal specifications. In
O. Frieder and J. Wigglesworth, editors,Proceeding of the
Fourth International Symposium on Assessment of Soft-
ware Tools, pages 24–35. IEEE Computer Society Press,
May 1996. SVRC TR 95-52.

[7] J.-J. Jeng and B. Cheng. Specification matching for soft-
ware reuse: A foundation. InProc. of ACM Symposium
on Software Reuse, pages 97–105, April 1995.

[8] A. Kelley and I. Pohl.A Book on C. Benjamin Cummins,
third edition, 1995.

[9] P. Lindsay. A survey of mechanical support for formal rea-
soning.Software Engineering Journal, 3(1):3–27, January
1988.

[10] P. Lindsay and D. Hemer. A template-based approach to
construction of verified software. Technical Report 96-23,
Software Verification Research Centre, 1996.

[11] R. Milner. A theory of type polymorphism in program-
ming. JCSS, 17:348–375, 1978.

[12] D. Perry and S. Popovich. Inquire: Predicate-based
use and reuse. InProceedings of the 8th Knowledge-
Based Software Engineering Conference, pages 144–151,
September 1993.

[13] M. Rittri. Using types as search keys in function libraries.
In Proceedings of the Fourth International Conference

on Functional Programming and Computer Architecture,
pages 174–183. ACM Press, 1989.

[14] E. Rollins and J. Wing. Specifications as search keys for
software libraries. In K. Furukawa, editor,Eighth Inter-
national Conference on Logic Programming, pages 173–
187. MIT Press, 1991.

[15] C. Runciman and I. Toyn. Retrieving re-usable software
components by polymorphic type. InProceedings of the
Fourth International Conference on Functional Program-
ming and Computer Architecture, pages 166–173. ACM
Press, 1989.

[16] D. Smith. KIDS: A semiautomatic program develop-
ment system.IEEE Transactions on Software Engineer-
ing, 16(9):1024–1043, September 1990.

[17] S. Sokolowski. Applicative High Order Programming.
Chapman and Hall, 1991.

[18] J. Spivey.The Z Notation: a Reference Manual. Prentice-
Hall, New York, 1989.

[19] B. Stroustrup.The C++ Programming Language. Addi-
son Wesley, second edition, 1991.

[20] A. Zaremski and J. Wing. Signature matching: a tool for
using software libraries.ACM Transactions on Software
Engineering and Methodology, 4(2):146–170, April 1995.

[21] A. M. Zaremski and J. Wing. Specification matching of
software components. InThird ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineering, 1996.

	Introduction
	Matching fine-grained components
	Matching coarse-grained components
	Module matching strategies
	Applying the framework
	Conclusions

