SOFTWARE VERIFICATION RESEARCH CENTRE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT
No. 01-25

Specification-based Retrieval Strategies for
Module Reuse

David Hemer and Peter Lindsay

August, 2001

Phone: +61 7 3365 1003
Fax: +61 7 3365 1533
http://svrc.it.ug.edu.au

Appears in thé’roceedings of Australian Software Engineering Conference (ASWEC 200Grant and L. Stirling
eds., IEEE Computer Society Press, pp 235-243, August 2001

Note: Most SVRC technical reports are available via anony-
mous ftp, from svrc.it.ug.edu.au in the directory
/pub/techreports . Abstracts and compressed postscript
files are available viattp://svrc.it.uqg.edu.au

Specification-based Retrieval Strategies for Module Reuse

David Hemer and Peter Lindsay

Abstract often requires adaptation for its new context, and (with
some debatable exceptions) existing formal specification

Formal specifications have been proposed as a basis|g@guages are generally weak in their support for adap-

accessing reusable components from libraries, and véstion of coarse-grained objects. These problems are ex-

ous fine-grained specification-matching approaches hawsred in more detail below.

been developed to assist in searching libraries. Typically,

however, the granularity of matching has been too fine for

reuse to be effective. Compounding the problem is the PSS .
fact that coarse-grained items usually require adaptat?éhl Specification-based search strategies

hefore reuse. This paper explains some of the proble%s date, most specification-matching and retrieval re-

and presents a generic solution to a key problem: ada 8arch has concentrated on the level of individual func-

t|on.of modules through pgrameter_mstanuaugn and s ynal units within a formally specified component: e.g.
setting. It shows how unit-matching strategies can

i . : . ction signatures in functional-language programming
lifted to module level in agenencf_ashlon. . systems [13/715]; definitions, axioms and theorems in
Keyvyords: component reuse, retrieval, adaptation, SP§ ieorem-proving systems [9]; and individual specification
ification matching. statements in formal software development environments.
The typical approach is to search library modules (also
1 Introduction referrgd to as_pe_ltternsin this paper) unit—by-un_it; whe.n a
matching unit is found, the module and the instantiation

With the increasing interest in component-based tec@€ returmned, for manual adaptation —in other words, the
nologies [3] comes renewed interest in formal specifprmal specifications are being used as search keys only.
cations of components and development of libraries of/n practice however, reuse is more effective when it
reusable, formally specified components. Formal specfn be carried out at coarser-grained levels than units —
cations allow components and their interfaces to be chBg@mely, at the level omodules(structured collections
acterised concisely and precisely. Also, because forrgélinterdependent units) and above: e.g. function suites
specifications are machine parseable, they are ideal darflnctional-language programming systems [17]; whole
didates as search keys[21]. In theory then, such specifig¥gories or theory extensions in theorem-proving systems
tions should make it easier to search component librariE4; object classes in object-oriented programming sys-
to check component properties, and to retrieve compgems [19]; and whole specifications in formal software
nents for reuse. development environments [21]

In practice, however, it is not quite so easy. One reasoriThis paper is concerned with extending unit matching
is the multitude of different ways of specifying a comto module level and supporting multiple parallel queries.
ponent (or even of structuring its specification): it is rar@earches can be narrowed significantly, and instantiations
that, in the absence of prior knowledge, a person searntede more specific, by matching two or more units at a
ing a large library of components would formulate thetime, rather than unit by unit. This is analogous to en-
search query in a way that exactly matches the possibincing the effectiveness of a web browser by allowing
solutions. Another reason is that the reusable compongrg use of multiple keywords.

1.2 Module adaptation model for adapting and matching coarse grained compo-
I _ _nents are formulated.
Searching is only one half of the refrieval problem: to Section# describes three different strategies for match-

reuse a module it can be just as difficult to indicate th modules. Sectiofi 5 gives an example application of
the module should be adapted for its new context. Herel\H' module reuse framework

is more difficult to propose general solutions, since mod-A KIDS notation [T6] is used for many of the exam-

ule adaptation is strongly dependent on the programmings The general framework presented in this paper has
Iangqage being used.) been applied to extend theaQE toolset [6]. CARE con-

This paper focuses on two key generic approachgsis of methods and tools for developing formally verified
to adaptation: parameter instantiation and extraction Qfge from high-level formal specifications. Included are
functional subsets from modules. The first of these,mper of reusable modules which capture commonly
will be familiar to most readers, and relates to paramgjse algorithms, data structures or lower level coding con-
ric polymorphism as supported by most modern formalg,cts By applying the general framework described in
specification languages]11]. this paper, we have extended the support for adaptation of

The motivation for exploring subsetting is the observgsoqyles, as well as developing a retrieval tool — based on
tion that library modules often contain far more units thgRe module matching framework — to assist the software

would ever be used at one time. Consider for examplagineer in semi-automating the development process.
the C “string” library [8] containing a variety of functions

for manipulating strings. The library includes functions

for comparing strings, concatenating strings, calculatii) Matching fine-grained compo-
the length of a string etc. Instead of including the en- t

tire library, it is often desirable to include only those parts nents
of the library required by the application. In the conte ..

of formal languages, restricting a module to a necesséyl Existing approaches

subset can result in less proof. Subsetting can also reguit1 Signature matching

in the ability to generate more efficient code, and reduce

cluttering of the application code. In functiongl programming languages, fgnctieigna-

In practice, modules generally have richer structufdresdescribe the types and numbers of inputs and out-
than simply being a collection of mutually dependeUts: Signature matching?l], uses the signature as a
units, as they are treated in this paper. For example, m&Hgry in searching the library. A library of functions can
object oriented languages have a notion of submodulB§,searched by giving the signature of a desired compo-
with importation, inheritance, and so on. Because of tRNt (the query) and attempting to match this signature
diversity of such structures it is impossible to give geR@ainst the signatures of the library components (the pat-
eral solutions, but the subset-extraction solution propostééns)-

here should generalise well in most cases.]
Example 2.1 Suppose the user wants to implement a

)) function for inserting an integer in a (sorted) set of in-
1.3 Outline of this paper tegers. In ML [17], the signature for such as function is:

Section[R surveys a number of existing examples where insert.int : int x int set — int set
specification matching is used to retrieve fine-grained
components. From these examples a general framewBAguming the ML library contains the functiamsert for
for adapting and retrieving fine-grained components is deserting an element in a set, with the following signature:
fined.

SectionB extends the framework defined in Secfion 2
to include coarser-grained components. A module adagherea is a type parameter. Then a signature-matching
tation technique, referred to as subsetting, and a gendxaded search tool, usingsertint as the query would

insert: a x a set — a set

match the library functioisert, by instantiating the pa- function hd1(x: seq(integer)): integer

rametera ~ int. O where #x > 0
returns {z| x(1) = z}.

The shortcoming of this approach is that while the tech- function hd2(x: seq(integer)) : integer

nigue successfully matches the desired library function, where X # ()

in general many other functions will also have a signhature returns {z| z = headXx)}.

that matches the query. function hd3(x: seq(integer)) : integer
where true

returns {z | z= if z # () then headx) else0}.
function hd4(x: seq(integer)) : integer
Specification matching?1, (14, [12,017], goes some way where #x > 2
towards addressing the major shortcoming of signature returns {z| x(1) = z}.
matching, by specifying functions more precisely using
pre- and post-conditions. Matching involves comparin)) o
the pre- and post-conditions of the query against those’%@“re 1: Functions for returning the head of a list, in
the library functions. KIDS notation

Zaremski and Wingd21] describe a variety of ways that
a function can satisfy a query, where the function apue- and post-conditions hni1, hd2 andhd3 are logically
query are both specified using pre- and postconditiorguivalent, and therefore these functions match using ex-
Exact pre/posts where the corresponding preconditionsct predicaten
and postconditions are equivalepkig-in matchis where
the precondition of the library component is weaker thanj 3 Rule matching
that of the query, and the postcondition of the library
component is stronger; arekact predicatés where the Matching of logical inference rules occurs in theorem
conjunction of the precondition and postcondition for tHrovers (e.g., Isabellel[1]). The query will typically be
query and |ib|’ary Component are equiva|ent_ formed from the proof goal — it may be the entire goal,

a subpart of the goal, or one or more of the local assump-

Example 2.2 Consider the four KIDS-like functions]L6] tions. The patterns are definitions and theorems from the-

shown in Fig[lL. Each function returns the first integer in®j1€S currently in scope. Both query and pattern are pred-
list of numbers, provided certain conditions are satisfidGt€S, Possibly containing higher-order parameters. The
The first functiorhd1 includes a precondition stating thaP@tter is said to satisfy the query if there is some instan-

the list contains at least one element and returns the {E@tion of formal parameters in the two predicates, such

ement with index “1” in the list (i.e., the first element)Fhat the instantiated predicates are equal up to renaming

Functionhd2, has a precondition stating that the list i8f Pound variables (i.ealpha-equivalent
non-empty and returns the head of the list. Functio®

2.1.2 Specification matching

alﬁxample 2.3 Suppose the user, in Isabelle, is required to

returns the head of a non-empty list, or returns “0” for that) bers | than 5 f list of
empty list. Functiorhd4 has a precondition stating thaP'OVE that removing nUMbers 1ess than > from a st o
g['nbers results in a list with length equal to or less that

the list contains at least two elements and returns the ét'L iinal list. i
ment with index “1”. e original list, i.e.,
The pre- and post-conditions of the functidmil and length (filter (A X e x > 5)
hd2 are logically equivalent, and therefore match using all [a,b,c]) < length [a,b,c]
three of the strategies described above. The funttit3n To do this the user can apply the ruégth _filter .

has a weaker pre-condition and stronger post-condition ,: ; L
than the function$idl, hd2 and hdd, therefore each of stating that the length of a filtered list is less than or equal

the these functions used as queries will match the Iibra{(r:)ythe length of the original, i.e.:

functionhd3 using plug-in match. The conjunction of the length (filter P xs) < length xs

The rule includes the first-order parameter represent- signature given by the query. For more examples, con-
ing the list of elements being filtered, and the higher-ordgider specification matching: Sectijon 211.2 describes three
parameteP, representing relation over the list. satisfies relationsas used in the exact pre/post, plug-in
In applying the rule, the Isabelle theorem prover atatch and exact predicate strategies. For exact pre/post
tempts to match the rule against the subgoal. It sucfunction satisfies a query if the corresponding pre- and
ceeds by instantiating the parametess~ [a, b, c] and post-conditions are logically equivalent. For exact pred-

P~ (Axex>5). 0 icate, a function satisfies a query if the conjunction of
the pre- and post-conditions are logically equivalent. For
2.2 A generalised model plug-in match, a function satisfies a query if the pre-

condition of the function is weaker than that of the query,
This section defines a general framework for adapting amad the post-condition of the function is stronger than that
retrieving units. The Z specification langua@el [18] is used the query. For the exact pre/post and exact predicate
to define the framework, with certain concepts left undestrategies the satisfies relation is an equivalence relation
defined. The framework is built up gradually, starting.e., the relation is reflexive, transitive and symmetric).
with unit-level “primitives” (generic data types and funcHowever for the plug-in match strategy, the satisfies rela-
tions, and a minimal set of assumptions about their prajen is not an equivalence relation (it is not symmetric),
erties) upon which higher-level constructs will be definethstead the relation is a pre-order.

2.2.1 Units and queries 2.2.2 Adaptation

First, we introduce generic types to represent the comy making units adaptable, a library of units can solve

nents retrieved and used by the user (also referred toaagider range of problems than a similar sized library of

patterng, and the queries used to search for these compigid units. This has the flow-on effect of decreasing the

nents. These are modeled in Z using “generic” types: library and subsequently making the search space smaller.

[Unit, UnitQuery Letthe foIIowinq Z type represent the possible ways a unit
can be adapted:

Units are those components that reside in the library. Ex-

amples of units include functions in MICJ17] and @ [8]; [UnitAdapt

axioms and theorems in Isabelié [1]; state and operational . .

schemas as well as axiomatic definitions in-2 [18]; funm’:?‘-nc.j let the foIIow!ng.funcnon represent the effect of ap-

tional statements in KIDSLTL6]; and abstract state mBI_ylng an adaptation:

chines in B [2]. A unit query encapsulates the user’s re- | adapt: Unit x UnitAdapt— Unit

guirements. Quite often the query contains a subset of

the information associated with a unit. For example, fQJ'r“t adaptations are dependent on the app"cation lan-

signature matching, the query only contains informatiguage; however there are general classes of adaptations

about the prospective function’s type signature. Similarihat can be applied to most languages. The majority of

for specification matching the query includes the pre- agdrrent approaches only consider instantiation of formal

post-conditions of the required function, but not any inparameters, e.g., Isabelle includes instantiation of higher-

plementation details. order parameters. However our framework supports an
Next, we assume there is a relationsBatisfiesvhich arbitrary set of adaptations, restricted only by the proviso

captures the notion of a unit satisfying the requiremenffat the adaptation returns a unit obeying the syntactic

expressed in a unit query. and semantic constraints of the application language. As

well as instantiation of formal parameters, other examples

of adaptations of functions include renaming of function,

For example, for signature matching, a function satisfigge and variable names, and reordering of the inputs of

a query, if the signature of the function is equal to th@e function.

| Satisfies Unit — UnitQuery

Example 2.4 Consider the functiorfun, parameterised instantiatingf ~ AX,y e X+Yy,g~> Ay e y+1 andP ~»
over the relation® andQ: AX Yy e X+ Yy > 0. Alternatively, they can be matched by
instantiating the parametersfte» Ax,y e x+y+ 1 and

function fun(x:X,y:Y):Z g~ \y e yinstead.o

where P(x,y)
returns {z| Q(x,y,2)} Finally, we assume there is a functionatch that
urns a set of matches between a query and unit.
e defining property of thenatchfunction states that
any matches between a unit and query must satisfy the

atchesrelation (we make no assumptions about com-
pleteness of the function however):

This function can for example be adapted by: renamirﬁ
the function naméun to div; instantiating the typex, Y
andz by integer; renaming the variables y andz toa, b
andc; swapping the input variables; and instantiating t
parameter® ~ Aa,be a £ 0andQ~ Aab,cec=

b div a. The resulting adapted function is: ‘ match: Unit x UnitQuery— F UnitAdapt
function div(b:integer,a:integer):integer Vu: Unit; g: UnitQuery, a: UnitAdapte
where a # 0 a € matchu, q) = matchegu, g, a)

returns {c | ¢ = bdiv a}
) .)) This completes our description of the primitives of the
Notice that the result is a valid (syntactically and semafiamework. Note that the framework is very general and
tically correct) functiono covers all of the examples in Sectipn]2.1.

2.2.3 Matching

_ , 3 Matching coarse-grained compo-
Next we assume there is a 3-place predica@tches

which represents the fact that a given unit matches a given nents

unit query via a given adaptation: .
Many languages employ module-like structures to store

‘ matches P(Unit x UnitQueryx UnitAdapt a number of related units together in a library. However
-)) the majority of specification matching approaches are re-
Yu:Unit; q: UnitQuery a: UnitAdapte stricted to individual units. This section describes how the
matchegu, g, a) < adap(u, a) Satisfies q unit matching primitives in Sectidi 2.2 can be lifted to the
Note that a unit may match a query in many differerWOdUIe level.
ways.
3.1 Modules
Example 2.5 Consider query of the form: The framework for matching units is extended to handle
function Query(x:integer,y:integer):integer coarser-grained components, referred to hemaedules
where x+y > 0 Examples of modules include theories in Isabelle; classes
returns {z| z=x+y+ 1} in Object-Z and C++; templates inARE; and packages in

Ada. For generality, no assumptions will be made about

and a library function the structure of modules, other than that there is a finite

function Pattern(a:X,b:Y):X set of units associated with the module which take part in
where P(a, b) retrieval and adaptation. (Such units would typically re-
returns {c | c =f(a,g(b))} side in the module’s interface: e.g., declarations in an Ada

package header). To maintain generality, we shall not for-
mally model modules here; in particular no assumptions
shall be made about the structuring of modules.

wheref : X xY — X, g:Y — Y andP are formal pa-
rameters.Query matchesPattern by: renaming the types
X andY tointeger; renaming the function nankattern to
Query; renaming the variables b andc to x, y andz; and [Modulg

To access this set of units we assume that the functeswell as a listing of inherited theories (the so-caplad
unitsOf, which returns the set of units contained within ant§. The parent theories can in turn inherit other theo-
module, has been provided. ries; theancestorsof a theory are the union of the parent
theories and ancestors of the parents.

Extracting a sub-theory of an Isabelle theory would

The exact nature of this function will depend on the paf,i_rstly involve restrictiqg the construc.ts in the cutrent the-
ticular modules in question. For a flat moduleitsOf OTY to a subset. Next it may pe possible to restrict thg an-
will just return the set of units contained in the modkeStors to a subsetof the original ancestors. To do this, we
ule. However for hierarchically structured modulesit- "€quire knowledge of fine-grained dependencies between
sOfmay represent a recursive function which returns tiféeories (i.e. at the level of individual theory constructs).
set of units contained within the nested modules. Simi-Limiting a theory to a subset can resultin a theory with
larly, in object-oriented programming, the function ma$ smaller search space, that requires less memory to save,

| unitsOf : Module— F Unit

need to traverse the inheritance structure. and is quicker to load-
We define amodule adaptatiorto consist of a single
3.2 Adapting modules unit adaptation and a set of module units. The unit adap-

ation describes how the individual units within the mod-
& are adapted; a single adaptation is used to ensure that
(aaptations are applied consistently throughout the entire

subsetting module — for example it ensures that parameters are in-

Subsettm_g IS gseful when the user only requires SOING tiated to the same value throughout the module. The
of the functionality offered by a module. Subsetting re-

: X %et of module units describes, for the purpose of module

wrns a submodule, |Fself a mc_>du|e, pbeylng the sa L?bsetting, what module units to include.

syntactic and semantic constraints of its parent. Proper-

ties that applied to the parent module, should also hold \jpdAdapt== UnitAdaptx F Unit

for any submodules. For example if a module is self-

contained (i.e., any unit used in the module is also defingd3 Module matchin

in the module), then any submodules should also be sétf* 9

contained. In this case, when the user nominates a sulsgfuery for matching modules consists of a set of unit

of the module, the adaptation tool adds any further unggeries.

from the module to ensure that a self-contained submod-

ule is returned. ModQuery== F UnitQuery

The exact details of the mechanisms required to extract

the submodules are highly application-language specifldis is a useful way of factoring a problem into individual

Consider the following two examples. requirements. For example, suppose the user is searching
for a module that includes functions for reversing a list,

Example 3.1 Templates in GRE [G] have a flat structure, concatenating two lists, and calculating the length of a

in that they do not inherit other templates, and they dist. Such a requirement can be broken down into three

self-contained, in that any units used in the template angividual requirements in this framework. Sectign 4 il-

also declared in the template. Subsetting in this casdustrates that breaking the query down into individual re-

fairly straightforward — the user specifies a subset of thglirements allows the user to search for modules that sat-

units in the template, and the adaptation tool calculaigfy only some of the requirements (i.e. SOME-match) or

the closure of this set, by ensuring that any unit usedéxactly one of the requirements (i.e. ONE-match).

the subset is also declared in the subset. The retrieval tool is based omatchinga set of unit
gueries against a module (so-callatbdule matching

Example 3.2 A theory in Isabelle consists of a set of conSectio# describes three different strategies for matching

structs (such as rules, definitions, type declarations etopdules: ALL-match, SOME-match and ONE-match.

The two general forms of module adaptation considere
this paper concern adapting individual units, and mod

4 Module matching strategies where an increase in the number of unit queries results in
a decrease in matches; for the SOME-match an increase
4.1 ALL-match in the number of unit queries results in an increase in the

number of matches. For this reason the user needs to be

The first module matching strategy described is ALlsymehat judicious in the number of units in the query
match, in which each of the unit queries must be match&igen for this kind of match.

against a module unit.

‘ matchegme: P(Module x ModQueryx ModAdapy
matcheg : P(Modulex ModQueryx ModAdap}

¥m: Module gs: ModQuery a: ModAdapte

vm: Module gs: ModQuery a: ModAdapte matchesomd M, gs a) <
matcheg(m, qs a) < _ 3ssC gse ss# @ A matcheg(m, ss a)
Vg€ gse Ju: Unit e u € unitsOfim) A
matchegit(u, g, ma) A U € ma Consider development of programs using a step-wise

refinement approach as used in systems suchhas 5]
This search strategy is useful when the user requitgsd B [2]. The starting point is a specification of the de-
a number of units with one or more shared requiremeriged component, represented by one or more unit specifi-
(e.g., a number of functions for manipulating an abstragitions. At each stage in the development one or more of
data type that are based on the same underlying typAp specified-only units are implemented by other (more
By specifying the individual requirements in separate uincrete) units, with these new units added to the pro-
queries, and searching the library using the ALL-matgftam. The process continues until all units in the pro-
strategy, only modules that satisfy each of the requirgram are implemented. To semi-automate each stage in
ments are returned. the development a search of a library of predefined mod-
Suppose, for example, the user wishes to find implgtes could be done to find units satisfying the specifica-
mentations for a number of list manipulating primitivesions of the unimplemented units in the program. The
Suppose the library contains abstract data types for rgaarch query is the set of specified-only units in the pro-
nipulating lists based on three different underlying reprgram. Attempting to match each of the query units (using
sentations — linked lists, doubly linked lists and arrayghe ALL-match strategy) is too strict a requirement in this
In searching the library for functions which implemengase. Matching just some of the query units (i.e. using the
the user’s primitives, we need to ensure that the impl8OME-match strategy) is sufficient, since the step-wise
mentations returned share the same underlying represefinement approach only requires that at least one unit is
tation, i.e., all of the functions should come from the sam@plemented at each stage.
ADT. To do this the required functions can be specified A similar situation occurs with theorem provers, where
in a single (module) query, and a search conducted usinget of conditions need to be discharged. At each stage in
the ALL-match strategy, such that all of the functional rehe proof one or more of these conditions must be proved,
quirements are satisfied by a single library module. with each proof step possibly introducing new conditions.
To automate the proof process a search tool could be used
4.2 SOME-match to find assertions from e_l_library of theories which satisfy
one or more of the conditions. The SOME-match strategy
Matching someunit queries against a module is a relaxagain could be used to find theories which satisfy some of
ation of the stricter ALL-match strategy given in the prahese conditions.
vious section. Of interest here are modules which con-
taining units which match a nonempty subset of the QuUeRY3 ONE-match
set. This will include the set of matches formed by the
ALL-match strategy. As would be expected, this kind @& third strategy for module matching is to matekactly
search is less precise that the previous one, and resoitsquery unit; this strategy is referred to as ONE-match.
in more matches being found. In contrast to ALL-matchhis can be thought of as being at the other end of the

spectrum to matching all units. Note that the subset da- Applying the framework

scription part of the module adaptation contains exactly
one unit. Within a functional programming language, related func-

tions that collectively implement an algorithm, or manip-
ulate a particular data structure could be grouped together
¥m: Module gs: ModQuery a: ModAdapte using a modular mechanism (cftemplatesin CARE).

matcheg,e : P(Modulex ModQueryx ModAdap}

matcheg.,e(m, gs a) < Such an idea could easily be applied in KIDS — the fol-
Jg € gs u: Unit e u € unitsOf(m) A lowing module is actually a 8rRE template that has been
matchegit(u, g, ma) A ma = {u} translated into KIDS notatiori[10]. Consider the module

given in Fig [P consisting of a set of functions, collectively

The ONE-match stra.tegy erlab!es the user to mclpd ||maplementing a generic accumulator algorithm.
number of alternate unit queries in order to find a single

desired unit. This could be used when there are a num- function Main(s: seq(X)) : Y

ber of equivalent ways of specifying a unit; for example returns {z| z=m(s)}

the user might desire a unit for manipulating a §stvith =ifs= ()

a precondition stating that the list is nonempty — such a then Base

precondition could be given as eithgis # 0 or s # (). else Step(Head(s),Main(Tail(s)))
In the case where logical equivalence is used, a single function Step(x: X, y:Y) : Y

query, using either of the pre-conditions could be used. returns {z| z=f(x,y)}
However when the satisfies relation is stronger — alpha- fnction Base(): Y

equivalence for example — it would be necessary to for- returns {z | z= b}

mulate two queries with the preconditions givg:n above, function Head(s: seq(X)) : X
but only one would be expected to match at a time. where #s > 0

In CARE, the specifications of fragments can contain returns {z| z = heads)}
a number of branches, each returning a different type
of result. The retrieval tool for ERE uses the ONE-
match strategy to search for these so-called “branching
fragments”. The query for searching for such a fragment,
consists of multiple unit queries representing the different
ways of ordering the specification branches. This module Figure 2: An accumulator module in KIDS
guery is generated automatically by the tool after the user
has entered any one of the possible branch permutationg.he module is parameterised over the typeandY,
Note that the @RE retrieval tool could have alternativelyfunctionsm : segX — Y andf : X x Y — Y, and the
handled this problem by including reordering of speciftonstanb : Y such that the following conditions are sat-
cation branches as an adaptation (of fragments). Howelafied:
the point to be made here is that the framework allows for
this flexibility. m(()) =b

Another application of the ONE-match strategy isina m((h) " t) = f(h,m(t))

theorem prover, where the goal is a disjunction of condi- . .
tions For an empty list, the accumulator functionreturns the

base elemerth. For a non-empty listm applies the step
¢l vev..VvcN functionf to the head of the list and the result of applying
To prove such a goal, it is sufficient to find a rule matclthe accumulator function recursively to the remainder of
ing exactly one of the conditions. The implementation dlfie list.
the matching function employed would involve lazy eval- In this section a program for summing the elements
uation of the matches, in that the match function wouid a list of integers is developed. Initially a top-level
terminate once a match is found. specification of the problem, in terms of the function

function Tail(s : seq(X)) : seq(X)
where #s> 0
returns {z| z=tail(s)}

sum: seqzZ — Z is given: 6 Conclusions

sun(()) =0 Formal specifications allow components and their inter-
~ faces to be characterised concisely and precisely. Also,
sun((h) " t) = h+ sunft e .
") + surt) because formal specifications are machine parseable, they

For a non-empty listsumadds the head of the list to thére ideal candidates as search keys. This paper discusses

sum of the remainder of the list. The sum of an empty Iig{rategies for retrieving formally specified software com-
is defined to be zero ponents from reusable libraries. The solutions presented

. . L it | I f diff t
A specification of the KIDS functiosumlist is given, a(r)er:nqglneengzetnerjs E;T% aftg:argalazro:;f;;\gr?eao ro(l)la;r]eeg
which represents summing the elements of a list. T P yp P bp '

e . . They presume only that unit-level matching algorithms
top I_evel specification |nd|pates that a fu_nct|on for addlnaqre available, and show how such algorithms can be lifted
two integers, and a function for returning zero are also : . .

. . . module level to yield a range of different retrieval
required. These two requirements are represented in the

:) strategies.
function queries\dd andzero. . .
q Strategies are presented for matching all, some and

function Sumlist(s: seq(integer)) : integer one Qf muItipIe_ unit querie.;. The st_rategies are formally
returns {z | z= sun(s)} specified; for implementation details and and sketches
of proofs of correctness the reader is referred to David
Hemer’s thesis[]5]. It is shown that the algorithms are
complete, in the sense that they return all “most general”
function Zero() : integer matches, modulo completeness of the underlying unit-
returns {z| z= 0} matching algorithms.
The design of a general interactive search tool is out-
With the above functions as a search query, and using fRqd in the thesis, and its use illustrated on specific re-
ALL-match strategy, a match with the accumulator mogrieya| support tools. A prototype of the search engine
ule is returned Sumlist matchesviain, Add matchesStep has peen implemented in Prolog and applied to yield a
andZero matchesBase. The query matches the modulgempiate-library browser and retrieval tool for the’k
by renaming the function name#ain to Sumlist, Step to tgg|-set.
Add andBase to Zero. The parameters are instantiated The approach and solution are expected to be of in-

asm -~ AS e sunfs), bgsev 0, f ~)\a,_k? *a+D terest to tool-builders for applications involving libraries
X ~» integerandY ~- integer The conditions on the ot rosable modules, such as formal theories in theorem-

module parameters must hold for any values that the paaying environments and formally specified components
rameters are instantiated to; in this case the instantiaigd ofiware development support environments.

conditions correspond to the definitionsfm and so are
trivially satisfied.
There are now four unimplemented functions. SUpPOFSeferences
these functions are used as the next search query, this
time using the SOME-match strategy, indicating that onl)tl] Isabelle home pagelittp:/Www.cl.Cam.ac, uk/
some of the functions need to be implemented. ASSUM-" gasearchibvGiisabelieiindex himi

ing that there exists a module containing primitives for[2] J-R. Abrial. The B Book: Assigning Prograr.ns to Mean-
manipulating lists, and another module containing primi- ~ jngs Cambridge University Press, 1996.

tives that manipulate integers. Then the query matches thg; a. w. Brown, editor. Component-Based Software Engi-
functionsHead andTail against the list module, or match neering IEEE Computer Society, Carnegie Mellon Uni-
the functionsAdd andzero against appropriate functions versity, Software Engineering Institute, 1996.

in the integer module. The development is completed by4] D. Good. Reusable problem domain theories. Technical
applying the results of each of these matches in turn. Report 31, ICSCA, University of Texas at Austin, 1982.

function Add(n,m:integer) : integer
returns {z| z=n+ m}

http://www.cl.cam.ac.uk/Research/HVG/Isabelle/index.html
http://www.cl.cam.ac.uk/Research/HVG/Isabelle/index.html

(5]

(6]

(7]

(8]
9]

[10]

[11]

[12]

[13]

D. Hemer. A Unified Approach to Adapting and Retriev-
ing Formally Specified Components for Reu3eD thesis,
Department of Computer Science and Electrical Engineqtt4)
ing, University of Queensland, April 2000.

D. Hemer and P. Lindsay. TheARE toolset for devel-
oping verified programs from formal specifications.
O. Frieder and J. Wigglesworth, editoPspceeding of the 5]
Fourth International Symposium on Assessment of So[f%-
ware Tools pages 24-35. IEEE Computer Society Press,
May 1996. SVRC TR 95-52.

J.-J. Jeng and B. Cheng. Specification matching for soft-
ware reuse: A foundation. IRroc. of ACM Symposium

on Software Reuspages 97-105, April 1995. [16]
A. Kelley and I. Pohl.A Book on C Benjamin Cummins,
third edition, 1995.

P. Lindsay. A survey of mechanical support for formal real17]
soning.Software Engineering Journg®(1):3-27, January
1988. [18]
P. Lindsay and D. Hemer. A template-based approach to
construction of verified software. Technical Report 96-23;)
Software Verification Research Centre, 1996.

R. Milner. A theory of type polymorphism in program-[zo]
ming. JCS$17:348-375, 1978.

D. Perry and S. Popovich. Inquire: Predicate-based
use and reuse. IProceedings of the 8th Knowledge-[21]
Based Software Engineering Conferengages 144-151,
September 1993.

M. Rittri. Using types as search keys in function libraries.
In Proceedings of the Fourth International Conference

In

on Functional Programming and Computer Architecture
pages 174-183. ACM Press, 1989.

E. Rollins and J. Wing. Specifications as search keys for
software libraries. In K. Furukawa, editdgighth Inter-
national Conference on Logic Programmingages 173—
187. MIT Press, 1991.

C. Runciman and I. Toyn. Retrieving re-usable software
components by polymorphic type. Rroceedings of the
Fourth International Conference on Functional Program-
ming and Computer Architectur@pages 166-173. ACM
Press, 1989.

D. Smith. KIDS: A semiautomatic program develop-
ment system.IEEE Transactions on Software Engineer-
ing, 16(9):1024-1043, September 1990.

S. Sokolowski. Applicative High Order Programming
Chapman and Hall, 1991.

J. Spivey.The Z Notation: a Reference Manudrentice-
Hall, New York, 1989.

B. Stroustrup.The C++ Programming LanguageAddi-
son Wesley, second edition, 1991.

A. Zaremski and J. Wing. Signature matching: a tool for
using software librariesACM Transactions on Software
Engineering and Methodolog#(2):146-170, April 1995.
A. M. Zaremski and J. Wing. Specification matching of
software components. [fhird ACM SIGSOFT Sympo-
sium on the Foundations of Software Engineerit@96.

	Introduction
	Matching fine-grained components
	Matching coarse-grained components
	Module matching strategies
	Applying the framework
	Conclusions

