
SOFTWARE VERIFICATION RESEARCH CENTRE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072

Australia

TECHNICAL REPORT

No. 01-26

Supporting Component-based Reuse in
CARE

David Hemer and Peter Lindsay

December 2001

Phone: +61 7 3365 1003

Fax: +61 7 3365 1533

http://svrc.it.uq.edu.au



Copyright c©2001, Australian Computer Society, Inc. This paper appeared at the Twenty-Fifth Australasian Computer
Science Conference (ACSC2002), Melbourne, Australia. Conferences in Research and Practice in Information Tech-
nology, Vol. 4. Michael Oudshoorn, Ed. Reproduction for academic, not-for profit purposes permitted provided this
text is included.

Note: Most SVRC technical reports are available via anony-
mous ftp, from svrc.it.uq.edu.au in the directory
/pub/techreports . Abstracts and compressed postscript
files are available viahttp://svrc.it.uq.edu.au



Supporting Component-based Reuse in CARE

David Hemer and Peter Lindsay

Abstract

The increased reliance on software in critical applications sug-
gests a greater need for formal methods to be used in the de-
velopment of such software. A number of formal languages and
toolsets exist for developing formally specified and verified soft-
ware; however experience tells us that the development of for-
mally verified software, even with the current tool support, is an
expensive process.

By adopting a component-based development methodology,
whereby software is developed from reusable components, sig-
nificant savings can be made. In particular the amount of proof
— arguably the most expensive and difficult part of formal de-
velopment — can be greatly reduced by proving the correctness
of reusable components once, off-line, prior to their use.

Tools are required which support the user in adapting and re-
trieving components from libraries of formally specified compo-
nents. This paper describes extensions to the CARE toolset that
support adaptation and retrieval of reusable components.

1 Introduction

1.1 Composition-based reuse

The idea of constructing programs fromreusable software
componentswas introduced by McIlroy in 1969 [14]. The
idea is analogous to building a complex electronic device
from a number of smaller, simpler, well-known compo-
nents in an electronic engineering context. The engineer
browses a catalogue of component descriptions for suit-
able components which can be pieced together in some
manner to build their device. To build their device it may
be necessary to modify the catalogue components in some
way.

To support component-based reuse, methods and tools
must be available that assist the user in adapting and re-
trieving components. Theadaptability of a component
is a measure of how easy it is to modify a component to

solve a particular problem.Retrievabilityis a measure of
how easy it is for the user to find a suitable component
amongst a library of components. This becomes partic-
ularly important once the library of reusable components
becomes quite large.

Much of the reuse literature describes informal ap-
proaches to the retrieval and adaptation problem [2, 9],
but this is an area where formal approaches have a lot to
offer. In theory, formal component specifications should
provide an ideal basis for tool support, particularly for pa-
rameter matching and instantiation [21]. The KIDS tool is
a good example of reuse of correctness-preserving trans-
formations to solve difficult logistics problems [17].

In practice however there has been little reported
reuse of more general formally developed components.
This paper reports on a toolset developed in an indus-
try/university collaboration to develop high-integrity soft-
ware from reusable components.

1.2 Supporting software reuse inCARE

The CARE language and toolset was designed to be used
by industrial software engineers to build software for
safety critical applications [5, 13]. To help facilitate this a
library of reusabletemplateswas created, which brought
a number of benefits to the overall approach [12]. Firstly
the fact that they could be proven off-line by a verifica-
tion expert reduced the amount of formal proof required
by the user. Secondly, templates could encapsulate com-
monly used target code structures, so that the user need
not write any target code. Thirdly, the overall develop-
ment time could be reduced by providing commonly used
algorithms and data refinements.

Using CARE in a trial with industrial software engi-
neers, and on case studies, revealed a number of prob-
lems. It was difficult to locate applicable templates in the
library, and once found, difficult to find the right way of

1



applying the template to the problem. The user often had
to adapt their program to suit available templates rather
than the other way around.

Enhancing CARE with the ideas presented in this paper
has gone a long way towards addressing these problems.
Firstly, templates in CARE have been made more flexi-
ble by including more adaptation techniques (originally
only parameter instantiation and identifier renaming were
implemented) and building these into the tool. As a re-
sult of this, templates could be applied to a wider variety
of problems. The adaptations are all correctness preserv-
ing, meaning that pre-proven templates are still semanti-
cally correct after adaptation (provided certain applicabil-
ity conditions are correct).

To assist the user in finding suitable templates, are-
trieval tool has been built, based on a variety of match-
ing algorithms. The retrieval tool is configurable to user’s
needs: users may opt between the precision of the search
or its efficiency. The retrieval tool also makes use of the
semantics of CARE components, and as a result can con-
duct more “intelligent” searches of the library.

Another advantage of the overall approach is that
matching and adaptation have been integrated. This
means that when the retrieval tool returns a match be-
tween the search query and a template, the appropriate
adaptation of the template is also returned. This allevi-
ates the need for the user to perform adaptations, reducing
the risk of an incorrect adaptation being performed, which
may not be detected until much later in the development.

1.3 Overview of the paper

In Section 2 we give an overview of the CARE language,
methodology and toolset. Sections 3 and 4 describe the
extensions made to CARE to support reuse. Section 3 de-
scribes a tool used for adapting CARE components. Sec-
tion 4 describes a retrieval tool built on top of a generic
search engine. An example, illustrating the use of the
CARE toolset, and in particular the adaptation and re-
trieval tools, is given in Section 5. Section 6 discusses
related work, while conclusions appear in Section 7.

2 CARE

CARE (which stands forComputer Assisted Refinement
Engineering) is a language, toolset and methodology for
developing formally verified software. The language and
toolset are described briefly in Sections 2.1 and 2.2 re-
spectively. For more details and examples the reader is
referred to [5, 13].

2.1 Language and concepts

The CARE language is partitioned into three separate lev-
els of constructs - expressions, units and modules. The
main features, as found in many formal languages, of each
of these separate levels of constructs are listed below.

expressions: include variables, sets, functions, relations,
quantifiers and (higher-order) parameters;

units: include operations, data types, definitions and the-
orems. Units can be parameterised (over both formal
and textual parameters). Units have separate speci-
fication and implementation parts, meaning that im-
plementation details can be hidden. Units can be im-
plemented either using target code structures, or by
calling other units (in particular data and algorithm
refinements are supported).

modules: collections of related units can be encapsu-
lated in a singletemplatewhich implements an algo-
rithm, data refinement, theories, or provides access
to “primitive” components.

2.1.1 Expressions

The mathematical language used in CARE is a form of
higher-order logic, with parameters ranging over func-
tions, relations and sets. The mathematical language is
extensible, with the user being able to declare new func-
tions, relations and sets, as well as introducing assertions
about the constructs. There is some predefined theory,
based on the Z Mathematical Toolkit [18].

2.1.2 Units

The next level of components in CARE areunits, which
include types, fragments, operator declarations and asser-

2



tions. Types correspond to data structures; fragments cor-
respond roughly to functions and procedures in a proce-
dural programming language; and assertions correspond
to definitions, lemmas and proof obligations.

Each unit has its own formal specification, which may
include constraints on how it can be used. Units are clas-
sified as eitherprimitiveor higher-level. In essence, prim-
itive units are those whose proof of correctness is outside
the scope of CARE, while higher-level units have associ-
ated proof obligations. More specifically:

Primitive units are supplied as part of the library, and
are not typically written by the ordinary user. Primi-
tive types and fragments are implemented directly in
the target programming language and provide access
to target language data structures and basic func-
tionality. (B uses a similar approach [10].) The
CARE specification of such a component describes
the mathematical properties that may be assumed for
the component.

Higher-level units are constructed from other units
within the CARE framework. Higher-level types
and fragments express data refinements and algo-
rithm designs respectively, and are implemented in
the CARE language. CARE tools generate proof obli-
gations which show that the unit’s implementation is
correct with respect to its specification.

2.1.3 Types

The specification of a CARE type is an expression denot-
ing the set of mathematical values that objects of the type
can take. The example given in Fig. 1 contains specifica-
tions of CARE types. The first line declares the CARE type
Index , which is modelled mathematically as the set of
natural numbers. The second line declares the typeEl-
ement which corresponds to some given typeE . The
third line declares the typeList which corresponds to a
sequence of natural numbers.

Primitive types are implemented by some target lan-
guage data structure. A higher-level type (therefined type)
is implemented in terms of one or more other types (the
correspondingconcrete types) by data refinement.

Index ==N.
Element == E .
List == seqN.

Figure 1: CARE type specifications

cons(e:Element,s:List)
output r:List such thatr = append(e, s).

car(s:List)
pre: s 6= 〈 〉
output e:Element such thate = head s.

Figure 2: Simple fragment specifications

2.1.4 Fragments

There are two kinds of fragments:simpleandbranching.
For brevity we omit descriptions of the latter, except to
say that branching fragments are a generalisation of sim-
ple fragments that allow different types of results to be
returned depending on the input.

Simple fragments correspond roughly to functions in a
procedural programming language; they take inputs and
return outputs. Fig. 2 shows specifications for the simple
fragmentscons and car for manipulating lists, using
LISP-like naming conventions.

The implementation of primitive fragments and higher-
level fragments differ. Primitive fragments are imple-
mented by giving code segments in the target language.
The exact nature of the code segments in primitive frag-
ments is dependent on the target language, as well as the
code synthesis tools. The current prototype in CARE uses
low level C as the target language.

Higher-level fragments are implemented in terms of
calls to other fragments. The CARE implementation lan-
guage supports the following simple design algorithm
constructs: assignment of values to local variables, frag-
ment calls, sequencing, branching of control, and data re-
finement transformations.

The body of a higher-level fragment is tree-structured.
Non-branching nodes of the tree correspond to bindings
to local variables of the values returned by simple frag-
ment calls or variables. Branching nodes correspond to

3



calls to branching fragments, labelled by the correspond-
ing reports; where branches return values, these values
are bound to local variables. Local variables are newly
created at the point of assignment, meaning that they are
similar to bound variables in quantified expressions. The
leaves of the tree define the fragment’s output values.

Recursive calls and mutual recursion are allowed, pro-
vided the recursion eventually terminates. To establish
termination, the CARE user supplies a well-founded vari-
ant function (orvariant for short) whose value decreases
on recursive calls and is bounded below.

2.1.5 Modules

The module-like structures used in CARE are referred to
astemplates. Templates are parameterised collections of
units (fragments, types, assertions etc.) and unit specifi-
cations (cf. package headers in Ada), which collectively
implement an algorithm, data refinement, or theory, or
provide access to primitive components. Templates are
typically proven off-line by a proof expert; as part of the
proof process, applicability conditions on the parameters
are generated which provide sufficient conditions to guar-
antee a template’s correctness.

For example Fig. 3 contains a data refinement of sets
in terms of (possibly repeating) lists. For this particu-
lar refinement, the set is represented by the range of the
list. For example〈a, b, a, a, c〉 and〈c, a, b〉 both repre-
sent the set{a, b, c}. Note that no invariant is given for
this data refinement; in particular repetitions are allowed
in the list. The template contains the fragmentabOp1
used for implementing binary operations on sets, and the
fragmentabOp2 for performing operations on a set and
an element. These set manipulating fragments are all pa-
rameterised, so they can be adapted to solve a number of
problems. The command “decompose” maps an abstract
value to its concrete counterpart, while “compose” maps
in the other direction.

2.2 Tool architecture

Fig. 4 shows the architecture of the CARE toolset, includ-
ing the extensions to the toolsets — the retrieval tool and
the template adaptor tool — shown in shaded boxes. The
template adaptor tool, described in Section 3, extends a
previous tool, the template instantiator tool, by including

Parameters:
E ,P1 : FE × FE ,Q1 : FE × FE × FE ,
P2 : FE × E ,Q2 : FE × FE × E .

Elem == E .

Set == FE
= value s is refined by l:List

with refinement relations = ranl .

List == seqE .

abOp1(s:Set,t:Set)
pre: P1(s, t)
output r:Set such thatQ1(r , s, t)

= decompose s into sc:List;
decompose t into tc:List;
assign conOp1(sc,tc) to rc:List;
compose rc into r:Set; return r.

conOp1(s:List,t:List)
pre: P1(rans, rant)
output r:List such thatQ1(ranr , rans, rant)

abOp2(s:Set,e:Elem)
pre: P2(s, e)
output r:Set such thatQ2(r , s, e)

= decompose s into sc:List;
assign conOp2(sc,e) to rc:List;
compose rc into r:Set; return r.

conOp2(s:List,e:Elem)
pre: P2(rans, e)
output r:List such thatQ2(ranr , rans, e)

Figure 3: Sets refined by repeating lists

4



Figure 4: Architecture of the CARE toolset

additional adaptation techniques. Theretrieval tool, de-
scribed in Section 4, is a new tool. The remainder of the
tool and data stores in the diagram are described briefly
below. For more details the reader is referred to a paper
describing the CARE toolset [5].

Script: The development and verification of a CARE pro-
gram is driven from a script supplied by the soft-
ware engineer. A script may include declarations of
fragments, types and theories, as well as commands
for retrieving and instantiating templates from the li-
brary, generating proof obligations, and invoking one
of the theorem provers on a given proof obligation.

Worksheet: The current state of the CARE program un-
der development is stored and displayed on a “work-
sheet”. The worksheet displays the fragments, types
and theories that have either been written by the soft-
ware engineer or gathered from the library, together
with all the proof obligations that have been gener-
ated. Each component of the worksheet has an asso-
ciatedstatuswhich indicates the component’s stand-
ing in the overall development. The worksheet itself
is considered complete and correct if and only if all
its fragments and types are implemented and all as-
sociated proof obligations have been generated and
discharged. Note that worksheets are not directly ed-
itable by the software engineer: information can only

be added to the worksheet or modified via the script.

Library: The library consists of a collection of pre-
proven design templates.

Script interpreter: The script interpreter parses the in-
dividual script commands and passes annotated frag-
ments, types and theories to the worksheet manager
as abstract syntax trees.

Proof obligation generator: Proof obligations are gen-
erated purely mechanically from the CARE compo-
nents and simplified using basic properties of equal-
ity, propositional calculus and quantifiers.

Worksheet manager: The worksheet manager controls
what goes on the worksheet, where it is placed on
the worksheet and with what status. It takes its in-
put from the script interpreter and from the theorem
provers, and updates the worksheet accordingly. The
worksheet manager is responsible for reporting vari-
ous errors back to the user via the script interpreter,
for example if the user tries to overwrite an already
existing implementation.

Code synthesiser:The code synthesiser tool takes a
complete collection of fragments and types and con-
structs a C source-code program.

3 Adaptation tool

The adaptation tool applies an adaptation (from the script)
to a library template, returning a set of units. The adapta-
tion tool consists of a number of techniques which are cat-
egorised over the three levels of CARE constructs. Table 1
shows the three levels of constructs in CARE and the adap-
tation techniques applied at each level. These techniques
are described separately for each level of constructs be-
low.

The template adaptor tool is an extension of thetem-
plate instantiatortool from the toolset described in [5].
The first two techniques described (parameter instantia-
tion and renaming) had already been developed.

A large part of the design and development of templates
in CARE is establishing the correctness of the implemen-
tation against the specification (e.g. see [12] for a proof of
correctness for the accumulator template). It is therefore

5



Component Level Adaptation Techniques

Expression Parameter instantiation
Unit Identifier renaming

Variable renaming
Argument reordering

Module Subsetting

Table 1: Component adaptation techniques partitioned
into three levels

important that any techniques for adapting components in
CARE becorrectness preserving. Correctness of adapta-
tions is discussed at each structural level below.

3.1 Expressions

For expressions, the main technique is instantiation of for-
mal parameters. Occurrences of parameters within an ex-
pression are substituted by other expressions.

Expressions areinstantiatedby replacing occurrences
of parameters by other non-parametric expressions. To
describe how parameters in an expression are to be re-
placed, aformal parameter instantiationis given. The
instantiation is essentially a finite partial mapping from
parameters to expressions such that:

• function parameters are mapped to terms,

• set parameters are mapped to sets,

• relation parameters are mapped to formulae.

The mappings are finite because there are only ever
finitely many parameters to instantiate. The mappings are
partial indicating that not all parameters need to be instan-
tiated.

In some instances, to show correctness of the param-
eterised component constraints must be placed on the
range of values that the parameters can take. These con-
straints are referred to asapplicability conditions. To
show that correctness is preserved, the instantiated appli-
cability conditions become proof obligations, that must be
discharged by the user.

3.2 Units

For units, the techniques described are renaming of tex-
tual parameters, renaming of unit arguments and reorder-

ing of unit I/O arguments.
Identifiers can be renamed to achieve meaningful nam-

ing within the user’s application domain. To ensure that
the correctness of the program is preserved, units must
be renamed at the point of definition as well as anywhere
that the unit is referenced. Also the identifiers must be
renamed to new identifiers which do not already appear
within the scope of the renaming.

The number and types of input and outputs for a frag-
ment are described by a variable declaration. The names
of these declared variables can be changed without chang-
ing the overall meaning of the fragment, provided the
changes are done in a consistent manner throughout the
unit. Clashes with other local variables are avoided by
doing a preprocess renaming of bound variables prior to
applying the renaming of I/O arguments.

Another technique is reordering the arguments of frag-
ments. This is more complicated than renaming in that not
only must the variables be reordered at the point where
they are introduced, but also wherever the fragment is
called. This means that the reordering must be applied
to any other fragment which calls the fragment in ques-
tion. Reordering of the I/O arguments of a fragment is
correctness preserving provided the arguments of any call
to this fragment are similarly reordered.

3.3 Modules

3.3.1 Subsetting

A template consists of a set of formally specified units,
some of which may provide optional functionality. There-
fore it is often desirable to include subsets of a template.
We refer to the adaptation technique where a subset of a
template is returned assubsetting. The user nominates
a subset of units from the template. The adaptation tool
calculates the closure of this subset; it is the smallestself-
containedset of units containing all of the user nominated
units. By self-contained we mean that any unit referenced
in the set is also included in the set (or at least the specifi-
cation of the unit).

A template is correct in CARE if each of the units used
in the template is at least specified within the template,
and each of the non-primitive implemented units is correct
with respect to its specification. Therefore the correctness
of a template subset follows from the correctness of the

6



entire template, provided that the subset is self-contained.

3.3.2 Parametric polymorphism

Because correctness of primitive units (i.e. those imple-
mented directly by target code constructs) is outside of
the scope of CARE, adaptations to target code must be
very conservative. Parametric polymorphism is achieved
at the code level in a correctness preserving manner by
linking the target code data structure with an identifier in
the specification. The target code is adapted by giving an
identifier renaming.

4 Retrieval tool

4.1 Architecture

The front-end to the CARE retrieval tool sits on top of a
generic search engine. The generic search engine is based
on a number of algorithms for matching components, de-
composed into the three levels of CARE components. The
generic search engine is designed in such a way that it
can be adapted for a variety of applications. The front-
end retrieval tool is the knowledge-based part of the tool,
in this case using knowledge of the CARE semantics to
build more powerful and flexible searching capabilities.

4.2 Generic search engine

The search engine combines a number of algorithms for
matching the different components in CARE. The algo-
rithms are described briefly below for the different levels
of components in CARE.

Each matching algorithm takes a component (thepat-
tern) and a searchquery(encapsulating the user’s require-
ments), and returns the set of matches. Matches are repre-
sented as adaptations of the pattern that satisfy the search
query in some manner.

4.2.1 Expression matching

At the expression level two algorithms have been imple-
mented — alpha-equivalence matching and AC-matching.
For alpha-equivalence matching, a queryq matches a pat-
tern p if there is some instantiation of the parameters in

p such that the adaptedp is the same asq up to renam-
ing of bound variables. AC-matching [11] is a weakening
of alpha-equivalence, where the arguments of AC (asso-
ciative commutative) operators can be reordered. Both of
these algorithms have been extended to handle two-way
matching (i.e. where both the query and pattern include
parameters). For more details the reader is referred to [3].

4.2.2 Unit matching

Matching of units is based onstructural equivalence; for
example (simple) fragments are matched by matching
corresponding inputs, outputs, preconditions and postcon-
ditions. Only units of the same type will match, e.g. a
type will never match a simple fragment, a simple frag-
ment will never match a branching fragment. The query
is a unit specification, the pattern may include an imple-
mentation (the implementation part is not used in match-
ing however). A queryq matches a patternp if there is an
adaptation of the pattern which is structurally equivalent
to the query (see [6] for more details). Note that the unit
matching algorithms inherit the expression matching al-
gorithms for matching individual expressions such as pre-
and postconditions.

4.2.3 Module matching

The search query for module matching consists of a set
of unit queries, the pattern is a template. Matching in-
volves matching individual units from the query against
units in the template (using the unit matching algorithms).
Four different strategies have been implemented: ALL-
match in which all query units are matched against tem-
plate units; SOME-match where at least one query unit
must match against a unit(s) from the template; ONE-
match where exactly one query unit matches a unit from
the template; and HYBRID-match which is a generalisa-
tion of the first three strategies. For more details the reader
is referred to [4].

4.2.4 Combining the algorithms

These algorithms are combined to form thesearch engine.
The search engine is configurable, making it suitable for a
number of different applications. The inputs and outputs

7



of the search engine are fairly rudimentary, making it rel-
atively easy to build pre- and post-processing application
specific tools.

The main inputs of the search engine are thesearch
query, consisting of the specifications of one or more de-
sired units, and a library of pre-proven design templates.
A number of other inputs are available including:

interaction level: the user selects one of the interaction
levels indicating how much interaction the user has
with the search engine. At the lowest level, the
search is fully automated, with the searching process
completed before any results are outputted. At the
highest level of interaction the user is consulted after
each match is found and given the option of halting
the search process (when a suitable match is found),
or continue searching. Other interaction levels con-
sult the user after all matches for a particular tem-
plate have been compiled; or a guidance mode where
matches are outputted as they a found, but where the
user does not have the option of halting the process.

type-constrained matching: the user can elect to turn on
a type-checker which will eliminate matches that in-
troduce type clashes.

expression-level equivalence:the user selects from
alpha-equivalence or AC-equivalence for matching
at the expression level.

strategy: the user selects one of the template matching
strategies; i.e. all, some, one of hybrid.

The options give the user the choice between precision of
the search, and the efficiency of the search. For example
turning on type-constrained matching will generally result
in a more accurate set of results, but will also slow down
the search considerably.

The search engine returns a set of template adaptations
corresponding to the set of matches. Note that for a given
template there may be multiple matches; these are re-
turned as separate adaptations — some of which may be
more useful than others.

4.3 Front-end retrieval tool

The front-end retrieval tool communicates with the search
engine. It is responsible for: collecting search information

converting it into a form suitable for the search engine;
calling the search engine; and outputting the results of the
search. These tasks are described below.

4.3.1 Generating inputs

The first stage, driven by an interactive wizard-like GUI,
involves collecting search information from the user and
the worksheet. This search information includes:

• the names of the worksheet units to be used as basis
for building a search query;

• thematching methodsto be used for each of the nom-
inated worksheet units;

• and a search strategy.

The matching methods available to the user are:ex-
act matching, based on matching up to structural equiva-
lence;relaxed matching, which uses the semantics of sim-
ple fragments to build more intelligence into the search;
branching-alternatives matchingin which the semantics
of branching fragments are used to provide a more intel-
ligent search; andcontext matchingwhere implemented
worksheet components are used as a means of narrowing
the search space. Section 4.4 describes relaxed match-
ing in more detail; for more details on the other matching
methods the reader is referred to [7].

This search information is converted automatically by
the tool into a form suitable for the search engine. In this
stage a search query (consisting of a set of unit specifica-
tions), and a search strategy are created from the search
information.

The worksheet units nominated by the user form the
basis for the search query (i.e., the search is driven by
the current state of the program). For exact matching, the
worksheet unit is used directly in the query. For context
matching, the specification of the worksheet unit is used.
For relaxed matching, a new query, more general than
the worksheet unit, is created. For branching-alternatives
matching, a number of new queries are created, one for
each way of ordering the branches in the specification.
The search strategy supplied by the user is modified ac-
cordingly.

The next stage involves selecting search options and
calling the search engine. The search options are passed

8



to the search engine, together with the search query and
strategy generated in the previous stage.

4.3.2 Processing outputs

The final stage of the retrieval tool involves displaying
the results of the search to the user. Each result con-
sists of a template adaptation - representing a match be-
tween the search query - and the template. The result
may also contain other units (namely fragment implemen-
tations and applicability conditions), associated with unit
queries matched used for relaxed or branching alternatives
matching. Each result is displayed separately, with the
user able to step through the list of results.

4.4 Relaxed matching

Forrelaxed matchingthe semantics of the CARE language
are exploited to match a simple fragment from the work-
sheet. An alternative to searching for a simple fragment
with a specification equivalent to the worksheet unit, is to
search for a simple fragment that implements the work-
sheet fragment.

A simple fragmentq (from the worksheet) could be im-
plemented by a fragmentp (from a template), by calling
the fragmentp within the body of the fragmentq . Rather
than requiring that the specifications ofp andq are equiv-
alent (as is the case withexactmatching), in this case the
pre- and postconditions must satisfy the following rela-
tions:

q .precond ⇒ p.precond (1)

p.postcond ∧ q .precond ⇒ q .postcond (2)

These relations are derived from the well-formedness and
partial correctness conditions that must be satisfied in or-
der to prove that implementingq with a call top satisfies
the specification ofq .

Consider the simple fragment queryaddelem and the
specification of a simple fragment patternappend :

addelem(e:Elem,s:List)
pre: true
outputr:List such that ranr = rans ∪ {e}.

append(e:Elem,s:List)
pre: true

output r:List such thatr = 〈e〉a s.

The pre-conditions for both the query and pattern
are trivial (true). The post-condition foraddelem is
ranr = rans ∪ {e}, the post-condition forappend is
r = append(e, s). The post-conditions are not logically
equivalent, and therefore do not match using exact match-
ing.

However observe that replacingq andp by addelem
andappend respectively in (1) and (2) we get

true ⇒ true (3)

r = 〈e〉a s ∧ true ⇒ ranr = rans ∪ {e} (4)

Both of these conditions are clearly satisfiable, therefore
append is a candidate for implementingaddelem , us-
ing relaxed matching.

Now consider the processing that is performed by the
retrieval tool to achieve such a match using relaxed match-
ing. Suppose the user nominates relaxed matching for the
specified-only worksheet unitaddelem . Rather than us-
ing addelem as part of the search query, the tool creates
a new fragment specification that will implementad-
delem . This new unit query is created by replacing the
pre- and post-conditions inaddelem by parameterised
formulae:

addelem1(e:Elem,s:List)
pre: P(e, s)
outputr:List such thatQ(r , e, s).

Also generated are the following proof obligations that
ensure that the matched library fragment provides a cor-
rect implementation foraddelem .

true ⇒ P(e, s) (5)

r = 〈e〉a s ∧ P(e, s) ⇒ ranr = rans ∪ {e} (6)

Now suppose a search is conducted, and a match is
found between the search query containingaddelem1
and a template that includesappend . Such a match
would require the parametersP andQ in addelem to
be instantiated as:

P(e, s) ; true,Q(r , e, s) ; r = 〈e〉a s

Applying these instantiations to the proof obligations (5)
and (6) results in the conditions (3) and (4), which we
have already observed are satisfiable.

9



Matches are displayed to the user in terms of the tem-
plate adaptations that result in the match. The instan-
tiated proof obligations are also included, as well as an
implementation of the original worksheet unitaddelem
in terms of the newly created unitaddelem1 . Suppos-
ing the user selects such a match, then the following units
are added to the worksheet, together with the instantiated
proof obligations (3) and (4).

addelem(e:Elem,s:List)
pre: true
outputr:List such that ranr = rans ∪ {e}

= addelem1(e,s).

addelem1(e:Elem,s:List)
pre: true

outputr:List such thatr = 〈e〉a s.

5 Example

This section illustrates the use of the CARE toolset for de-
veloping a simple program. In particular the example il-
lustrates the use of the adaptation and retrieval tools. The
example program inserts a word in a dictionary. The dic-
tionary will be represented by a set of words, which in
turn will be represented by a list which may contain rep-
etitions of words. This list can in turn be implemented
directly in target code using the linked list template from
the library.

5.1 Formal specification

Suppose the user wishes to insert a word into a dictio-
nary, they begin by giving the initial specification shown
in Fig. 5.

5.2 First refinement step

The first refinement step involves implementing the work-
sheet unitsDictionary and insert . The following
subsections describe the individual steps performed by the
user and tools: creating the input to the search engine;
calling the search engine; viewing the results and updat-
ing the worksheet.

Dictionary == FWord .

Word == Word .

insert(w:Word,d:Dictionary)
outputr:Dictionary

such thatr = {w} ∪ d .

Figure 5: Initial design for inserting a word

5.2.1 Creating the search input

Firstly the search information is constructed using the cur-
rent contents of the worksheet. Suppose the user con-
structs the search information as follows:

(a) The user chooses the worksheet file containing their
program to be the active file.

(b) The user nominates theexactmatching method.

(c) The user selects all of the worksheet units, to be used
in constructing the search query.

(d) The user selects the ALL-match strategy.

The overall search strategy selected by the user is in a
sense a default strategy, i.e., doing exact matching on all
specified-only units. It may be that the user tries this first,
and if it fails then tries other strategies.

The next step involves converting the search informa-
tion into a form suitable for the search engine. From the
fact that exact matching is done on all current worksheet
units, the search query consists of the specifications of
the unitsWord, Dictionary andinsert . The search
strategy to be used is the ALL-match strategy.

5.2.2 Calling the search engine

The user now calls the search engine selecting the inter-
active search mode. The output from the search engine
in interactive mode is shown in Fig 6. Suppose that upon
finding a match with the “sets as repeating lists” template
(see Fig. 3 on page 4), the user terminates the search.

For this match the query fragmentinsert matches
the fragmentabOp2 from the template, while the query
typesDictionary andWord match the template types

10



Dictionary == FWord
= value s is refined by l:List

with refinement relations = ranl .

List == seqWord

insert(w:Word,d:Dictionary)
= decomposed into sc:List;

assigninsertList(sc,w) to rc:List;
composerc into r:Dictionary; returnr.

insertList(s:List,e:Word)
outputr:List such that ranr = {e} ∪ (rans)

Figure 7: Worksheet additions first step

Set andElem respectively. The formal parametersP2
andQ2 from the template are instantiated as follows:

E ; Word
Q2(a, b, c) ; c = {b} ∪ a
P2(a, b) ; true

To match the template fragmentabOp2 against the
query fragmentinsert , the variables ofabOp2 are re-
named with the mapping{s 7→ d , e 7→ w} and the input
variables are swapped.

5.2.3 Updating the worksheet

After viewing the match results, the user can take the
template adaptation and add it to the script. In this case
the template adaptation, described above, for adapting the
sets as repeating lists template, is added to the script.

The template adaptation is processed by the script edi-
tor. As a result, there are a number of additions and mod-
ifications to the worksheet, given in Fig. 7. In particular
the typeDictionary and the fragmentinsert are im-
plemented. Also the specifications for the typeList and
fragmentinsertList are added to the worksheet.

5.3 Second refinement step

The second refinement step involves implementingin-
sertList . Firstly the input to the search engine is
generated using input from the user and the worksheet.

List == seqWord
= << target code elided.>>

insertList(s:List,e:Word)
= assigninsertList1(s,e) to r:List;

reporte and returnr

insertList1(s:List,e:Word)
output r:List such thatr = append(e, s)

= << target code elided.>>

Proof obligation
∀ r , s : seqWord ; e : Word •
r = append(e, s)⇒ ranr = {e} ∪ rans

Figure 9: Implementing insert list for repeating lists

Initially the user might choose to do exact matching on
the unitsWord, List andinsertList . However, af-
ter failing to find any suitable matches, the user instead
elects to do relaxed matching oninsertList . The user
also selects the ALL-match strategy. The compilation of
search information is shown in Fig. 8.

Since relaxed matching is used forinsertList , a
new fragmentinsertList1 , is created by replacing the
pre- and post-conditions ofinsertList with parame-
terised formulae (as described in Section 4). This newly
created fragment is used in the search query.

One of the matches returned by the search tools is with
thelinked list template, a template that implements
primitives for manipulating linked lists. Suppose the user
adds the adaptation of the linked lists template to the
script, which is subsequently processed by the script in-
terpreter. As a result the unitinsertList is imple-
mented, and a new elementinsertList1 is added to
the worksheet. Furthermore an applicability condition,
associated with relaxed matching of the worksheet unit
insertList is added to the worksheet as a proof obli-
gation (see Fig. 9). This proof obligation can be easily
proven from basic laws associated with sequences.

Fig 10(a) shows the script for the session, while
Fig 10(b) shows the resulting worksheet.

11



Figure 6: Searching the library

12



(a) Select worksheet file (b) Choose search methods

(c) Nominate exact query components (d) Nominate weaker-pre query components

(e) Select search combination (f) Final query

Figure 8: Creating the search information

13



(a) Script (b) Worksheet

Figure 10: Development of dictionary insertion

14



5.4 Completing the development

The development is completed by providing an appropri-
ate implementation forWord. Such a template is not yet
available in the library, but it might be possible to either
implement it directly by some target code primitive, or by
some refinement in terms of a list of characters. Once a
suitable implementation ofWord is found, the proof obli-
gations can be discharged and target code generated.

6 Related work

Instantiating formal parameters is a commonly used adap-
tation technique. Identifier renaming can be thought of
as a similar technique to parameter instantiation, however
identifiers can only be instantiated to other identifiers. Re-
ordering of the arguments of units is quite different, and to
the best of the author’s knowledge has not appeared in any
of the reuse literature. Similarly, while module subset-
ting is discussed in the context of component matching by
Zaremski and Wing [21], it does not appear in the frame-
work of adaptation; consequently the issue of ensuring the
subset is self-contained is not raised. Finally the idea of
adapting components by changing underlying target-code
data structures is similar to Volpano and Kieburtz’s [19]
approach, however the approach described in this paper is
more general and could be extended to include other kinds
of target code adaptation.

The implementation of matching up to AC-equivalence
was inspired by an algorithm proposed by Lincoln and
Christian [11]. Type-constrained matching is based on
type-checking, a technique commonly used to check type
consistencies for formal languages.

A number of approaches to matching units with struc-
tured functional specifications exist, includingsigna-
ture matching[16, 15, 20] andspecification matching
[8, 21]. Zaremski and Wing [21] describe a variety of
equivalences for functional specifications, includingex-
act pre/post match(similar to structural equivalence),
guarded plug-in(similar to relaxed matching),guarded
post etc. Such techniques could easily be incorporated
into the front-end tool in a similar manner to relaxed
matching.

Zaremski and Wing [21] describe an approach to mod-
ule matching, however the approach described here is

more general. Firstly, the approach described here allows
for a more general unit adaptation framework (beyond just
parameter instantiation). Secondly the scope of the kind
of units which can appear in modules is extended beyond
functions. Thirdly, the Zaremski and Wing approach is
restricted to the ALL-match strategy.

The techniques and tools described in this paper could
be adapted and applied to other formal languages that sup-
port reusable components. KIDS [17] supports design
tactics that can be adapted by instantiating formal param-
eters. The Sum language [1] supports modules which can
parameterised over types and scalar values. Similarly the
B language [10] support abstract machines which can also
be parameterised over types and scalar values. In each
case the scope of adaptations could be extended to in-
clude techniques similar to those presented in this paper.
It would also be possible to build retrieval tools with an
architecture similar to the one described here.

7 Conclusions

This paper reports on extensions to the CARE toolset for
supporting adaptation and retrieval of reusable compo-
nents. The techniques and algorithms for adaptation and
matching are decomposed into three separate tiers. This
has the benefit that additional techniques can be devel-
oped at a particular level with minimal changes required
to the remaining tool. This decomposition also leads to
a highly configurable search engine that can be config-
ured by selecting suitable techniques at each level. The
retrieval tool represents one such instance of this config-
urable search engine, designed to satisfy the requirements
of the CARE methodology.

References

[1] A. Bloesch, E. Kazmierczak, P. Kearney, and
O. Traynor. A methodology and system for for-
mal software development.International Journal of
Software Engineering and Knowledge Engineering,
5(4):599–617, December 1995.

[2] Alan W. Brown, editor.Component-Based Software
Engineering. IEEE Computer Society, Carnegie

15



Mellon University, Software Engineering Institute,
1996.

[3] D. Hemer. An algorithm for pattern-matching math-
ematical expressions. In L. Groves and S. Reeves,
editors,Proceedings of Formal Methods Pacific’97,
Discrete Mathematics and Theoretical Computer
Science, pages 103–123. Springer Verlag, July 1997.

[4] D. Hemer and P. Lindsay. Specification-based re-
trieval strategies for module reuse. In D. Grant and
L. Stirling, editors,Proc. of Australian Software En-
gineering Conference (ASWEC’2001), pages 235–
243. IEEE Computer Society, August 2001.

[5] D. Hemer and P.A. Lindsay. The CARE toolset for
developing verified programs from formal specifica-
tions. In O. Frieder and J. Wigglesworth, editors,
Proceeding of the Fourth International Symposium
on Assessment of Software Tools, pages 24–35. IEEE
Computer Society Press, May 1996.

[6] D. Hemer and P.A. Lindsay. Reuse of verified design
templates. In J. Fitzgerald, C. Jones, and P. Lucas,
editors,Formal Methods Europe ’97, number 1313
in Lecture Notes in Computer Science, pages 495–
514. Springer, September 1997.

[7] David Hemer. A Unified Approach to Adapting
and Retrieving Formally Specified Components for
Reuse. PhD thesis, School of Computer Science and
Electrical Engineering, April 2000.

[8] J-J. Jeng and B.H.C Cheng. Specification matching
for software reuse: A foundation. InProc. of ACM
Symposium on Software Reuse, pages 97–105, April
1995.

[9] C.W. Krueger. Software reuse.ACM Computing
Surveys, 24(2):131–183, June 1992.

[10] K. Lano. The B Language and Method: A Guide
to Practical Formal Development. FACIT Series.
Springer-Verlag, 1996.

[11] P. Lincoln and J. Christian. Adventures in
associative-commutative unification. In Claude
Kirchner, editor,Unification, pages 393–416. Aca-
demic Press, 1990.

[12] P.A. Lindsay and D. Hemer. A template-based ap-
proach to construction of verified software. Tech-
nical Report 96-23, Software Verification Research
Centre, 1996.

[13] P.A. Lindsay and D. Hemer. Using CARE to con-
struct verified software. In M.G. Hinchey and S. Liu,
editors,Proc. 1st Int Conf on Formal Eng Methods
(ICFEM’97), pages 122–131. IEEE Computer Soci-
ety Press, November 1997. SVRC TR 97-40.

[14] M.D. McIlroy. Mass produced software compo-
nents. Software Engineering Concepts and Tech-
niques, pages 88–98, 1969.

[15] M. Rittri. Using types as search keys in function
libraries. In Proceedings of the Fourth Interna-
tional Conference on Functional Programming and
Computer Architecture, pages 174–183. ACM Press,
1989.

[16] C. Runciman and I. Toyn. Retrieving re-usable soft-
ware components by polymorphic type. InPro-
ceedings of the Fourth International Conference on
Functional Programming and Computer Architec-
ture, pages 166–173. ACM Press, 1989.

[17] D.R. Smith. KIDS: A semiautomatic program de-
velopment system.IEEE Transactions on Software
Engineering, 16(9):1024–1043, September 1990.

[18] J.M. Spivey. The Z Notation: a Reference Manual.
Prentice-Hall, New York, 1989.

[19] D.M. Volpano and R.B. Kieburtz. The templates ap-
proach to software reuse. In T.J. Biggerstaff and
A.J.Perlis, editors,Software Reusability, volume 1,
chapter 9, pages 247–255. Addison-Wesley, 1989.

[20] A.M. Zaremski and J.M. Wing. Signature match-
ing: a tool for using software libraries.ACM Trans-
actions on Software Engineering and Methodology,
4(2):146–170, April 1995.

[21] A.M. Zaremski and J.M. Wing. Specification match-
ing of software components. InThird ACM SIG-
SOFT Symposium on the Foundations of Software
Engineering, 1996.

16


