SOFTWARE VERIFICATION RESEARCH CENTRE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT
No. 01-26

Supporting Component-based Reuse in
CARE

David Hemer and Peter Lindsay

December 2001

Phone: +61 7 3365 1003
Fax: +61 7 3365 1533
http://svrc.it.ug.edu.au

Copyright(©2001, Australian Computer Society, Inc. This paper appeared at the Twenty-Fifth Australasian Computer
Science Conference (ACSC2002), Melbourne, Australia. Conferences in Research and Practice in Information Tech-
nology, Vol. 4. Michael Oudshoorn, Ed. Reproduction for academic, not-for profit purposes permitted provided this

text is included.

Note: Most SVRC technical reports are available via anony-
mous ftp, from svrc.it.ug.edu.au in the directory
/pub/techreports . Abstracts and compressed postscript
files are available viattp://svrc.it.uqg.edu.au

Supporting Component-based Reuse ARE

David Hemer and Peter Lindsay

Abstract solve a particular problenRetrievabilityis a measure of
how easy it is for the user to find a suitable component
The increased reliance on software in critical applications sugmongst a library of components. This becomes partic-

gests a greater need for formal methods to be used in the Ggyrly important once the library of reusable components
velopment of such software. A number of formal languages agd-omes quite large.

toolsets exist for developing formally specified and verified soft-

) . Much of the reuse literature describes informal ap-
ware; however experience tells us that the development of for- h h ieval and ad . blIENTI2. 9
mally verified software, even with the current tool support, is oaches to the retrieval and adaptation problentl[2, 9],

expensive process. but this is an area where formal approaqhes.have alotto
By adopting a component-based development methodolo@{f,ef- In theory, formal component specifications should
whereby software is developed from reusable components, $iovide an ideal basis for tool support, particularly for pa-
nificant savings can be made. In particular the amount of prd@meter matching and instantiatiani[21]. The KIDS tool is
— arguably the most expensive and difficult part of formal de& good example of reuse of correctness-preserving trans-
velopment — can be greatly reduced by proving the correctnéssmations to solve difficult logistics problems]17].
of reusable components once, off-line, prior to their use. In practice however there has been little reported
Tools are required which support the user in adapting and fayse of more general formally developed components.
trieving components from libraries of formally specified comporhjs paper reports on a toolset developed in an indus-

nents. This paper describes extensions to the&xoolset that try/university collaboration to develop high-integrity soft-
support adaptation and retrieval of reusable components. \ware from reusable components.

1 Introduction 1.2 Supporting software reuse inCARE

The CARE language and toolset was designed to be used
by industrial software engineers to build software for
The idea of constructing programs fraeusable software safety critical applications]%,713]. To help facilitate this a
componentsvas introduced by Mcllroy in 1969714]. Thelibrary of reusabldemplatesvas created, which brought
idea is analogous to building a complex electronic devieenumber of benefits to the overall approach [12]. Firstly
from a number of smaller, simpler, well-known compahe fact that they could be proven off-line by a verifica-
nents in an electronic engineering context. The engindi®n expert reduced the amount of formal proof required
browses a catalogue of component descriptions for sty the user. Secondly, templates could encapsulate com-
able components which can be pieced together in somenly used target code structures, so that the user need
manner to build their device. To build their device it magot write any target code. Thirdly, the overall develop-
be necessary to modify the catalogue components in sament time could be reduced by providing commonly used
way. algorithms and data refinements.

To support component-based reuse, methods and tooldsing CARE in a trial with industrial software engi-
must be available that assist the user in adapting andnmeers, and on case studies, revealed a number of prob-
trieving components. Thadaptability of a component lems. It was difficult to locate applicable templates in the
is a measure of how easy it is to modify a component library, and once found, difficult to find the right way of

1.1 Composition-based reuse

applying the template to the problem. The user often h2d CARE
to adapt their program to suit available templates rather
than the other way around. CARE (which stands foComputer Assisted Refinement
. . . L Engineering) is a language, toolset and methodology for
Enhancing GRE with the ideas presented in this papetfeveloping formally verified software. The language and

has gone a long way towards addressing these prOblefBBIset are described briefly in Sectiong] 2.1 2.2 re-
Firstly, templates in @RE have been made more flexi- y 1 &nd 2.

.) . . L ectively. For more details and examples the reader is
ble by including more adaptation techniques (ongmalf ferred to [5/T3]
only parameter instantiation and identifier renaming were S

implemented) and building these into the tool. As a re-
sult of this, templates could be applied to a wider varie§-1 ~Language and concepts

.Of problems. The adaptations are all correctne_ss PreSeiNe care language is partitioned into three separate lev-
ing, meaning that pre-proven templates are still sema t'é of constructs - expressions, units and modules. The

cally correct after adaptation (provided certain applicab Jain features, as found in many formal languages, of each

ity conditions are correct). of these separate levels of constructs are listed below.
To assist the user in finding suitable templatese-a

trieval tool has been built, based on a variety of matclgXxpressions:include variables, sets, functions, relations,

ing algorithms. The retrieval tool is configurable to user's ~ quantifiers and (higher-order) parameters;

needs: users may opt between the precision of the search

or its efficiency. The retrieval tool also makes use of tt!igm

semantics of GRE components, and as a result can con-

duct more “intelligent” searches of the library.

s: include operations, data types, definitions and the-
orems. Units can be parameterised (over both formal
and textual parameters). Units have separate speci-
fication and implementation parts, meaning that im-

Another advantage of the overall approach is that plementation details can be hidden. Units can be im-
matching and adaptation have been integrated. This plemented either using target code structures, or by
means that when the retrieval tool returns a match be- calling other units (in particular data and algorithm
tween the search query and a template, the appropriate refinements are supported).

adaptation of the template is also returned. This allevi-

ates the need for the user to perform adaptations, redudigules: collections of related units can be encapsu-

the risk of an incorrect adaptation being performed, which lated in a singléemplatewhich implements an algo-

may not be detected until much later in the development. ithm, data refinement, theories, or provides access
to “primitive” components.

2.1.1 Expressions

1.3 Overview of the paper The mathematicgl Iaqguage used iAnRE i; a form of
higher-order logic, with parameters ranging over func-
tions, relations and sets. The mathematical language is

In SectionR we give an overview of theaGE language, extensible, with the user being able to declare new func-

methodology and toolset. Sectiofls 3 dhd 4 describe tlihs, relations and sets, as well as introducing assertions

extensions made toARE to support reuse. Sectigh 3 deabout the constructs. There is some predefined theory,
scribes a tool used for adaptingh\RE components. Sec-based on the Z Mathematical ToolKif[18].

tion B describes a retrieval tool built on top of a generic

search engine. An example, illustrating the use of tlﬂ‘?l_z Units

CARE toolset, and in particular the adaptation and re-

trieval tools, is given in Sectiofl 5. Sectigh 6 discuss@$ie next level of components inARE are units, which
related work, while conclusions appear in Secfipn 7. include types, fragments, operator declarations and asser-

tions. Types correspond to data structures; fragments cor- Index ==
respond roughly to functions and procedures in a proce- Element ==
dural programming language; and assertions correspond List == seqdN.
to definitions, lemmas and proof obligations.

Each unit has its own formal specification, which may
include constraints on how it can be used. Units are clas-
sified as eitheprimitive or higher-level In essence, prim-
itive units are those whose proof of correctness is outside
the scope of @RE, while higher-level units have associ-

Figure 1: Q\RE type specifications

cons(e:Element,s:List)
output r:List such that = append(e, s).

ated proof obligations. More specifically: car(s:List)
pre:s # ()
Primitive units are supplied as part of the library, and output e:Element such that= head s.

are not typically written by the ordinary user. Primi-
tive types and fragments are implemented directly in
the target programming language and provide access
to target language data structures and basic func-
tionality. (I_3_ uses a similar approach=[10].) Th%_1_4 Fragments
CARE specification of such a component describes
the mathematical properties that may be assumed Tdrere are two kinds of fragmentsimpleandbranching
the component. For brevity we omit descriptions of the latter, except to
say that branching fragments are a generalisation of sim-
Higher-level units are constructed from other unitPle fragments that allow different types of results to be
within the CARE framework. Higher-level typesreturned depending on the input.
and fragments express data refinements and algoSimple fragments correspond roughly to functions in a
rithm designs respectively, and are implemented Rfocedural programming language; they take inputs and
the CARE language. @RE tools generate proof obli- return outputs. Fid]2 shows specifications for the simple
gations which show that the unit's implementation iagmentscons andcar for manipulating lists, using
correct with respect to its specification. LISP-like naming conventions.
The implementation of primitive fragments and higher-
level fragments differ. Primitive fragments are imple-
2.1.3 Types mented by giving code segments in the target language.
The exact nature of the code segments in primitive frag-
The specification of a BrRE type is an expression denotments is dependent on the target language, as well as the
ing the set of mathematical values that objects of the typede synthesis tools. The current prototype KRE uses
can take. The example given in F[g. 1 contains specifidaw level C as the target language.
tions of CarRE types. The first line declares thegE type Higher-level fragments are implemented in terms of
Index , which is modelled mathematically as the set @flls to other fragments. TheARE implementation lan-
natural numbers. The second line declares the Blpe guage supports the following simple design algorithm
ement which corresponds to some given type The constructs: assignment of values to local variables, frag-
third line declares the typist which corresponds to ament calls, sequencing, branching of control, and data re-
sequence of natural numbers. finement transformations.

Primitive types are implemented by some target lan-The body of a higher-level fragment is tree-structured.
guage data structure. A higher-level type (tbined typg Non-branching nodes of the tree correspond to bindings
is implemented in terms of one or more other types (the local variables of the values returned by simple frag-
correspondingoncrete typdsbhy data refinement. ment calls or variables. Branching nodes correspond to

Figure 2: Simple fragment specifications

calls to branching fragments, labelled by the correspond-
ing reports; where branches return values, these values
are bound to local variables. Local variables are newly
created at the point of assignment, meaning that they are
similar to bound variables in quantified expressions. The
leaves of the tree define the fragment’s output values.
Recursive calls and mutual recursion are allowed, pro-
vided the recursion eventually terminates. To establish
termination, the @RE user supplies a well-founded vari-
ant function (orvariant for short) whose value decreases

Parameters:
E,P1:FEXFE,Ql:FEXFEXFE,
P2:FEXE, Q2:FEXFE X E.

) . Elem ==
on recursive calls and is bounded below.
Set ==F F
2.1.5 Modules = value s is refined by I:List

)) with refinement relation = ran/.
The module-like structures used imgE are referred to

astemplates Templates are parameterised collections of List ==seqF.

units (fragments, types, assertions etc.) and unit specifi-

cations (cf. package headers in Ada), which collectively abOp1(s:Set,t:Set)

implement an algorithm, data refinement, or theory, or pre: P1(s, t)

provide access to primitive components. Templates are output r:Set such thap1(r, s, t)

typically proven off-line by a proof expert; as part of the = decompose s into sc:List;
proof process, applicability conditions on the parameters decompose tinto tc:List;

are generated which provide sufficient conditions to guar- assign conOp1(sc,tc) to rc:List;
antee a template’s correctness. compose rc into r:Set; return r.

For example Fig[]3 contains a data refinement of sets _ _
in terms of (possibly repeating) lists. For this particu- C€ONOpP1(s:List.t:List)
lar refinement, the set is represented by the range of the ~ Pre: P1(rans, rant)
list. For example(a, b, a, a, ¢) and(c, a, b) both repre- output r:List such tha@1(ranr, rans, rant)
sent the sefa, b, c}. Note that no invariant is given for
this data refinement; in particular repetitions are allowed
in the list. The template contains the fragmehiOpl
used for implementing binary operations on sets, and the
fragmentabOp2 for performing operations on a set and
an element. These set manipulating fragments are all pa-
rameterised, so they can be adapted to solve a number of
problems. The command “decompose” maps an abstract
value to its concrete counterpart, while “compose” maps
in the other direction.

abOp2(s:Set,e:Elem)
pre: P2(s, e)
output r:Set such thap2(r, s, ¢)
= decompose s into sc:List;
assign conOp2(sc,e) to rc:List;
compose rc into r:Set; returnr.

conOp2(s:List,e:Elem)
pre: P2(rans, ¢)
output r:List such tha@2(ranr, rans, e)

2.2 Tool architecture . . -
Figure 3: Sets refined by repeating lists

Fig.d shows the architecture of the\RE toolset, includ-

ing the extensions to the toolsets — the retrieval tool and
the template adaptor tool — shown in shaded boxes. The
template adaptor togldescribed in Sectiofj 3, extends a
previous tool, the template instantiator tool, by including

be added to the worksheet or modified via the script.

Seript

Interpreter Library: The library consists of a collection of pre-
Library proven design templates.
Workehon | I;fd“;ﬁif Script interpreter: The script interpreter parses the in-

Script

USER INTERFACE
|
|

ments, types and theories to the worksheet manager
as abstract syntax trees.

Manager dividual script commands and passes annotated frag-
—|_
,,,,,,,,,, Proct

| Retrieval : Obligation
Worishest Tl —e====— Proof obligation generator: Proof obligations are gen-

erated purely mechanically from theaQe compo-
nents and simplified using basic properties of equal-
ity, propositional calculus and quantifiers.

Code
Synthesiser

Worksheet manager: The worksheet manager controls
what goes on the worksheet, where it is placed on
Figure 4: Architecture of the ARE toolset the worksheet and with what status. It takes its in-
put from the script interpreter and from the theorem
provers, and updates the worksheet accordingly. The
worksheet manager is responsible for reporting vari-
ous errors back to the user via the script interpreter,
for example if the user tries to overwrite an already
existing implementation.

additional adaptation techniques. Tiatrieval tool de-
scribed in Sectiofl 4, is a new tool. The remainder of the
tool and data stores in the diagram are described briefly
below. For more details the reader is referred to a paper
describing the @RE toolset [5].
Code synthesiser:The code synthesiser tool takes a

Script: The development and verification of &&E pro- complete collection of fragments and types and con-

gram is driven from a script supplied by the soft- structs a C source-code program.

ware engineer. A script may include declarations of

fragments, types and theories, as well as commands .

for retrieving and instantiating templates from the i3 Adaptatlon tool

brary, generating proof obligations, and invoking one

of the theorem provers on a given proof obligation.The adaptation tool applies an adaptation (from the script)
to a library template, returning a set of units. The adapta-

Worksheet: The current state of the ARE program un- tion tool consists of a number of techniques which are cat-
der development is stored and displayed on a “work&gorised over the three levels oARE constructs. Tablg 1
sheet”. The worksheet displays the fragments, typgsows the three levels of constructs inkE and the adap-
and theories that have either been written by the safition techniques applied at each level. These techniques
ware engineer or gathered from the library, togethare described separately for each level of constructs be-
with all the proof obligations that have been genelew.
ated. Each component of the worksheet has an assoFhe template adaptor tool is an extension of tie-
ciatedstatuswhich indicates the component’s standblate instantiatortool from the toolset described il [5].
ing in the overall development. The worksheet itselthe first two techniques described (parameter instantia-
is considered complete and correct if and only if alion and renaming) had already been developed.
its fragments and types are implemented and all as-A large part of the design and development of templates
sociated proof obligations have been generated andCARE is establishing the correctness of the implemen-
discharged. Note that worksheets are not directly gdtion against the specification (e.g. see [12] for a proof of
itable by the software engineer: information can onlyorrectness for the accumulator template). It is therefore

| Component Level Adaptation Techniques ing of unit I/O arguments.

Expression| Parameter instantiation Identifiers can be renamed to achieve meaningful nam-
Unit | Identifier renaming ing within the user’s application domain. To ensure that
Variable renaming the correctness of the program is preserved, units must
Argument reordering be renamed at the point of definition as well as anywhere
Module | Subsetting that the unit is referenced. Also the identifiers must be

renamed to new identifiers which do not already appear
Table 1: Component adaptation techniques partitionggthin the scope of the renaming.
into three levels The number and types of input and outputs for a frag-
ment are described by a variable declaration. The names
important that any techniques for adapting componentsiHthese declared variables can be changed without chang-
CARE be correctness preservingCorrectness of adaptaing the overall meaning of the fragment, provided the
tions is discussed at each structural level below. changes are done in a consistent manner throughout the
unit. Clashes with other local variables are avoided by
doing a preprocess renaming of bound variables prior to
applying the renaming of I1/O arguments.
For expressions, the main technique is instantiation of for-Another technique is reordering the arguments of frag-
mal parameters. Occurrences of parameters within an ments. This is more complicated than renaming in that not
pression are substituted by other expressions. only must the variables be reordered at the point where
Expressions arastantiatedby replacing occurrencesthey are introduced, but also wherever the fragment is
of parameters by other non-parametric expressions. Cadled. This means that the reordering must be applied
describe how parameters in an expression are to betgeany other fragment which calls the fragment in ques-
placed, aformal parameter instantiatioms given. The tion. Reordering of the /O arguments of a fragment is
instantiation is essentially a finite partial mapping fromorrectness preserving provided the arguments of any call
parameters to expressions such that: to this fragment are similarly reordered.

3.1 Expressions

e function parameters are mapped to terms,
3.3 Modules

3.3.1 Subsetting

e set parameters are mapped to sets,

e relation parameters are mapped to formulae.

The mappings are finite because there are only efetemplate consists of a set of formally specified units,
finitely many parameters to instantiate. The mappings &@me of which may provide optional functionality. There-
partial indicating that not all parameters need to be instd@te it is often desirable to include subsets of a template.
tiated. We refer to the adaptation technique where a subset of a
In some instances, to show correctness of the pardemplate is returned asubsetting The user nominates

eterised component constraints must be placed on &eubset of units from the template. The adaptation tool
range of values that the parameters can take. These é@Hculates the closure of this subset; it is the smadlelt
straints are referred to aapplicability conditions To containedset of units containing all of the user nominated
show that correctness is preserved, the instantiated apgfits. By self-contained we mean that any unit referenced
cability conditions become proof obligations, that must @ the set is also included in the set (or at least the specifi-

discharged by the user. cation of the unit).
A template is correct in €RE if each of the units used
32 Units in the template is at least specified within the template,

and each of the non-primitive implemented units is correct
For units, the techniques described are renaming of t@xXth respect to its specification. Therefore the correctness
tual parameters, renaming of unit arguments and reordafra template subset follows from the correctness of the

entire template, provided that the subset is self-containedsuch that the adaptedis the same ag up to renam-

ing of bound variables. AC-matching{11] is a weakening
of alpha-equivalence, where the arguments of AC (asso-
ciative commutative) operators can be reordered. Both of
Because correctness of primitive units (i.e. those implisese algorithms have been extended to handle two-way
mented directly by target code constructs) is outside mitching (i.e. where both the query and pattern include
the scope of @RE, adaptations to target code must bparameters). For more details the reader is referred to [3].
very conservative. Parametric polymorphism is achieved

at the code level in a correctness preserving manner b¥ . .
linking the target code data structure with an identifier i 2 Unit matching

the specification. The target code is adapted by giving RfAtching of units is based astructural equivalencefor

identifier renaming. example (simple) fragments are matched by matching
corresponding inputs, outputs, preconditions and postcon-
ditions. Only units of the same type will match, e.g. a
type will never match a simple fragment, a simple frag-
] ment will never match a branching fragment. The query
4.1 Architecture is a unit specification, the pattern may include an imple-

The front-end to the ERE retrieval tool sits on top of a _mentation (the implementation part is not used in match-

generic search engine. The generic search engine is bad @ow_ever). Aquery match_es a patternif there is_an

on a number of algorithms for matching components, fadaptation of the pattern which is ;tructurally equwalent
composed into the three levels oAQE components. The 1o the query (sge [6] for more details). Note that the unit
generic search engine is designed in such a way tha[[nﬁrFChmg algorlthms |r_1he_r|_t the expression matching al-
can be adapted for a variety of applications. The frorﬁprlthms for rr_lz?\tchmg individual expressions such as pre-
end retrieval tool is the knowledge-based part of the toglr,]d postconditions.

in this case using knowledge of theaRe semantics to

build more powerful and flexible searching capabilities.4 2.3 Module matching

3.3.2 Parametric polymorphism

4 Retrieval tool

42 G . h . The search query for module matching consists of a set
: eneric search engine of unit queries, the pattern is a template. Matching in-

The search engine combines a number of algorithms ¥§fves matching individual units from the query against
matching the different components imgE. The algo- units in the template (using the unit matching algorithms).
rithms are described briefly below for the different levefsour different strategies have been implemented: ALL-
of components in @RE. match in which all query units are matched against tem-

Each matching algorithm takes a component (e plate units; SOME—match.where at least one query unit
tern) and a searchuery(encapsulating the user’s requireMUst match against a unit(s) from the template; ONE-
ments), and returns the set of matches. Matches are reg;@mh where exactly one query unit matches a unit from

sented as adaptations of the pattern that satisfy the se&féntemplate; and HYBRID-match which is a generalisa-
query in some manner. tion of the first three strategies. For more details the reader

is referred to[[4].

4.2.1 Expression matching

_] ~ 4.2.4 Combining the algorithms
At the expression level two algorithms have been imple-

mented — alpha-equivalence matching and AC-matchirnichese algorithms are combined to form siearch engine
For alpha-equivalence matching, a quempatches a pat- The search engine is configurable, making it suitable for a
tern p if there is some instantiation of the parameters mumber of different applications. The inputs and outputs

of the search engine are fairly rudimentary, making it retonverting it into a form suitable for the search engine;
atively easy to build pre- and post-processing applicatioalling the search engine; and outputting the results of the
specific tools. search. These tasks are described below.

The main inputs of the search engine are search
query, consisting of the specifications of one or more dg-5 Generating inputs
sired units, and a library of pre-proven design templates.
A number of other inputs are available including: The first stage, driven by an interactive wizard-like GUI,

. .) . involves collecting search information from the user and
interaction level: the user selects one of the interactiof, o worksheet. This search information includes:

levels indicating how much interaction the user has

with the search engine. At the lowest level, the ¢ the names of the worksheet units to be used as basis
search is fully automated, with the searching process for building a search query;

completed before any results are outputted. At the

highest level of interaction the user is consulted aftere thematching method® be used for each of the nom-
each match is found and given the option of halting inated worksheet units;

the search process (when a suitable match is found),

or continue searching. Other interaction levels con-* and a search strategy.

sult the user after all matches for a particular tem- 1,4 matching methods available to the user a:
plate have been compiled; or a guidance mode Whegg matching based on matching up to structural equiva-
matches are outputted as they a found, but where {Big.e relaxed matchingwhich uses the semantics of sim-
user does not have the option of halting the processie fragments to build more intelligence into the search:

type-constrained matching: the user can elect to turn orPranching-altermatives matching which the semantics

a type-checker which will eliminate matches that irf branching fragments are used to provide a more intel-
troduce type clashes. ligent search; andontext matchingvhere implemented

worksheet components are used as a means of narrowing
expression-level equivalencethe user selects fromthe search space. Sectipn]4.4 describes relaxed match-
alpha-equivalence or AC-equivalence for matchirigg in more detail; for more details on the other matching
at the expression level. methods the reader is referred o [7].
. This search information is converted automatically by
1% tool into a form suitable for the search engine. In this
stage a search query (consisting of a set of unit specifica-
The options give the user the choice between precisiortiohs), and a search strategy are created from the search
the search, and the efficiency of the search. For examisormation.
turning on type-constrained matching will generally result The worksheet units nominated by the user form the
in a more accurate set of results, but will also slow dowasis for the search query (i.e., the search is driven by
the search considerably. the current state of the program). For exact matching, the
The search engine returns a set of template adaptatisiesksheet unit is used directly in the query. For context
corresponding to the set of matches. Note that for a giveatching, the specification of the worksheet unit is used.
template there may be multiple matches; these are ker relaxed matching, a new query, more general than
turned as separate adaptations — some of which maytiye worksheet unit, is created. For branching-alternatives
more useful than others. matching, a number of new queries are created, one for
each way of ordering the branches in the specification.
The search strategy supplied by the user is modified ac-
cordingly.
The front-end retrieval tool communicates with the searchThe next stage involves selecting search options and
engine. Itis responsible for: collecting search informatiaralling the search engine. The search options are passed

strategies; i.e. all, some, one of hybrid.

4.3 Front-end retrieval tool

to the search engine, together with the search query and output r:iList such that- = (e) ™ s.

strategy generated in the previous stage. .
The pre-conditions for both the query and pattern

are trivial (true). The post-condition faxddelem is
ranr = rans U {e}, the post-condition foappend is

The final stage of the retrieval tool involves displaying = append(e, s). The post-conditions are not logically
the results of the search to the user. Each result c@quivalent, and therefore do not match using exact match-
sists of a template adaptation - representing a match -

tween the search query - and the template. The resulHowever observe that replacingandp by addelem

may also contain other units (nhamely fragment impleme@dappend respectively in (1) and (2) we get

tations and applicability conditions), associated with unit
gueries matched used for relaxed or branching alternatives
matching. Each result is displayed separately, with the 7= (e) " s Atrue = ranr =ransU{e} (4)
user able to step through the list of results.

4.3.2 Processing outputs

true = true 3)

Both of these conditions are clearly satisfiable, therefore
] append is a candidate for implementiregddelem , us-
4.4 Relaxed matching ing relaxed matching.

Now consider the processing that is performed by the
are exploited to match a simple fragment from the worl€lrieval tool to achieve such a match using relaxed match-

: : . Ing. Suppose the user nominates relaxed matching for the
heet. An alternativ rching for a simple fragmef®: >! .
sheet alternative to searching for a simple frag e(pgeufled—only worksheet uretddelem . Rather than us-

with a specification equivalent to the worksheet unit, isf ddel ¢ of th h the tool ‘
search for a simple fragment that implements the workd addelem as part ot the search query, the toof creates
sheet fragment. a new fragment spe_C|f|cat|0r_1 that will |mplemea_ni-

A simple fragment (from the worksheet) could be im_delem . This new unit query is created by replacing the

plemented by a fragment (from a template), by calling pre- and post-conditions iaddelem by parameterised

Forrelaxed matchinghe semantics of theARE language

the fragmenp within the body of the fragment. Rather formulae:

than requiring that the specificationspéndq are equiv- addeleml(e:Elem,s:List)

alent (as is the case wittxactmatching), in this case the pre: P(e,s)

pre- and postconditions must satisfy the following rela- outputr:List such thatQ(r, e, s).

tions: Also generated are the following proof obligations that

(1) ensure that the matched library fragment provides a cor-

q.precond = p.precond))
rect implementation foaddelem .

p.postcond N q.precond = q.postcond (2)

. . true = P(e,s) (5)
These relations are derived from the well-formedness and

partial correctness conditions that must be satisfied in or- " = (e) s A P(e,s) = ranr=ransU{e} (6)
der to prove that implementingwith a call top satisfies
the specification of.

Consider the simple fragment queagtdelem and the
specification of a simple fragment pattexppend :

Now suppose a search is conducted, and a match is
found between the search query containauyleleml
and a template that includeppend . Such a match
would require the parametef? and in addelem to

addelem(e:Elem,s:List) be instantiated as:

pre: true P(e,s)~trug Q(r,e,s)~r=1(e) s
outputr:List such that ram = rans U {e}. . . o o
Applying these instantiations to the proof obligations (5)

append(e:Elem,s:List) and (6) results in the conditions (3) and (4), which we
pre: true have already observed are satisfiable.

Matches are displayed to the user in terms of the tem- Dictionary ~ ==T Word.
plate adaptations that result in the match. The instan-
tiated proof obligations are also included, as well as an Word == Word.
implementation of the original worksheet uaiidelem
in terms of the newly created uraddeleml . Suppos-
ing the user selects such a match, then the following units
are added to the worksheet, together with the instantiated
proof obligations (3) and (4).

insert(w:Word,d:Dictionary)
outputr:Dictionary
such thatr = {w} U d.

Figure 5: Initial design for inserting a word
addelem(e:Elem,s:List)

pre: true . .
outputr:List such that ram = rans U {e} 5.2.1 Creating the search input

= addeleml(e,s). Firstly the search information is constructed using the cur-

rent contents of the worksheet. Suppose the user con-

addeleml(e:Elem,s:List) structs the search information as follows:

pre: true
outputr:List such that- = (e) "~ s. (a) The user chooses the worksheet file containing their
program to be the active file.
5 Example (b) The user nominates tlexactmatching method.

(c) The user selects all of the worksheet units, to be used

This section illustrates the use of the Rk toolset for de- in constructing the search query.

veloping a simple program. In particular the example il-

lustrates the use of the adaptation and retrieval tools. Tk&) The user selects the ALL-match strategy.

example program inserts a word in a dictionary. The dic-

tionary will be represented by a set of words, which in The overall search strategy selected by the user is in a
turn will be represented by a list which may contain reense a default strategy, i.e., doing exact matching on all
etitions of words. This list can in turn be implemente&Pecified-only units. It may be that the user tries this first,

directly in target code using the linked list template frond if it fails then tries other strategies.
the library. The next step involves converting the search informa-

tion into a form suitable for the search engine. From the

fact that exact matching is done on all current worksheet
5.1 Formal specification units, the search query consists of the specifications of
the unitsWord, Dictionary ~ andinsert . The search

Suppose the user wishes to insert a word into a dmt%ﬁategy to be used is the ALL-match strategy.

nary, they begin by giving the initial specification showi
in Fig.[3.
5.2.2 Calling the search engine
5.2 First refinement step The user now calls the search engine selecting the inter-
active search mode. The output from the search engine
The first refinement step involves implementing the worka interactive mode is shown in Fj@ 6. Suppose that upon
sheet unitDictionary andinsert . The following finding a match with the “sets as repeating lists” template
subsections describe the individual steps performed by {kee Fig[]3 on pade 4), the user terminates the search.
user and tools: creating the input to the search engineFor this match the query fragmemtsert matches
calling the search engine; viewing the results and updtte fragmentibOp2 from the template, while the query
ing the worksheet. typesDictionary andWord match the template types

10

Dictionary ==TF Word List ==seqWord
= value s is refined by I:List = << target code elided.>>

with refinement relation = ranl.
insertList(s:List,e:Word)

List ==seqWord = assigninsertList1(s,e) tor:List;
reporte and returrr
insert(w:Word,d:Dictionary)

= decompos@ into sc:List; insertList1(s:List,e:Word)
assigninsertList(sc,w) torc:List; output r:List such that = append(e, s)
composeac into r:Dictionary; returnr. = << target code elided.>>

insertList(s:List,e:Word)
outputr:List such that ram = {e} U (rans) Proof obligation
Vr,s:seqWord; e: Word e
r = append(e, s) = ranr = {e} Urans
Figure 7: Worksheet additions first step

Figure 9: Implementing insert list for repeating lists
Set andElem respectively. The formal parametef®

and Q2 from the template are instantiated as follows:

E ~ Word Initially the user might choose to do exact matching on

Q2(a,b,c)~c={b}Ua the unitsWord, List andinsertList . However, af-

P2(a,b) ~ true ter failing to find any suitable matches, the user instead
elects to do relaxed matching orsertList . The user

To match the template fragmeabOp2 against the giso selects the ALL-match strategy. The compilation of
query fragmentnsert , the variables 0bOp2 are re- gearch information is shown in Fig. 8.

named with the mappings — d, e — w} and the input) o)
variables are swapped. Since relaxed matching is used fmisertList , a

new fragmeninsertListl , is created by replacing the
pre- and post-conditions @fisertList with parame-
terised formulae (as described in Sectipn 4). This newly
After viewing the match results, the user can take tleeeated fragment is used in the search query.

template adaptation and add it to the script. In this cases
the template adaptation, described above, for adapting mg
sets as repeating lists template, is added to the script.

5.2.3 Updating the worksheet

ne of the matches returned by the search tools is with
linked list template, a template that implements

The template adaptation is processed by the script eg{.lmnwes for manipulating linked lists. Suppose the user

tor. As aresult. there are a number of additions and m {ds the adaptation of the linked lists template to the
r. AS aresutt, there are a numbuer of adcitions < ript, which is subsequently processed by the script in-

ifications to the worksheet, given in Fig. 7. In particu'%rpreter As a result the unisertList is imple-
the typeDictionary and.t_he fragmerinsert : are im- mented, and a new elemeinsertListl is added to
plemented. Also the specifications for the tjpist and the worksheet. Furthermore an applicability condition,

fragmeniinsertl ist are added to the worksheet. associated with relaxed matching of the worksheet unit
. insertList is added to the worksheet as a proof obli-
5.3 Second refinement step gation (see Fig[]9). This proof obligation can be easily

) : . . proven from basic laws associated with sequences.
The second refinement step involves implementing

sertList . Firstly the input to the search engine is Fig [[0(a) shows the script for the session, while
generated using input from the user and the workshegig [LQ(b) shows the resulting worksheet.

11

K /Search_Tool [=][o][x]

(=

Searching /home /03/med/CARE_ReleaseVl 1/Library/sets_as_non rep lists norm. ...
Match found with sets_as_non_rep_lists. ... {insert, Dictionary, Word} matched.

Enter command (h for Help):
c.

Searching /home/03/med/CARE_ReleaseVl. 1/Library/sets_as_ordered lists. norm. ...
Match found with sets_as_ordered_lists. ... {insert,Dictionary, Word} matched.

Enter command (h for Help):
[

Searching /home/03/med/CARE_ReleaseVl. 1/Library/sets_as_repeating_lists norm. ...
Match found with sets_as_repeating lists. ... {insert, Dictionacy, Word} matched.

Enter commend (h for Help):
i.

instantiate sets_as_repeating lists with

020x], %2, %x3) --» x1 = unionimkSet(x3), x2),

P2(xl, x2) --> True,

E --» Word;

ablp? --> insert,

Set --» Dictionary,

Elem --» Word

include abOp2 with inputs e -» w,8 -» d and outputs ¢ -> r.

Enter command (h for Help):

Aocept current match (y/n)?

Quiting search tool.0.15
30968
Press return ...

Figure 6: Searching the library

12

K Search Editor Tool V1.0

(=]l (] K~ Search Editor Tool V1.0 BEE]
é}\\ Select the source of Search components §>\‘ Select search methods.

~~ User Defined Search

\Yorksheet Based Only Search

~~ Worksheet and User Defined Search W Exact Matching
' Relaxed Matching

Worksheet File Name: |inserisetl Browse
| Guarded Post Matching
I Branching Altematives
| Worksheet Context

« Back | Mext > | Cancel < Back | Next > | Cancel
I I I I
(a) Select worksheet file (b) Choose search methods
K Search Editor Tool V1.0 (=] [3¢] K ' Search Editor Tool V1.0 (=] (o] [3¢]
B Select components for Exact Matching, B, Select components for
E}\\ Press "Hext" when selection complete. §>\‘ Relaxed Matching.
Candidates Selections Candidates Selections
insertList 5| > [[wora A [word 5| > |finsertiist [
List List
| =
P~] Pl | Pl I~ |
« Back | Mext > | Cancel < Back | Next > | Cancel |
I I I I

(c) Nominate exact query components

K Search Editor Tool V1.0

(d) Nominate weaker-pre query components

BIEE K Search Editor Tool V1.0 BIEE]
2, =,
5%\ Combination Editor a}\ Search Information
[orkehest file insertestl A
* £ Components use search methods
exact on {Word, List}
weaker pre on {insertLisk}
~ Some Components with conbination all
- Altemalives
- Custom and | or | wor | @ | cear |
'\ [word
List
insertList
/
I]
< Back | Mext > | Cancel « Back | Hext » | Finish
: : T :

(e) Select search combination

(f) Final query

Figure 8: Creating the search information

13

Script Editor Tool V1.1

File Edit Script Commands Tools Help Fle wview Text Show Tools Help
Worksheet View
3cript File Hame: |[thomes/03/med/SearchExamples/Dictionary/finsersetl sc Browse o
Type Dictionary==Sets0f (Word)::=(s)s::1:List;ran(l)

K Type Word.

% initial specification

insert(w:Word, d:Dictionary) 0::r:Dictionary;0<<r = union(mkSet(w),d)>
>

Type Dictionary == Sets0f (Word) ::= d-»sc:List;insertlList(sc, w): rc:List;ro<-r:Dictionary;r

Type Word
Type List==Lists0f (Word)::={v)l:"List 1" Assign ::= 1 Associated code
insert(w:Word, d:Dictionary) "struct linked_list { Word wal, struct linked_list * next;};", "typede

T 4 . f struct linked list POINTER;",
r:Dictionary;0 <<r = union(mkSet (w), d)s>. "typedef POINTER * List"

Word.

insertlist(s:List,e:Word) O0::r:List;0<<ran({r) = union(mkSetie),ranis)

>
% first refinement step ! ::= insertListl(s,e): r:List;r
instantiate sets_as_repeating lists with insertlListl(s:List, e:Word) appendie,s)::r:List;r
Q26xl, %2, %x3) --» xl = unionimkSetix3),x2), sz e ¢ eval: "Word eval®;v <: :"List wl";"malloc(sizeof (BO
PZixl, x2) --» True, INTER))"::wll:"List wll";"wll-»val = eval"(vll, eval::vll:"List wll");" |=—
E --> Word; wil-snext = wl" (w11, wl::w1l:"List vil");vil > wl:List;wl::10:List;10
gh0p2 --» insert,
Set --» Dictionary,
Elem --» Word !
include ab0p2 with inputs & -» w.s -» d and outputs © -» ¢ Proof obligations

Proof Obligation insertlistlZ_applic_1

211 s:Listsof (Word), e:Word, r:Lists0f (Word). append(e.s) = r =» ran(r) =
unionimkSet{e), ran(s))

status unproven.

rename condpl --> insertList.

% second refinement step

instantiate linkedLists with
E --» Word;
apndl --» insertListl,
Element --> Word,
List --> List

include apndl with inputs v -» 5,8 -» e and outputs 10 -> ¢
insertList(s:List, e:Word) 0::r:List;0<<ran(r) = vnion{mkSet(e), ran(s) /
Yer insertsetl.wc version 1.1

;= insertListlis, e)

/ Reload | undo | Exit |

Save Process Region Process All Exit “| > Script Editor Tool v

4

¢ Worksheet Viewer

FHSEATS
(a) Script (b) Worksheet

Figure 10: Development of dictionary insertion

14

5.4 Completing the development more general. Firstly, the approach described here allows
. o for a more general unit adaptation framework (beyond just
The development is completed by providing an appropfarameter instantiation). Secondly the scope of the kind
ate implementation foword. Such a template is not yel¢ nits which can appear in modules is extended beyond
available in the library, but it might be possible to eithg[;nctions. Thirdly, the Zaremski and Wing approach is
implemer_1t it direcFIy by some tar.get code primitive, or By, ctricted to the ALL-match strategy.
some refinement in terms of a list of characters. ONnCe aryg tochniques and tools described in this paper could
suitable implementation &/ord is found, the proof obli- 1,0 54anted and applied to other formal languages that sup-
gations can be discharged and target code generated. port reusable components. KIDS[17] supports design
tactics that can be adapted by instantiating formal param-
eters. The Sum languagde [1] supports modules which can
6 Related work parameterised over types and scalar values. Similarly the
B languageli10] support abstract machines which can also
Instantiating formal parameters is a commonly used adgj- parameterised over types and scalar values. In each
tation technique. Identifier renaming can be thought ghse the scope of adaptations could be extended to in-
as a similar technique to parameter instantiation, howeyglige techniques similar to those presented in this paper.
identifiers can only be instantiated to other identifiers. Rgyyould also be possible to build retrieval tools with an

ordering of the arguments of units is quite different, and {gchitecture similar to the one described here.
the best of the author’s knowledge has not appeared in any

of the reuse literature. Similarly, while module subset-
ting is discussed in the context of component matching®y Conclusions
Zaremski and Wing[[21], it does not appear in the frame-

work of adaptation; consequently the issue of ensuring thg;g paper reports on extensions to therE toolset for
subset is self-contained is not raised. Finally the ideaéﬂpporting adaptation and retrieval of reusable compo-
adapting components by changing underlying target-CQgignts. The techniques and algorithms for adaptation and
data structures is similar to Volpano and KieburtZ's [19hatching are decomposed into three separate tiers. This
approach, however the approach described in this pap&{4s the benefit that additional techniques can be devel-
more general and coul_d be extended to include other klrgged at a particular level with minimal changes required
of target code adaptation. to the remaining tool. This decomposition also leads to
The implementation of matching up to AC-equivalencg highly configurable search engine that can be config-
was inspired by an algorithm proposed by Lincoln angted by selecting suitable techniques at each level. The
Christian [T1]. Type-constrained matching is based @gtrieval tool represents one such instance of this config-

type-checkinga technique commonly used to check typgrable search engine, designed to satisfy the requirements
consistencies for formal languages. of the CARE methodology.

A number of approaches to matching units with struc-
tured functional specifications exist, includirgigna-
ture matching[I8, [15, Z0] andspecification matching References
[8, Z1]. Zaremski and WingL[21] describe a variety of
equivalences for functional specifications, includiesg [1] A. Bloesch, E. Kazmierczak, P. Kearney, and
act pre/pOSt matCk(Similar to structural equivalence), 0. Traynor. A methodo|ogy and System for for-
guarded plug-in(similar to relaxed matchingguarded mal software developmeninternational Journal of

postetc. Such teChniqueS could eaSin be inCOfporated Software Engineering and Know|edge Enginee,ring
into the front-end tool in a similar manner to relaxed 5(4):599-617, December 1995.

matching.
Zaremski and Wing[[21] describe an approach to mod2] Alan W. Brown, editor.Component-Based Software
ule matching, however the approach described here is Engineering IEEE Computer Society, Carnegie

15

3]

[4]

[5]

[6]

[7]

Mellon University, Software Engineering Institute[12]
1996.

D. Hemer. An algorithm for pattern-matching math-
ematical expressions. In L. Groves and S. Reeves,
editors,Proceedings of Formal Methods Pacific}97[13]
Discrete Mathematics and Theoretical Computer
Science, pages 103-123. Springer Verlag, July 1997.

D. Hemer and P. Lindsay. Specification-based re-
trieval strategies for module reuse. In D. Grant and
L. Stirling, editors,Proc. of Australian Software En-[14]
gineering Conference (ASWEC'200Pages 235-
243. IEEE Computer Society, August 2001.

D. Hemer and P.A. Lindsay. TheARE toolset for [15]
developing verified programs from formal specifica-
tions. In O. Frieder and J. Wigglesworth, editors,
Proceeding of the Fourth International Symposium
on Assessment of Software Toplsges 24—35. IEEE
Computer Society Press, May 1996. [16]
D. Hemer and P.A. Lindsay. Reuse of verified design
templates. In J. Fitzgerald, C. Jones, and P. Lucas,
editors,Formal Methods Europe '9/umber 1313

in Lecture Notes in Computer Science, pages 495—

514. Springer, September 1997.
pring p [17]

David Hemer. A Unified Approach to Adapting
and Retrieving Formally Specified Components for
ReusePhD thesis, School of Computer Science and
Electrical Engineering, April 2000. [18]

[8] J-J. Jeng and B.H.C Cheng. Specification matchiang]

[9]

[10]

[11]

for software reuse: A foundation. Proc. of ACM [
Symposium on Software Repgages 97-105, April
1995,

C.W. Krueger. Software reuseACM Computing

Surveys24(2):131-183, June 1992. [20]

K. Lano. The B Language and Method: A Guide
to Practical Formal Development FACIT Series.

Springer-Verlag, 1996.
pring g [21]

P. Lincoln and J. Christian. Adventures in
associative-commutative unification. In Claude
Kirchner, editor,Unification, pages 393-416. Aca-
demic Press, 1990.

16

P.A. Lindsay and D. Hemer. A template-based ap-
proach to construction of verified software. Tech-
nical Report 96-23, Software Verification Research
Centre, 1996.

P.A. Lindsay and D. Hemer. UsingARE to con-
struct verified software. In M.G. Hinchey and S. Liu,
editors,Proc. 1st Int Conf on Formal Eng Methods
(ICFEM'97), pages 122-131. IEEE Computer Soci-
ety Press, November 1997. SVRC TR 97-40.

M.D. Mcllroy. Mass produced software compo-
nents. Software Engineering Concepts and Tech-
nigues pages 88-98, 1969.

M. Rittri. Using types as search keys in function
libraries. In Proceedings of the Fourth Interna-
tional Conference on Functional Programming and
Computer Architecturgpages 174-183. ACM Press,
1989.

C. Runciman and I. Toyn. Retrieving re-usable soft-
ware components by polymorphic type. Rro-
ceedings of the Fourth International Conference on
Functional Programming and Computer Architec-
ture, pages 166-173. ACM Press, 1989.

D.R. Smith. KIDS: A semiautomatic program de-
velopment systemlEEE Transactions on Software
Engineering 16(9):1024-1043, September 1990.

J.M. Spivey. The Z Notation: a Reference Manual
Prentice-Hall, New York, 1989.

D.M. Volpano and R.B. Kieburtz. The templates ap-
proach to software reuse. In T.J. Biggerstaff and
A.J.Perlis, editorsSoftware Reusabilifwolume 1,
chapter 9, pages 247-255. Addison-Wesley, 1989.

A.M. Zaremski and J.M. Wing. Signature match-
ing: a tool for using software librarieACM Trans-
actions on Software Engineering and Methodology
4(2):146-170, April 1995.

A.M. Zaremski and J.M. Wing. Specification match-
ing of software components. [hhird ACM SIG-
SOFT Symposium on the Foundations of Software
Engineering 1996.

