
SOFTWARE VERIFICATION RESEARCH CENTRE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072

Australia

TECHNICAL REPORT

No. 02-07

A Tool for Subsystem Configuration
Management

Hagen Völzer Brenton Atchison
Peter Lindsay Anthony MacDonald

Paul Strooper

March 18, 2002

Phone: +61 7 3365 1003

Fax: +61 7 3365 1533

http://svrc.it.uq.edu.au



Note: Most SVRC technical reports are available via
anonymous ftp, from ���������
	��
������������������� in the directory��� ��� � ��� ��!���� � " ����� . Abstracts and compressed postscript files
are available from !���� ��#$��� ���������%	&�
�������������'���(�



A Tool for Subsystem Configuration Management

Hagen Völzer � Brenton Atchison† Peter Lindsay � Anthony MacDonald‡

Paul Strooper‡

Abstract

This paper describes a tool that manages a hierarchical,
“is a subsystem of”-structure on a set of software devel-
opment artefacts and that provides configuration manage-
ment (CM) for subsystems by interacting with an existing
CM tool. The tool is based on a recently proposed frame-
work for subsystem-based configuration management. The
tool demonstrates the feasibility of the framework and de-
velops it further. The design of the framework and the tool
was developed in collaboration with Invensys SCADA De-
velopment and it is discussed in relation to their current
software development process.

1 Introduction

1.1 Overview

Configuration Management (CM) [2, 7, 19, 21] is a key dis-
cipline for development and maintenance of large software
systems. CM is concerned with controlling and record-
ing the evolution of all software development artefacts, not
just source-code control. Existing CM tools and method-
ologies are limited in the support they provide for configu-
ration and change management of hierarchically structured
systems.

This paper describes a tool – the SubCM Tool – which
supports subsystem-based CM. By subsystems we mean
logically coherent collections of software development
artefacts, including code, documentation and test sets.
Subsystems can contain other subsystems, and artefacts
can be shared between different subsystems. The approach
is generic and designed to be used on top of standard CM

�
Software Verification Research Centre, The University of

Queensland, Brisbane, Qld 4072, Australia. email: {voelzer,
pal}@svrc.uq.edu.au

†Invensys SCADA development, PO Box 4009, Eight Mile Plains,
Qld 4113, Australia. email: brenton.atchison@invensys.com

‡School of Information Technology and Electrical Engineering, The
University of Queensland, Brisbane, Qld 4072, Australia. email: {anti,
pstroop}@itee.uq.edu.au

tools for managing basic artefacts, while enabling CM for
subsystems.

The approach characterises system configurations by
showing which versions of which components and subsys-
tems make up a configuration. It improves the visibility of
system changes, by revealing how individual subsystems
have changed. We claim that the tool will aid in coordi-
nation of changes across different developers and different
teams, and that it will facilitate system-integrity checking
and product-upgrade planning, amongst other things.

This paper describes the rationale behind the SubCM
Tool and describes a prototype together with examples of
its potential use.

1.2 Motivation and background

Our framework and tool were developed in collaboration
with the Invensys SCADA Development group, who builds
Supervisory Control and Data Acquisition systems. The
software of these systems consists of a considerable num-
ber of communication protocols, calculation functions and
control interfaces. Invensys SCADA Development cur-
rently employs a range of software configuration manage-
ment tools and processes. The framework and tool de-
scribed in this paper were designed to support these pro-
cesses and improve their productivity and effectiveness.
We believe the framework and tool would be useful in any
organisation that has to deal with developments involv-
ing complex configurations. Typically this means devel-
opments with multiple product families, where each prod-
uct has a configuration consisting of large numbers of arte-
facts under individual version control, together with cross-
artefact relationships such as traceability matrices. Differ-
ent product families share components, and the one arte-
fact may be used in different versions of different prod-
ucts. Many artefacts exist in variants for different hard-
ware and/or tailored for different customers. This situ-
ation becomes even more complex over time: as prod-
ucts evolve and more customers are supported, it is nec-
essary to support versions of products using old versions
of components. Because different customers have differ-

3



ent requirements, many different configurations may need
to be supported. It is assumed that a Configuration Control
Board, or some equivalent, oversees change management
and a software build process is in place which integrates
source code changes from multiple developers. A mature
source code and file repository is typically used, such as
Telelogic’s Continuus Configuration Management (CCM)1

methodology and toolset [18].
In such environments, CM is most evident at two levels:

– at the level where items such as code files, documents
and test sets are under CM. Such items will be called
atomic Configuration Items (CIs) in what follows; and

– at the level of products (whole systems) released to
customers.

Subsystem CM introduces the potential for intermediate
levels of CM. Candidates for subsystem CM include: very
coarse-grained items such as product families and their ma-
jor components; medium-grained components such as the
modules implementing particular communications proto-
cols; and smaller, shared components such as a code li-
brary for particular calculation functions. Fig. 1 shows the
relationship of subsystems with products and atomic CIs.

subsystem 
version

subsystem 
version

product 
version

product 
version

subsystem 
version

subsystem 
version

subsystem 
version

subsystem 
version

atomic 
CI

atomic 
CI

atomic 
CI

atomic 
CI

. . .

. . .

. . .

. . .
existing 

repository

Fig. 1: Hierarchically structured configuration items

The following issues need to be taken into account in
designing an approach to subsystem CM:

– The atomic CIs that make up a subsystem are possibly
physically distributed across different CM reposito-
ries, and different CM practices may apply to differ-
ent types of artefact (e.g. software development and
system testing may be performed by different teams).
Some CIs may not be held in a CM repository at all.

1Continuus Configuration Management is now called Telelogic CMSyn-
ergy.

– Existing repositories are often rigid in structure and
expensive to change. Their structure has typically
developed over time and may be so ingrained in the
company’s practices that major restructuring is too
costly to consider. As the examples above show,
however, subsystems overlap and different kinds of
subsystems are quite different in the way they are
composed and viewed. The structure of subsystems
should thus not be restricted to those imposed by the
repository.

– A major investment, in time and money, has probably
already been made in implementing a CM system for
atomic CIs. Existing CM tools [6, 14, 15, 18] often
allow aggregation of artefacts into “projects”, which
can be treated as subsystems. However, these tools do
not support full versioning of aggregates, nor track-
ing of their change histories. Moreover, aggregation
tends to be supported only along the lines of the file
structure of the CM repository.

1.3 Approach

To overcome these problems we developed a general
framework for subsystem-based CM that extends the ca-
pabilities of existing CM approaches [11]. The framework
addresses the following issues:

– Characterisation: What is, and what is contained in,
a given version of a subsystem? Conversely, which
subsystem versions (if any) contain a given object.

– Change Descriptions: In what ways has a subsystem
(and its components) changed between versions, and
how are the differences recorded?

– Change Tracking: What caused a change to a sub-
system, and how was the change carried out and
checked?

The framework is described in more detail in Section 2 be-
low.

The SubCM Tool has been developed to support con-
figuration and change management within the framework,
with minimal change to CM practices for atomic CIs. This
paper describes how the tool will be integrated into soft-
ware development, maintenance, and verification and vali-
dation (V&V) processes.

1.4 Related work

The problem of handling Configuration Items (CIs) at ar-
bitrary levels of granularity has been recognised for some
time [1, 21]. As noted above, however, existing CM

4



tools provide little or no support for subsystem CM. Pre-
vious Software Verification Research Centre research ex-
plored management of fine-grained development artefacts
and links between them [12, 16], but stopped short of con-
sidering hierarchical structures. The emergence of HTML
and the world-wide web has increased the impetus for re-
search into change management of highly interlinked arte-
facts [8], but full CM solutions are not yet available.

Lin and Reiss [10] describe an object-oriented approach
to CM, whereby source-code functions and classes are put
under version control. Their paper includes a discussion of
version control issues for hierarchical systems, but does not
provide a solution. Their prototype POEM system is built
on top of an object-oriented database system, whereas our
approach is independent of the underlying database tech-
nology. Christensen [3] describes an approach to configu-
ration and version control of software artefacts with struc-
tural and dependency links. Conradi and Westfechtel [5]
summarise existing version models for software config-
uration models that, while recognising problems associ-
ated with hierarchical systems, focus on new methods of
object-based versioning. This work is based on the ear-
lier work of Conradi [4] on EPOS (Expert System for Pro-
gram and System Development), a software engineering
environment (SEE) with emphasis on process modelling,
software CM and support for cooperative work.

Configuration and change management of hierarchical
structures is a less developed field. There is a growing body
of research into adding version/revision control mecha-
nisms to SEEs [4, 9, 13, 17, 20]. The main difference is
that our framework is designed to be largely independent of
the SEE and instead works on top of existing CM toolsets,
with minimal change to underlying CM practices.

1.5 This paper

The paper is structured as follows. Section 2 describes a
general framework for subsystem-based CM. Section 3 de-
scribes the SubCM Tool and Section 4 illustrates how the
tool will be integrated into development practices.

2 The framework

This section presents the main ideas of the framework that
was introduced in [11]. A subsystem is a logically coherent
collection of software development artefacts such as spec-
ification documents, design documents, source code, bina-
ries, user documents, build and testing resources, build and
test reports, requirements tracing documents, and release
notes. As noted in Section 1, subsystems occur at many
levels of granularity.

The framework supports the following three capabili-
ties:

1. characterisation of the subsystem configuration, via
Subsystem Configuration Specifications (SCSs),

2. characterisation of the change between two consecu-
tive versions of a subsystem, via change descriptions,
and

3. tracking of what caused a change and how the change
was carried out and checked.

These are explained in more detail below.

2.1 Subsystem configuration specifications

Name: DNP
Version: 3
Description: DNP protocol for Remote Terminal Unit

Constituents Version Type Location

Core 1 subsystem –
Master 3 subsystem –
Slave 2 subsystem –
Makefile.mak 1 makefile SrcCode

Fig. 2: SCS for a subsystem with three sub-subsystems

A Subsystem Configuration Specification (SCS) states
which versions of which objects make up a particular ver-
sion of a subsystem: see Fig. 2 for an example. An SCS
consists of a subsystem identifier, which contains a name
and a version number, a textual summary of the subsys-
tem (a description of what makes the collection logically
coherent), and a set of constituents. A constituent is a ref-
erence to another subsystem or an atomic CI. Atomic CI is
our term for a configuration item that is managed by exter-
nal tools, such as source-code files and documents. Atomic
CIs are identified by a name, a version number, and a lo-
cation such as a database identifier. Finally, a type, such as
“subsystem”, “user doc”, “source code”, is associated with
each constituent.

We assume that the being-a-constituent-of relation on
subsystems forms a directed acyclic graph: i.e., a subsys-
tem can be a constituent of several other subsystems, but
we rule out circular dependencies (cf. Fig. 1). The DNP
protocol subsystem in Fig. 2, for example, is a constituent
of many products at Invensys SCADA Development.

2.2 Change descriptions

Fig. 3 shows a change description for the DNP protocol. A
change description for two consecutive versions of a given

5



Name: DNP
Current version: 3
Parent version: 2
Summary of changes: DNP changed in this version as a conse-
quence of changes to the Master and Slave subsystems. Master
underwent trivial changes, however Slave changed significantly
(see Slave change description for details).

Item Change
type

Description

Core none
Master modified Supporting documentation was

updated.
Slave modified New functionality added and ex-

isting design modified to improve
future maintainability.

Makefile.mak none

Fig. 3: Change description for version 3 of DNP

subsystem consists of the identifiers for both versions, a
textual description of the change, and a set of change items.
A change item describes a change of a particular con-
stituent. It consists of a constituent identifier, a change
type, which describes how the constituent has changed,
and a textual description of the change. The framework
considers the change types none (the constituent has not
changed), added (the constituent was added between the
old and the new version), deleted (the constituent was
deleted from the old configuration), modified (some con-
tent of the constituent has changed and the constituent ap-
pears in a different version in the new subsystem version),
and merged (the constituent was derived by merging the
former version with a parallel version). Fig. 3 shows that a
change description provides an abstract description of how
the subsystem has changed between two versions. More
detail can be obtained by looking into the change descrip-
tions of the constituents.

We also consider change descriptions for two non-
consecutive versions on a linear version history. For exam-
ple, a change description for version 5 with respect to ver-
sion 3 can be derived by aggregating the change descrip-
tions for version 5 with respect to version 4 and the change
description for version 4 with respect to version 3. Cur-
rently, we aggregate change descriptions by concatenat-
ing their textual summaries as well as their lists of change
items where redundant “none”-entries are deleted. This of-
fers maximal information. Various concepts to suppress
and reveal detail on demand can be implemented on top of
this.

2.3 Change tracking

The third aspect of the framework concerns change track-
ing: i.e., recording of the reasons that a change was made
and explanation of how and by whom it was carried out.
Because organisations differ widely in how they do this,
it is more difficult to offer generic support for this part of
the framework than the preceding parts. The mechanism
used here is very simple however: we associate with each
change item a reference to how the change was made.

We assume two levels of change management: change
requests and tasks (see Fig. 4). A change request is cre-
ated when a bug is reported or the Configuration Control
Board decides to add functionality or otherwise improve a
product. A change request is then broken down into tasks
and each task is assigned to a developer. To enact a task,
the developer checks out atomic CIs, modifies them, and
then checks them back into CCM. (Depending on the na-
ture of the object and the nature of the task, the developer
may need to perform other activities to complete the task,
such as having the change reviewed and tested.) We use
the term atomic change for the resulting modification to an
atomic CI. Each atomic change belongs to one task.

Change 
Request

 Task Task Task

atomic 
change

atomic 
change

atomic 
change

atomic 
change

atomic 
change

atomic 
change

Fig. 4: Types of change

The framework in [11] also associates with each change
item a reference to two documents that record change re-
quests and changes: a system incident report (SIR) and a
program amendment description (PAD). A SIR describes
what caused a change, such as the detection of a defect, a
demand for improvement, or the need to adapt to a changed
environment. A PAD describes the stepwise resolution of
the incident that caused the change. Each SIR and each
PAD is usually associated with several changes of artefacts,
possibly across different subsystems. For the purposes of
this paper, however, it is sufficient to simply record the task
associated with a change item, since the task description in
CCM contains references to associated SIRs and PADs.

6



Fig. 5: A configuration view

3 The tool

The SubCM Tool is intended to support subsystem CM by
implementing and specializing the framework from Sec-
tion 2. The tool maintains, for each subsystem release, the
SCS and the change description. Both can be viewed and
navigated in the two main views of the tool: the SCS is
displayed in the configuration view and the change descrip-
tion is displayed in the change view. These are described
in more detail below, and use of the tool is discussed in
Section 4.

The SubCM Tool prototype is implemented in Python
with use of the graphical toolkit wxPython. It connects to
CCM via CCM’s command-line interface.

3.1 The configuration view

Fig. 5 shows a configuration view for version 7 of product
RTU50. A configuration view has three subwindows. The
left window shows a tree that represents the substructure
of the opened subsystem RTU50. For each subsystem, the
corresponding node in the tree displays the name and the
version of the subsystem. The tree can be browsed like a
filesystem tree and the two other windows show informa-
tion with respect to the subsystem version that is selected in
the tree, which is version 3 of DNP in Fig. 5. The right up-
per window shows the textual summary and the right lower
window the constituents of the selected subsystem. The at-
tributes of a constituent have been described in Section 2.1.
The additional attribute instance is used by CCM to distin-
guish between different objects with the same name.

The list of constituents can be sorted by name, type or
location. We distinguish three types of constituent loca-
tions: ccm (the constituent is stored in a CCM database),
scm (the constituent is a subsystem and therefore stored by
the SubCM Tool), and other (the constituent is stored else-

where).
The status bar of the configuration view shows the cur-

rent state of the selected SCS. We distinguish two states:
unreleased and released. While it is being modified, the
SCS is said to be unreleased. A released SCS cannot
change anymore.

There are two more navigation functions:

– Each atomic CI can be accessed directly from the con-
figuration view, i.e., the tool launches the appropriate
viewer.

– For each constituent of the selected SCS, a list of
all subsystems that use this constituent can be pro-
duced and from that list a subsystem can be selected,
which will then be opened in a new configuration
view. Many configuration views can be open at a time.

3.2 The change view

Fig. 6 shows a change view for version 4 of the subsystem
DNP. The upper field shows the linear history2 of version 4.
It can be used to select two particular versions for compar-
ison (e.g. versions 2 and 3 in Fig. 6). The corresponding
change description for the selected versions appears below,
with the textual summary in the middle field and the list of
change items in the lower field.

For convenience, the change view records more infor-
mation about change items than the change descriptions
of Section 2.2. Type, instance and location information is
added from the SCS, as well as a reference to the task that
is associated with that change (see Section 2.3).

The list of change items can be sorted by name, change
type, item type, or task. Initially, the change items are

2For the current version of the tool, each subsystem version is assumed
to have a linear history, i.e., the tool does not currently deal with
merges of different versions of a subsystem into a new version.

7



Fig. 6: A change view

listed in the order that the changes were introduced, in-
dicated by the first column of the list. Other sorting is es-
pecially useful when viewing aggregated change descrip-
tions, which can be lengthy: sorting by name, for example,
collects all changes with respect to a particular constituent.

The change view also supports navigation. After selec-
tion of a change item that refers to a subsystem, a change
view for this subsystem can be opened in a new window,
which shows the change of this subsystem in more detail.
Upon selection of a change item that refers to an ascii file
(e.g. source code), a new window shows the output of the
UNIX-diff function applied to the old and the new version
of the file. Another function searches for all subsystems
that include the selected change item, which helps in veri-
fication and validation (see Section 4.4).

For reporting purposes, the SCS and the change descrip-
tion can be printed out from the configuration view and the
change view, respectively.

4 Tool use

We now illustrate how we expect the tool would be used
at various points in the lifecycle of a subsystem. This in-
cludes

1. setting up an initial SCS,

2. updating an SCS after a new subsystem build,

3. updating an SCS and change description after a prod-
uct release,

4. using the tool for release integrity checks, and

5. using the tool for product support and product man-
agement.

4.1 Setting up an initial SCS

When a subsystem configuration is defined for the first
time, a root version SCS needs to be set up. (Root ver-
sions do not have parent versions, so there is no associ-
ated change description.) The creation of an SCS can be
initiated from the configuration view. The name and the
summary of the subsystem has to be supplied by the user.
Constituents can be inserted in three ways depending on
their location. Atomic CIs stored in CCM can be speci-
fied by name and the tool then presents a list of match-
ing object versions, from which the user selects one. Sub-
subsystems can similarly be specified by name and the tool
then presents a list of versions of the subsystem stored in
the SubCM Tool, from which the user selects one. Finally,
a constituent can be specified fully manually in case of con-
stituents that are not stored in CCM or the SubCM Tool.

Often, the majority of atomic CIs of a particular subsys-
tem are stored in CCM under one directory. The SubCM
Tool facilitates automation of the setup process by allowing
the user to specify the directory, and the tool then inserts
all objects under that directory automatically into the SCS;
this can be extended recursively to sub-directories as well.

A draft SCS can be saved, and can be edited later by
adding, deleting, or modifying constituents. When the root
version SCS is complete it gets checked in to prevent fur-
ther modification. Upon check-in, the SCS changes state
from unreleased to released.

8



4.2 Updating the SCS after a new build

The constituents of a particular subsystem continuously
change in the course of development and maintenance ac-
tivities. These changes affect the compiled executable of a
product when a new build is performed, which is done at
regular intervals. The build process is performed by decid-
ing which atomic changes (represented by completed tasks
from CCM) will be incorporated into the new product ver-
sion. This results in the reconfiguration of the product and
its subsystems. The incorporated changes will already have
been tested to some extent.

A completed task is included in the new configuration
if the responsible team leader has reviewed and accepted
the task and a test build has succeeded. The change should
then be documented by updating the SCS and the change
description. This process is now described in detail.

The SCS can be updated only if it is in the unre-
leased state. A released SCS can be checked out using
the tool, which results in a new, unreleased SCS. Multi-
ple check-outs from the same SCS result in parallel ver-
sions: i.e. variants. For example, the first check-out from
version 5 creates version 6 and the second check-out from
version 5 creates version 5.1.1 (according to CCM’s num-
bering scheme), a variant of version 6. A corresponding
change description is created for each new SCS, which is
initialized with the “null” change (with change type none)
for each constituent of the subsystem.

A subsystem configuration can be changed manually or
automatically. Operations for adding, deleting and modi-
fying (changing the version of) constituents can be invoked
from the change menu of the configuration view. To invoke
the delete and modify operations, the user first selects the
desired constituent. In the add and modify operations, the
new object version has to be specified. If that new object
resides in a database then the user can name the database
and the object, and the tool will then query the database
and return a list of available object versions, from which
the user can select one; the SCS and the change descrip-
tion will be updated automatically (the description and task
field must be updated manually). If the object does not re-
side in the SubCM Tool or one of the CCM databases to
which it interfaces, the version information and location
must be updated manually.

The user can also invoke an automatic update of a con-
figuration, whereupon the SubCM Tool queries CCM for
all atomic changes that have been included in the latest
build, and compares them with the constituents of the cur-
rent configuration. If an object has changed then the tool
updates the object’s version number in the SCS, and adds
a corresponding modify change item to the change descrip-
tion. This can be done recursively for all sub-subsystems
as well.

4.3 Updating the SCS in a product release

If a product is to be released then first the build procedure
in Section 4.2 is followed, which results in an update of
the SCS. Various V&V procedures assure the complete-
ness and integrity of the release. Section 4.4 describes how
the tool is used for release integrity checks. If the product
is ready for release then the executable and the release note
should be added to the SCS. This is a good time for com-
pleting the textual descriptions of the configuration and of
the changes, but this can also be done after release.

Finally, the release will be authorized and delivered,
which is when the SCS should be checked in to prevent
further modification of the configuration of the SCS.

4.4 Release integrity checks

An important purpose of configuration management is to
ensure the integrity of a product release, i.e., that all arte-
facts in the configuration are consistent with the changes
intended for the release. Integrity checks may be applied
for individual change requests to ensure that changes have
been reviewed and tested, and that all associated tasks are
incorporated into the product release. In addition, checks
should be performed to ensure that functional specifica-
tions, user manuals and test specifications have been up-
dated in accordance with the details recorded in the change
request. The SubCM tool can assist with such audit tasks
by allowing easy browsing of modified artefacts and com-
parison of changes.

The SubCM Tool can also assist with integrity checks
between subsystems. A common example is the check
for consistency after modification of a subsystem interface.
Such a modification affects several dependent subsytems
and may therefore be implemented by different teams. The
SubCM Tool may be used to coordinate the modification
by sharing interface items between the dependent subsys-
tems. Any change to these shared items would be flagged
as a change in each of the dependent subsystems, thereby
identifying areas for review and test activities to verify
that the changes have been integrated into all the systems
that share the interface. Another inter-subsystem integrity
check arises where code is replicated between subsystems,
for example where two variants of a function are used in
different products. In this instance, a change to one of the
items should be applied consistently to all related items.
The SubCM Tool can assist this activity by enabling cre-
ation of a subsystem consisting of all the related items, so
that if one of the items changes, the reviewer can check that
all of the related items have been changed accordingly.

Finally, the SubCM Tool provides additional confidence
that the content and characterisation of a release is correct.
It can assist production of the release note that describes

9



the public artefacts of the revised product and changes that
have occurred since the previous release.

4.5 Product support and product
management

The SubCM tool can also be used in product support and
product management. For example, it can assist planning
of an upgrade path for customers wishing to correct re-
ported system faults if those faults have already been cor-
rected. In such situations, the tool allows the changes be-
tween existing and upgrade releases to be easily charac-
terised to ensure that functionality is not lost in the upgrade
or, conversely, that no undesired functionality is included.

The data maintained by the SubCM Tool can also be
used to collect measures of changes for each product re-
lease, including frequency, scope, and effort of document
and source code changes. This data can be used to:

– predict the effort required on future releases and tasks,

– determine the extent of changes, that is: do change
requests and tasks affect a small set of co-located ob-
jects or a large, distributed set of objects?

– identify a reasonable focus of verification efforts,
namely where subsystems have changed frequently;
frequent changes to a part of the code may also indi-
cate that a reengineering of that part would be useful,
and

– profile source code stability to determine priorities for
regression testing.

5 Conclusion

This paper introduces a framework and tool for configura-
tion and change management of a hierarchical, “is a sub-
system of”-structure on a set of software development arte-
facts. The design of the framework and tool was devel-
oped in collaboration with Invensys SCADA Development
as a means of supporting existing CM tools and processes.
Plans for integrating the tool into their current software de-
velopment process have been discussed.

By providing tool support for CM of subsystems of ar-
bitrary granularity, the following benefits are anticipated
for an organisation:

– The effectiveness of the Configuration Control Board
will be enhanced because of the improved visibility of
changes at different levels of granularity. The SubCM
Tool will also enhance coordination of changes across
different developers and different development teams.

– It will be easier to develop and maintain product vari-
ants and new product families. Product artefacts can
be more easily managed across multiple CM reposi-
tories or even multiple CM tools.

– The system build process can be further decentralised
by assigning responsibility for different subsystems to
different individuals.

– Testing effort can be more focussed by simplifying the
change impact assessment as well as the integration of
changes across multiple products.

– V&V processes will be improved by automating
checks that sets of changes have been implemented
completely and consistently across subsystems.

– The tool will aid in planning for upgrades of product
releases by simplifying the comparison of previous re-
leases with the current baseline.

In further work, we will integrate a change-tracking
tool such as Telelogic’s ChangeSynergy into our approach.
ChangeSynergy is a web-based tool that maintains change
requests and their relationship to tasks by connecting to
CCM. This integration will facilitate automation of release
integrity checks and product support functionality.

Acknowledgements We gratefully acknowledge the
constructive comments of Paul Ellis, Alena Griffiths, Mark
Staples, Jason McDonald, and Andrew Hanlon. This work
was supported by the Australian Research Council, project
“Automated support for verification and validation of con-
trol system software”, grant No. C49937058.

References

[1] P.E. Bennett. Small modules as configuration items
in certified safety critical systems. In F. Redmill and
T. Anderson, editors, Proc 6th Safety Critical Systems
Symposium, pages 62–69, Birmingham, UK, 1998.
Springer Verlag.

[2] E.H. Bersoff, V.D. Henderson, and S.G. Siegel. Soft-
ware Configuration Management. Prentice Hall,
1980.

[3] H.B. Christensen. Experiences with architectural
software configuration management in Ragnarok. In
B. Magnusson, editor, Proc. 8th Software Configura-
tion Management Symposium, volume 1439 of LNCS,
pages 67–74. Springer Verlag, 1998.

10



[4] R. Conradi, M. Hagaseth, J. Larsen, M. Nguyen,
B. Munch, P. Westby, W. Zhu, M. Jaccheri, and
C. Liu. Object-oriented and cooperative process mod-
elling in EPOS. In A. Finkelstein, J. Kramer, and
B. Nuseibeh, editors, Software Process Modelling
and Technology, Advanced Software Development
Series, pages 9–32. Research Studies Press Ltd. (John
Wiley), 1994.

[5] R. Conradi and B. Westfechtel. Version models for
software configuration management. ACM Comput-
ing Surveys, 30(2):232–282, June 1998.

[6] CVS. Concurrent Version System. !���� ��#$��������� �
������! "�� ��� " ��� .

[7] Susan Dart. Concepts in configuration management
systems. In Proc 3rd Int Sw Config Mgmt Workshop,
pages 1–18, Trondheim, Norway, June 1991. IEEE.

[8] Susan Dart. Content change management: problems
for web systems. In Proc 9th Int System Config Mgmt
Symposium (SCM-9), pages 1–16, Toulouse, France,
Sept 1999. Springer Verlag.

[9] A. Gustavsson. Software Configuration Management
in an Integrated Environment. PhD thesis, Depart-
ment of Computer Science, Lund University, Swe-
den, 1990. Also available as Technical Report, LU-
CS-TR:90:52.

[10] Y-J. Lin and S.P. Reiss. Configuration management
with logical structures. In Proc. IEEE 18th Conf. on
Software Eng., pages 298–307. IEEE Press, 1996.

[11] P. Lindsay, A. MacDonald, M. Staples, and
P. Strooper. A framework for subsystem-based con-
figuration management. In D. Grant and L. Ster-
ling, editors, Proc. Aust. Software Eng. Conference
(ASWEC 2001), pages 275–284. IEEE Press, 2001.

[12] P.A. Lindsay, Y. Liu, and O. Traynor. A generic
model for fine-grained configuration manage-
ment including version control and traceabil-
ity. In Proc. Australian Software Engineer-
ing Conference (ASWEC’97), pages 27–36.
IEEE Press, 1997. See also SVRC TR 97-
45, http://svrc.it.uq.edu.au/Bibliography/svrc-
tr.html?97-45.

[13] B. Magnusson, U. Asklund, and S. Minör. Fine-
grained revision control for collaborative software
development. In Proc ACM SIGSOFT’93 Symp on
Foundations of Sw Eng, Los Angeles, California, Dec
1993. ACM.

[14] Microsoft. Visual SourceSafe. !���� ��#$����� �(�����
� 	���� " � "
	 �
�
� "�� � ����� 	 � .

[15] Rational. ClearCase. !����
��#$��������� ������� 	 " �������
� "�� .

[16] K.J. Ross and P.A. Lindsay. Maintaining con-
sistency under changes to formal specifications.
In Proc. 1st Int. Symp. of Formal Methods Eu-
rope (FME’93), LNCS 670, pages 558–577.
Springer Verlag, 1993. See also SVRC TR
93-3, http://svrc.it.uq.edu.au/Bibliography/svrc-
tr.html?93-03.

[17] S. Sachweh and W. Schäfer. Version management for
tightly integrated software engineering environments.
In Proc. 7th Int. Conf. on Software Eng Environments,
pages 21–31, The Netherlands, 1995. IEEE Press.

[18] Telelogic. Synergy toolset. !���� ��#$���
����� �
��������� " � 	����
� "�� �(� � " ������� � � ���
�����
�
� .

[19] U.K. Ministry of Defence. Configuration manage-
ment of defence material. Defence Standard 05-
57/Issue 4, July 2000. !����

�
#$�������
� ��� �������
� � " �'� ��� .

[20] B. Westfechtel. Revision control in an integrated soft-
ware development environment. ACM SIGSOFT Sw
Eng Notes, 17(7):96–105, 1989.

[21] D. Whitgift. Methods and Tools for Software Config-
uration Management. John Wiley and Sons, 1991.

11


