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Abstract

For large software developments projects, process modelling is an important technique for guid-
ing and monitoring the use of development tools. This paper explores the addition of “behavioural
properties” to process models as a mechanism for reasoning about the status of a software devel-
opment as it evolves. The process model is translated into VDM and standard VDM verification
techniques are applied to show, among other things, that the behavioural properties are maintained
by the process and that tools are invoked from the process model only when their preconditions
are satisfied. These ideas are illustrated on a small case study. The process model is implemented
in Merlin.

Keywords: process modelling, formal methods, VDM, configuration management

1 Introduction

The work reported in this paper has been motivated by the study of Software Configuration Man-
agement (SCM) requirements for systems supporting the use of Formal Methods. From the SCM
perspective, a formal software development can be regarded as a configuration of its low-level com-
ponents, such as specification components, proof obligations and formal proofs. The correctness and
completeness of the software development configuration can be defined via configuration consistency
checks [R1.93]. In a large software development, in which components are frequently undergoing
change, it can be difficult to maintain consistency across a whole configuration. Process support is
part of the solution: a process model guides and controls changes to the development.

Of the different approaches to software process modelling, we concentrate here on the state-transition
approach, in which development activities define transitions between various “states” of development
components [DG90, PSW92, PS92]. We propose an approach in which the state-transition process
model is annotated with “behavioural properties” which say how process states relate to properties
of the underlying development configuration. We discuss verification techniques for showing that a
process model satisfies its specified behavioural properties.

A small case study is used to illustrate the main points. The case study concerns the specification
development phase, in which a specification is formulated and its “correctness” and “completeness” are
verified by discharging proof obligations. Because of space limitations in this paper, the configuration
is considered at a coarse level of granularity, where the atomic configuration items are the specification
and the mathematical theory in which the proof obligations get discharged. We assume there are
tools available for editing and checking the specification and the theory, and for bringing the theory
into step with the specification (e.g. by modifying its axioms so that they reflect the definitions of
the evolving specification). We define a process model which controls invocation of these tools.

The process model is defined graphically using statecharts and then translated into VDM [Jon90,
VDM93]. The process model was implemented in Merlin [PSW92, PS92].
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2 A Software Development Scenario

2.1 The Case Study

The case study concerns one phase in a formal development using VDM — namely, discharging the
proof obligations associated with a formal specification. It is a cut-down version of a larger case study
in [R1L93] in which a VDM specification and its associated mathematical theory and proof obligations
are modelled as a configuration of formal entities. The verification criteria required by the VDM
methodology for these entities were defined as consistency checks on the configuration. In [RL93]
the definition of the structure of the configuration and the configuration consistency relationships
was described at a finer level of granularity. The techniques presented here apply equally well to the
finer-grained system model, but space limitations means the results can only be presented for the
coarser level.

The configuration consistency problem arises from the fact that the specification and the theory can
be edited independently, and thus may get out of step. We shall assume there are tools for checking
the syntactic correctness of the specification, for updating the theory to bring it back into step with
the specification, and for checking that all the proof obligations have been correctly discharged. We
have in mind a simplified and idealized version of the mural formal development support system
[JJLM91]. Let us also suppose that some of the tools have preconditions to their use: e.g. the theory
can be updated only if the specification is syntactically correct.

In Section 3 below we define a process model for controlling the invocation of tools. We show that
semantic information concerning the configuration can be deduced from the state of the process,
including (for certain states) the consistency and completeness of the configuration.

2.2 Configuration Structure

A development configuration is a representation of different software configuration items (SCls),
which are the components that fit together to describe the configured product. Each SCI is either
an atomic or a composile SCI. Atomic SCIs are the finest grained components represented within
a configuration. From an SCM perspective, an atomic SCI is a unified block of data: its internal
structure is not relevant to the SCM support. Composite SCIs, on the other hand, are defined as a
composition of subcomponent SCIs.

For the purposes of this case study, the development configuration is a composition of only two
subcomponents: namely a specification SCI and a theory SCI, both of which are atomic (see Figure 1).

DEVELOPMENT
Composite SCI
SPECIFICATION THEORY
Atomic SCI Atomic SCI

Figure 1: A VDM development configuration decomposed into atomic and composite SCIs

The specification of the structure of each SCI is called a configuration template. The collection of all
SCI templates for a development configuration is called a (configuration) system model. Each SCI
instance represented in a configuration conforms to a template described in the system model for the
development configuration.



In this paper we use VDM type definitions to specify the configuration templates of the system
model (see Figure 2). The template for an atomic SCI is a primitive (unanalysed) type, indicating
the overall specification has no knowledge of an atomic SCI’s internal structure. A configuration
template is described by a VDM data type. In this case, a DEVELOPMFENT is a simple composite
(record) type with two fields: one for the specification and one for the theory.

/ DEVELOPMENT :: spec: SPECIFICATION \
theory: THEORY

THEORY = .......

SPECIFICATION = .......

Figure 2: The system model which describes the structure of the SCIs.

2.3 Configuration Consistency Relationships

Configuration consistency is defined in terms of relationships between SCIs. There are two basic
kinds of configuration consistency relationships: derived relationships, which are defined in terms of
other relationships; and primitive (blackbox) relationships, which can be checked or established by
tools. In this paper both primitive and derived relationships are modelled in VDM as Boolean-valued
functions.

For the case study, let us assume there are four primitive configuration consistency relationships (see
Figure 3) !:

1. spec_checked(spec) which indicates that spec is syntactically and type correct;

2. axioms_substantiated(spec, theory) which indicates that the axioms of theory are only those
which can be derived from spec (cf. Appendix A);

3. obligations_stated(spec, theory) which indicates that all the proof obligations of spec are recorded
as conjectures or theorems within theory; and

4. theory_checked(spec) which indicates that all conjectures in theory have been proven.

4 N

spec_checked: SPECIFICATION — B

azioms-substantiated: SPECIFICATION x THEORY — B

obligations_stated: SPECIFICATION x THEORY — B

theory_checked: THEORY — B

- /

Figure 3: Primitive relationships between SCIs have black box definitions.

A derived relationship is_correct_development checks that the theory part of a development correctly
discharges the specification part (see Figure 4).

!See [RLY3] for formal definitions.



1s_correct _development : DEVELOPMENT — B

is_correct_development(dev) 2  spec_checked(dev.spec) A
azioms-substantiated(dev.spec, dev.theory) A
obligations_stated(dev.spec, dev.theory) A
theory_checked(dev.theory)

Figure 4: Derived relationships provide a complete description of a relationship between SCIs.

2.4 Development Tools

For the case study, let us suppose the following tools are available:

EDIT_SPEC, which allows the user to interactively edit the contents of the specification;
CHECK _SPFEC, which determines if the specification is syntax and type correct;
EDIT_THFORY , which allows the user to edit the theory contents, e.g. to edit a proof;
CHECK_THFEORY, which determines if all the conjectures in a theory have been proven; and

UPDATE, which brings the theory into step with the specification. The UPDATE tool has a pre-
condition that the specification passed as input must be syntax and type correct before the tool
can be invoked.

2.4.1 Tool Specifications

The effects of tools on SCIs will be defined via tool specifications consisting of a signature, a precon-
dition, and a postcondition.

A tool signature defines the name of the tool and describes the input and result parameters. The input
parameters may contain SCIs and/or user input. The results of a tool may represent either SCIs,
which, for instance, may be used to replace an SCI in the current configuration, or other information
which is passed on to the user interface or used for process control.

The precondition defines the necessary conditions which must exist before the tool can be invoked.
The precondition is defined as a predicate over the input parameters. If there is no explicit precon-
dition for a tool it has an implicit precondition of true: i.e. it is permissible to invoke the tool given
any input parameters that satisfy the parameter typing criteria.

The postcondition describes the outcome of the tool in terms of a predicate defined over the input and
result parameters. The execution of the tool, when the precondition has been satisfied, must provide
a result based on the input parameters which meets the postcondition. Note that the definition of
tools as described in this approach is purely functional: tools simply derive results from the input
parameters.

Figure 5 provides partial specifications for the tools used in the case study. For the purposes of SCM,
the pre- and postconditions describe how configuration consistency relationships are affected (only):
they are simply one part of the complete specification of the tool. For example, a more complete
specification of FDIT_SPEC would describe the relationship between the internal structure of spec,
changes and result.

The EFDIT_SPEC and EDIT_THEORY tools represent editing activities: they produce a new SCI
based on editing a given SCI with a set of changes passed from the user interface.

The CHECK _SPEC and CHECK_THFORY tools are checking tools whose result will be used to
determine flow of control in the process model. The specification says that CHECK _SPEC (spec)
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EDIT_SPEC (spec: SPECIFICATION , changes: A-SPECIFICATION)
result: SPECIFICATION

post true

CHECK _SPEC (spec: SPECIFICATION)
result: B

post result = spec_checked(spec)

EDIT_THEORY (theory: THEORY , changes: A-THEORY)
result: THEORY

post true

CHECK_THEORY (theory: THEORY')
result: B

post result = theory_checked(theory)

UPDATE (spec: SPECIFICATION , theory: THEORY')
result: THEORY

pre spec_checked(spec)

post azioms.-substantiated(spec, result) A obligations_stated(spec, result)

Figure 5: Tools used in the evolution of specifications and theories.




returns ‘true’ only if spec is syntax and type correct. CHECK_THFEORY (theory) returns ‘true’ only
if all conjectures within theory have been proven.

UPDATEF is a derivation tool which brings a theory into step with a specification. The current theory
is passed as input to UPDATE, so that as much previous work can be used as possible.? On completion
of the tool invocation, the specification and resulting theory satisfy the azioms_substantiated and
obligations_stated consistency relationships.

Most development tools fall into one of the three classes illustrated above: editing, derivation or
checking.

2.4.2 Tool Theorems

Tool theorems are assumptions that are made about the effect of tools, derived directly from tool spec-
ifications (see Figure 6). For example, the CHECK_SPEC-defn says that if CHECK_SPEC(s) returns
‘true’ then s is syntax and type correct. These theorems will be used in the verification in Section 5
below. Note that the tool specifications for the editing tools (EDIT_SPEC and EDIT_THEORY)

do not give rise to any interesting theorems.

s: SPECIFICATION
CHECK_SPEC(s) = spec_checked(s)

CHECK_SPEC-defn |

s: SPECIFICATION
t: THEORY

spec_checked(s)
-defn azioms_substantiated(s, UPDATE(s,1))A

obligations_stated(s, UPDATE(s, 1)

t: THEORY
CHECK_THEORY (t) = theory_checked(t)

| CHECK_THEORY-defn |

Figure 6: Theorems concerning the effects of development tools.

3 A Development Process

A process model will be used to manage the invocation of tools and to track the consistency of a
configuration. The process model associates status information with certain SCIs in the configura-
tion. Qur innovation is to add behavioural properties which are statements which formally express
relationships between the status of SCIs and properties of the configuration. In section 5 we introduce
techniques for verifying that the process model achieves its goals. In Appendix B the process model
in the following case study is implemented, with very little modification, in Merlin.

3.1 Process State

The process state is defined by annotating SCIs in the system model with status information. For
the case study we defined the process state to consist of a specification and a theory:

o The status of a specification is either CHECKED or UNCHECKED. Intuitively, a status of
CHECKED indicates that the specification has been syntax and type checked.

?mural falls short of this ideal, because although it generates axioms corresponding to the new specification, it does

not delete axioms corresponding to the old specification, and hence does not satisfy azioms-substantiated(spec, result).
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e The status of a theory is one of the following: Raw, RAw-CukD, IN_.STEP and COMPLETE.
Intuitively, a status of IN_STEP indicates that the theory is instep with the specification and a
status of COMPLETE in addition indicates that all conjectures have been proven.

In this paper the states of the process are described using a VDM state description (see Figure 7).

4 N

SPEC_STATUS = UNCHECKED | CHECKED
THEORY _STATUS = Raw | Raw-CHKD | IN_STEP | COMPLETE

state Process_State of
spec: SPECIFICATION
theory: THEORY
spec_status: SPEC _STATUS
theory_status: THEORY _STATUS

end

- /

Figure 7: The process state consists of both SCIs and corresponding statuses.

A simplified definition of the process state has been used here (Section 3.1) to simplify the exposition.
More generally, the process state can be extended to support multiple developments. See Section 6
for more details.

3.2 Process Model

The dynamic behaviour of the process will be described using a statechart-like approach. The basis
for the statechart approach is abstracted from the graphical development method for Merlin process
models [Jun94], based on earlier development of statecharts [Har87].
A statechart is provided to define the transition for each document status. In this case study there
is a statechart for both spec_status and theory_status (see Figure 8).

The main features of each statechart are nodes, transitions and initialisation. Nodes are represented
for each status value. For example, the spec_stalus statechart has two nodes representing its two
status values, CHECKED and UNCHECKED.

Transitions update status information as the development evolves. They are represented by a link
between statechart nodes. We have annotated transitions with numbered labels for later cross-
referencing. There are two types of transitions:

Tool activity transitions: which identify updates to the status information as a result of tool
invocations. These transitions are further divided into two types: unconditional and conditional.
Unconditional transitions have a single resulting status value, whereas conditional transitions
may result in one of two statuses depending on the outcome of the tool applied.

Unconditional transitions include an event/action pair, which respectively designate the cir-
cumstances under which the transition is activated and the operation on the SCIs that occurs.
For example, transition 5 in the spec_status statechart defines a transition that is enabled when
the do_spec_edit event occurs. This may be sent from the user, via a selection from a menu
for instance. The activation of the operation then assigns the spec component to the result of
applying the EDIT_SPEC tool on the current value of spec, with changes provided through
user input.

Conditional transitions are similar to unconditional transitions, with the addition of an im-
plicit intermediate node. From this intermediate node the transition branches according to the
result of the tool applied. For example, transition 7 of the spec_status statechart applies the
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spec_status:

do_spec_edit/ do_spec_edit/
spec := EDIT_SPEC(spec,USER_INPUT) spec = EDIT_SPEC(spec,USER_INPUT)

< not result > <result >

do_spec_check/
result := CHECK_SPEC(spec)

theory_status:
spec_status = unchecked @
do_theory_edit/ do_theory_edit/
theory := EDIT THEORY(theory, ) theory := EDIT_THEORY (theory,
USER_INPUT) K USER_INPUT) )

do_theory edit/
theory := EDIT THEORY(theory,
USER_INPUT)

®

spec_ status = unchecked

/ R

\\\\\x;\”@ﬂ(,_—/“‘ ¥ W

. spec_status = checked do_update/
: theory := UPDATE(spec, theory)

do_theqry_edit/
Key theory := EDIT_THEORY (theory, do_theory_check/
: — USER_INPUT) result :=
triggered transition @ @ CHECK_THEORY (theory)
tool activity transition spec_status = mmhe;qlggt_i; o compl ete < result> < not result >

Figure 8: Specification and theory process transition systems.




CHECK _SPEC tool on the spec component. If this tool succeeds (i.e. returns ‘true’) then the
transition updates spec_status to CHECKED; otherwise spec_status remains set to UNCHECKED.

Triggered transitions: which identify updates to status information that are applied automatically
whenever a predetermined (rigger condition is satisfied. In this paper triggered transitions are
indicated by a dashed line. The transition is labelled with the condition under which the
transition will occur.

Consider the triggered transition between COMPLETE and RAW in the theory_status state-
chart (tramsition 3). This transition will be applied automatically whenever theory_status =
COMPLETE and the condition spec_status = UNCHECKED is satisfied. The transition results in
the theory_status state being updated to RAwW. In this case study the transition will typically
occur each time the specification is edited when theory_status = COMPLETE because spec_stalus
will become UNCHECKED.

Initialisation defines the status of SCIs when the process first commences. This is identified by a
short arrow pointing to the appropriate node. For this case study, initial values of spec_status and
theory_status are UNCHECKED and RAW respectively.

3.3 Behavioural Properties

The process model describes how the development evolves as the result of applying development
tools and puts constraints on their use. The goal of the process is to construct a DEVELOPMENT
SCI which satisfies the is_correct_development relationship. We claim that this consistency require-
ment is reached whenever the process model reaches a state where spec_status = CHECKED and
theory_status = COMPLETE. This behavioural requirement can be formally described as a condi-
tion defined using information in the process state and configuration consistency relationships (see
Figure 9).

spec_status = CHECKED A theory_status = COMPLETE
= is_correci_development(mk-DEVELOPMENT (spec, theory))

Figure 9: General requirement of the process behaviour.

A more detailed observation of the behaviour of the process would indicate consistency relationships
for other states of the process, for example:

o spec_status is CHECKED only if spec is syntax and type correct;
o theory_status is COMPLETE only if all conjectures in theory have been proven; and

e theory isin step with spec if spec_status is CHECKED and theory_stalus is IN_STEP or COMPLETE.

These requirements have been collected together in the definition Has_OK _Statuses (see Figure 10).
Note that the general requirement (in Figure 9) is a logical consequence of these requirements.

We introduce a new keyword ‘behav’ to indicate behavioural properties of process models. The be-
havioural property records properties which are maintained by the process model. In section 5 below
we define proof obligations which ensure that these properties are maintained when the process model
is enacted.

The behavioural properties allow certain information about the dynamic behaviour of the process
to be deduced without having to re-analyse the whole model. For example, whenever spec_status is
CHECKED then spec is guaranteed to be syntax and type correct: there is no need to (re)invoke the
CHECK _SPEC tool before applying UPDATE. Configuration consistency relationships can thus be
monitored incrementally rather than having to be re-evaluated each time.

9



behav mk- Process_State(spec, theory, spec_status, theory_status) 2
Has_OK _Statuses(spec, theory, spec_status, theory_status)

Has_OK _Statuses(spec, theory, spec_status, theory_status) 2
spec_status = CHECKED A (theory_status = COMPLETE V
theory_status = IN_STEP)

= azioms-substantiated(spec, theory) A obligations_stated(spec, theory)
Aspec_status = CHECKED

= spec_checked(spec)
Atheory_status = COMPLETE

= theory_checked(theory)

- /

Figure 10: The behavioural property documents assumptions for various states of the process.

4 Translation into VDM

Most of the definitions presented in this paper have been provided in VDM, with exception of the
statecharts. By including the translation of the statecharts into VDM, a complete VDM specification
is provided. This section describes the translation of the statecharts.

The translation of statecharts provides two forms of definition: initialisation and operations. Deriva-

tion of the VDM initialisation condition (see Figure 11)is a relatively simple translation, and provides
a condition which is intuitive from the statechart.

init pm & pm.spec_status = UNCHECKED A pm.theory_status = RAW

Figure 11: A VDM initialisation condition is simply translated from the statecharts.

The translation of transitions into VDM operation definitions is more complex. Triggered transitions
are translated first. Triggered transitions are automatically invoked whenever the trigger condition is
satisfied. These conditions are represented as the preconditions of the corresponding VDM operation
definitions (see Figure 12).

In the statechart, triggered transitions take precedence over tool activity transitions: the latter can
only occur if no triggered transition can be invoked. Let us call a state in which no trigger condition
is satisfied a “stable state” (see Figure 13). We note in passing that the following theorem is a logical
consequence of the definition of a stable state:

spec_status: SPEC_STATUS,
theory_status: THEORY _STATUS
stable _state(spec_status, theory_status) =
(spec_status = UNCHECKED < theory_status = RAW)

stable_state-prop ‘

The translation of tool activity transitions into VDM operations is now straight-forward (see Fig-
ure 14). The precondition defines the statuses in which the transition is invoked, along with the stable
state requirement. The postcondition defines the effect of the corresponding tool invocation along
with status updates. Conditional transition postconditions are defined by an if-then-else constructor.

Translation from statecharts (as described in Section 3.2) into VDM is a mechanical procedure. Tool
support for this procedure would clearly be feasible.
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TRANS-1 TRANS-2
ext wr theory_status ext wr theory_status
rd spec_status rd spec_status
pre theory_status = RAW A pre theory_status = RAwW-CHKD A
spec_status = CHECKED spec_status = UNCHECKED
post theory_status = RAw-CHKD post theory_status = RAw
TRANS-3 TRANS-4
ext wr theory_status ext wr theory_status
rd spec_status rd spec_status
pre theory_status = COMPLETE A pre theory_status = IN_STEP A
spec_status = UNCHECKED spec_status = UNCHECKED
post theory_status = RAW post theory_status = RAwW

Figure 12: Triggered transitions are translated into VDM operations.

o

trigger_state : SPEC _STATUS x THEORY _STATUS — B

trigger_state(spec_status, theory_status) &
(theory_status = RAW A spec_status = CHECKED) V
(theory_status = RAW-CHKD A spec_status = UNCHECKED) V
(theory_status = COMPLETE A spec_status = UNCHECKED) V
(theory_status = IN_STEP A spec_status = UNCHECKED)

stable_state : SPEC _STATUS x THEORY _STATUS — B

stable_state(spec_status, theory_status) £ —trigger_state(spec_status, theory_status)

/

Figure 13: Trigger and stable state conditions are provided as VDM auxiliary functions.
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TRANS-5 (input: A-SPECIFICATION )
ext wr spec_status, spec
rd theory_status
pre spec_status = UNCHECKED A
stable _state(spec_status, theory_status)
post spec = EDIT _SPEC (spec, input)
A spec_status = UNCHECKED

TRANS-7

ext wr spec_status
rd spec, theory_status

pre spec_status = UNCHECKED A
stable _state(spec_status, theory_status)

post if CHECK _SPEC (spec)
then spec_status = CHECKED
else spec_status = UNCHECKED

TRANS-9 (input: A-THEORY)
ext wr theory_status, theory
rd spec_status

pre theory_status = RAw A
stable _state(spec_status, theory_status)

post theory = EDIT _THEORY (theory, input)
A theory_status = RAwW

TRANS-11 (input: A-THEORY)
ext wr theory_status, theory
rd spec_status

pre theory_status = IN_STEP A
stable _state(spec_status, theory_status)

post theory = EDIT_THEORY (theory, input)
A theory_status = RAW-CHKD

TRANS-13

ext wr theory_status, theory
rd spec_status, spec

TRANS-6 (input: A-SPECIFICATION)
ext wr spec_status, spec
rd theory_status
pre spec_status = CHECKED A
stable _state(spec_status, theory_status)
post spec = EDIT _SPEC (spec, input)
A spec_status = UNCHECKED

TRANS-8

ext wr theory_status
rd theory, spec_status

pre theory_status = IN_STEP A
stable _state(spec_status, theory_status)

post if CHECK _THEORY (theory)
then theory_status = COMPLETE
else theory_status = IN_STEP

TRANS-10 (input: A-THEORY)
ext wr theory_status, theory
rd spec_status

pre theory_status = RAW-CHKD A
stable _state(spec_status, theory_status)

post theory = EDIT_THEORY(theor_y, input)
A theory_status = RAW-CHKD

TRANS-12 (input: A-THEORY)
ext wr theory_status, theory
rd spec_status

pre theory_status = COMPLETE A
stable _state(spec_status, theory_status)

post theory = ED]T_THEORY(theor_y, input)
A theory_status = RAW-CHKD

pre theory_status = RAW-CHKD A
stable_state(spec_status, theory_status)

post theory = UPDATE (spec, theory)
A theory_status = IN_STEP

Figure 14: Tool activity transitions are translated into VDM operations.




5 Verification of Process Model

VDM provides facilities for formal verification [Jon90, BFL*94] which check, amongst other proper-
ties, the consistency of VDM specifications. By translating the process model into a VDM represen-
tation we show that such checks can provide valuable feedback to the process model designer.

The following identifies some of the checks that are carried out on the process model through formal
verification of the VDM representation:

1. Behavioural properties are maintained by the process;
2. Tool preconditions are satisfied each time a tool is invoked by the process; and

3. Tool activity transitions are invocable at some state representation.

In this section we give rigorous proofs of these properties. Appendix A gives a partial axiomatization
of VDM specifications with behavioural properties, together with corresponding proof obligations:
see [BFL194, LvK94] for more details.

5.1 Behaviour Maintained

This check indicates that behavioural properties are maintained through the dynamic behaviour of
the process. This is done by showing behavioural properties are true initially and are preserved by
all operations. See [LvK94] for a justification of this verification technique.

5.1.1 Maintained by Initialisation

The first part of the check is discharging that the initialisation satisfies the behavioural property.
This is indicated by the init-maint proof obligation:

| Process_State-init-maint |

Vpm: Process_State-
pm.spec_status = UNCHECKED A pm.theory_status = RAw
= Has_OK _Statuses(pm.spec, pm.theory,
pm.spec_status, pm.theory_status)

The proof of this property is quite simple as there are no assumptions for spec and theory when the
specification status and theory status is UNCHECKED and RAW respectively.

5.1.2 Maintained by Operations

The second phase of checking the behavioural property is maintained involves showing that the
property is preserved by all transitions. This is indicated by the 0P-maint proof obligation for every
operation definition OP. It involves proving that the postcondition implies the behavioural property
in the after state, assuming the behavioural property and the precondition hold in the before state.

For example, the transition in which UPDATF is invoked requires satisfying the following require-
ment:

PA—

mk-Process_State(spec, theory, spec_status, theory_status): Process_State,
Has_OK _Statuses(spec, theory, spec_status, theory_status),

: theory_status = RAW-CHKD A stable_state(spec_status, theory_status)
TRANS-13-maint | Vitheory: THEORY ,theory_status: THEORY _STATUS.

(theory = UPDATE (spec, theor_y) A theory_status = IN_STEP)
= Has_OK _Statuses(spec, theory, spec_status, theory_status)

13



To satisfy this proof obligation it is sufficient to show

Has_OK _Statuses(spec, UPDATE(spec, theo@) , spec_status, IN_STEP).

This in turn reduces to showing

azioms-substantiated(spec, UPDATE (spec, theor_y) A obligations_stated(spec, UPDATE( spec, theor_y))

when spec_status = CHECKED, and this in turn follows from the tool theorem UPDATE-defn.

5.2 Tool Preconditions Satisfied

This check determines whether preconditions to tools are satisfied when they are invoked by the
process. Here, tool preconditions should be interpreted in a broad sense as meaning the assumptions
that the user of that tool can make about the state of the configuration at the time the tool is
invoked. The check is achieved by verifying that the postcondition of the corresponding process
model operation(s) is a well-formed formula (i.e. the 0P-post-wff proof obligation).

For example, the corresponding proof obligation for TRANS-13 is:
mk-Process_State(spec, theor_y, spec_status, theory_status): Process_State,
mk-Process_State(spec, theory, spec_status, theory_status): Process_State,

Has_OK _Statuses(spec, theor_y, spec_status, theory_status),
Has_OK _Statuses(spec, theory, spec_status, theory_status),

theory_status = RAW-CHKD A stable_state(spec_status, theory_status)
(theory = UPDATE (spec, theory) A theory_status = IN_STEP): B

TRANS-13-post-wif \

In order to show the formula is well-formed we must show, amongst other requirements, that the
precondition to UPDATE(spec, theor_y) is satisfied, i.e. spec_checked(spec).
This follows from the hypothesis that

theory_status = RAW-CHKD A stable_state(spec_status, theory_status),
the theorem stable_state-prop above (which shows that spec_status = CHECKED), and that fact

that Has_OK _Statuses(spec, theory, CHECKED, theory_status) implies spec_checked(spec).

5.8 Transitions Invocable

This check determines that for any state in which a tool is invoked it must be possible for the process
to be stable in this state. If this check were not satisfied then there would be tool activity transitions
in the process model which can never be invoked.

This check is achieved through showing that the precondition for each tool activity transition is sat-
isfiable (OP-pre-satis). ® For example, for the transition which invokes UPDATE the requirement
is:

‘ TRANS-13-pre-satis ‘

dpm: Process_State - pm.theory_status = RAW-CHKDA
stable _state(pm.spec_status, pm.theory_status)

In other words, there is a stable state in which theory_status = RAw-CHKD. By the stable_state_prop
theorem, it suffices to exhibit a system configuration in which spec is syntax and type checked (so

spec_status = CHECKED ), and the theory is untouched (so theory_status = Raw-CHKD as a result of

a triggered transition).

Note that this simple check does not establish absence of livelock or absence of deadlock: more
sophisticated checks are required for these.

3Strictly speaking OP-pre-satis is not a proof obligation of the VDM methodology: that is, there is no formal
requirement that an operation’s precondition need ever be satisfiable. But, since it is probably not the specifier’s
intention to define an operation which could never be invoked, there is a “proof opportunity” here.
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6 Implementing the Process Model in Merlin

This section considers a minor generalization of the process model, defined in Section 3 above, which
allows it to be implemented in Merlin more effectively. The full implementation is given in Ap-
pendix B.

6.1 Multiple Developments

Section 3 defined a process model for a configuration system corresponding to a formal software
development with a single specification and a single theory. Since Merlin process models are defined
in terms of instances of document types and relationships between them, it is a straightforward
matter to extend the process model of Section 3 to one that supports multiple simultaneous formal
developments. Multiple developments are supported by supporting multiple instances of the each
document, i.e. specifications and theories. They are grouped into development configurations by
connection through a discharges relationship.

6.1.1 Process State

The process state (see Figure 15) allows storage of multiple document instances of each document type.
This is supported through the provision of mappings (e.g. SPEC_MAP and SPEC_STATUS_MAP)
from the document identifiers (e.g. SPECID) to the document’s contents (e.g. SPECIFICATION)
and to the document’s status (e.g. SPEC_STATUS_MAP). The DISCHARGES_RELN represents
the one-to-one relationship between (identifiers for) specifications and the theories which discharge
them. The process invariant says:

e every specification identified in the system (dom spec) has an associated status and an associated
theory which discharges it.

o every theory identified in the system (dom theory) has an associated status and discharges some
specification in the system.

6.1.2 Process Model

The statecharts from Section 3.2 are extended by making specifications and theories parameters of
the statecharts and explicitly including the inter-document relationships in transition criteria (see
Figure 16).

6.1.3 Behavioural Properties

Figure 17 shows the behavioural property from Section 3.3 for the revised process model.

6.2 Translation into VDM

The translation of the extended process model into VDM is very similar to that discussed in Sec-
tion 4. The major difference is in the increased complexities resulting primarily from the inclusion of
quantification over the multiple instances represented within the process. In this section we briefly
sketch the translation of the extended process model.

The statecharts indicate that all specifications have an initial status of UNCHECKED and all theories
have an initial status of RAw. This is defined as a VDM initialisation condition through quantification
over all the specification and theory instances in the process state (see Figure 18).
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/ SPEC_STATUS = UNCHECKED | CHECKED \
THEORY _.STATUS = Raw | Raw-CHKD | IN_STEP | COMPLETE

SPEC_MAP = SPECID =% SPECIFICATION

SPEC_STATUS_MAP = SPECID = SPEC_STATUS

THEORY MAP = THEORYID =% THEORY

THEORY STATUS _MAP = THEORYID % THEORY _STATUS

DISCHARGES RELN = THEORYID <2~ SPECID

state Merlin of
spec: SPEC _MAP
spec_status: SPEC _STATUS_MAP
theory: THEORY _MAP
theory_status: THEORY _STATUS_MAP
discharges: DISCHARGES _RELN
end
inv mk-Merlin(spec, spec_status, theory, theory_status, discharges) 2
dom spec = dom spec_status = rng discharges A
dom theory = dom theory_status = dom discharges A

- /

Figure 15: The process state extended to support multiple developments

Spec_status: <self>#SPEC#do_spec_edit/ <self>#SPEC#do_spec_edit/
spec[self] := EDIT_SPEC(spec|self], spec[self] := EDIT_SPEC(spec|self],
USER_INPUT) USER_INPUT)

< not result > <result >

<sel f>#SPECH#checked

\[<se|f>#spEc#unchecked ' Fesult>
<self>#SPEC#do_spec_check/
result := CHECK_SPEC(spec|self])

theory_status:

spec_status[discharges[self]]
= unchecked @

<self>#THEORY#do_theory_edit/ <self>#THEORY#do_theory_edit/

theory[self] := EDIT_THEORY (theory[self], theory[self] := EDIT_THEORY (theory[self],
USER_INPUT) USER_INPUT) _
. <self>#THEORY#do_theory_edit/
_./Spec_status[dischargesself]] theory[self] := EDIT_THEORY (theory[self],
L = unchecked USER_INPUT)
<self>#THEORY #raw [<se|f>#TH EORY#raW_chkd] [<se|f>#TH EORY #i nsteﬁ
spec_status[discharges[self]] <self>#TH EORY#do_update/ theory[self] :=
x = checked UPDATE(specldischarges[self]], theory[self])
Key @
triggered transition spécgtatus[discharges[seIt]] <self>#THEORY#do_theory_edit/ <self>#THEorRe\$ﬁc?;th
= ’\E‘f‘\ChGCKed theory[self] := EDIT_THEORY (theory[self], CHECK_THEORY (theory[self]
tool activity transition IR @ USER_INPUT)
e Tl <result >
"~~~ (s >#THEORY #complete) fesui> < otresult>

Figure 16: Specification and theory process transition systems for the extended model.
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A N

behav mk-Merlin(spec, spec_status, theory, theory_status, discharges)
Vth: THEORYID | th € dom theory -
let sp = discharges(th) in
(spec_status(sp) = CHECKED A
(theory_status(th) = COMPLETE V theory_status(th) = IN_STEP))
= azioms-substantiated(spec(sp), theory(th)) A
obligations_stated(spec(sp), theory(th))
A spec_status(sp) = CHECKED = spec_checked(spec(sp))
A theory_status(th) = COMPLETE = theory_checked(theory(th))

Figure 17: A behavioural property for the revised process model.

init pm 2 rng pm.spec_status = {UNCHECKED } A pm.theory_status = {RAW}

Figure 18: VDM initialisation defined for multiple developments

TRANS-3 (self: THEORYID)
ext wr theory_status

rd spec_status, discharges
pre self € domtheory_status N

theory_status(self) = COMPLETE A
spec_status(discharges(self)) = UNCHECKED

post theory_status = theory_status | {self — Raw}

Figure 19: VDM translation of one of the triggered transitions of the extended process model.
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The triggered transitions of the extended process model (see Figure 19) are parameterized by self.
A trigger transition occurs whenever there exists a self which satisfies its precondition.

As in the previous process model, the trigger state is generated from the triggered transition pre-
conditions. However triggered transitions are parameterized, and the definition of the trigger state
requires quantification over these parameters (see Figure 20). A precondition has been included to en-
sure well-formedness of the definition (i.e. to ensure that the arguments to the discharges, spec_status
and theory_status functions are within their respective domains). This precondition follows from the
process state invariant, and consequently has no effect on the process model as the function is only
called on the pre-state of the tool activity transitions which satisfies the invariant.

-

trigger_state : SPEC _STATUS_MAP x THEORY _STATUS_MAP x DISCHARGES _RELN
— B

trigger_state(spec_status, theory_status, discharges) 2
Ath: THEORYID | th € dom theory_status -
let sp = discharges(th) in
(theory_status(th) = RAW A spec_status(sp) = CHECKED) V
(theory_status(th) = RAW-CHKD A spec_status(sp) = UNCHECKED) V
(theory_status(th) = COMPLETE A spec_status(sp) = UNCHECKED) V
(theory_status(th) = IN_STEP A spec_status(sp) = UNCHECKED)

pre dom spec_status = rng discharges A
dom theory_status = dom discharges

stable_state : SPEC _STATUS_MAP x THEORY _STATUS_MAP x DISCHARGES_RELN
— B

stable_state(spec_status, theory_status, discharges) 2

—trigger_state(spec_status, theory_status, discharges)

pre dom spec_status = rng discharges A

K dom theory_status = dom discharges /

Figure 20: Trigger and stable state conditions are provided as VDM auxiliary functions.

Notice that the trigger states definition has an explicit dependency on the discharges relationship.
In the previous process model this dependency was implicit as there was only one instance of each
document.

As in the previous example we can deduce a theorem which defines the stable states of the process

model:

spec_status: SPEC_STATUS _MAP,

theory_status: THEORY _STATUS_MAP,
discharges: DISCHARGES _RELN ,dom spec_status = rng dischargesA
dom theory_status = dom discharges
stable _state(spec_status, theory_status, discharges) =
Vth: THEORYID | th € dom discharges-

spec_status(discharges(th)) = UNCHECKED < theory_status(th) = Raw

stable_state-prop

As with triggered transitions, tool activity transitions include self as a parameter to the operation
(see Figure 21). As indicated by the postcondition of the operations, document contents and statuses
are updated by overwriting the mappings defined in the process state.

6.3 Verification of Process Model

Verification of the revised process model proceeds along precisely the same lines as in Section 5. The
statement of the proof obligations, and the proofs themselves, are more complex because of the need
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TRANS-9 (self: THEORYID, input: A-THEORY)

ext wr theory_status, theory
rd spec_status, discharges

pre self € domtheory_status A
theory_status(self) = RAwW A
stable_state(spec_status, theory_status, discharges)

post theory = theory t {self — EDIT_THEORY (theory(self), input)} A
theory_status = theory_status 1 {self — Raw}

TRANS-13 (self: THEORYID)

ext wr theory_status, theory
rd spec_status, discharges, spec

pre self € domtheory_status N\
theory_status(self) = RAwW-CHKD A
stable _state(spec_status, theory_status, discharges)

post theory = theory t {self — UPDATE (spec(discharges(self)), theory(self))}
A theory_status = theory_status | {self — IN_STEP}

- /

Figure 21: VDM translation of two of the tool activity transitions of the extended process model.

to handle multiple instances of documents, but the analysis they perform is essentially the same.

For example, the TRANS-13-maint proof obligation of the extended process model requires that the
behavioural property is satisfied for all theory instances. Since theories other than self are not affected
by the operation, the behavioural property need only be checked for self. Ultimately the modification
made by invoking UPDATF must ensure that the assignment of IN_.STEP status to self is consistent.
This is the same requirement that was identified in the proof of TRANS-13-maint in the previous
process model.

7 Conclusions & Further Work

This paper provides verification and validation techniques for state-transition process models. It uses
behavioural properties to capture the intended semantics of states of a process model by relating
process states to properties of the underlying configuration. This implies that the meaning of the
status of a software development can be determined directly from the process model states, rather
than having to be evaluated dynamically by executing the whole process model. It also means that
the correctness of the process model can be verified, at least in the following sense: whenever a
development tool is invoked by the process model, the preconditions of that tool are satisfied.

The inclusion of behavioural properties within process models offers benefits in a number of areas:

Design: by capturing requirements of the process model, and providing guidance in the provision of
the activities to meet those requirements;

Verification: for example, by showing that the tools are invoked correctly;

Readability: by providing an alternative view of the process, from which users of the process may
determine properties of the underlying configuration without knowledge of the entire process;
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Maintenance: by capturing important properties of the underlying configuration which should be
preserved by new activities, or in comparing different versions of process descriptions.

In this paper we translated the process model into VDM and showed how the application of certain
standard VDM verification techniques provide a valuable cross-check on the correctness of the process
model. Eventually, however, we would like to remove the intermediate VDM representation and pass
directly from the process model to appropriate proof obligations, so that the process model developer

need know nothing about VDM.

Merlin offers support for concurrency control which enables teams of developer to work on the devel-
opment at the same time [JPSW93]. This is supported by a transaction management concept, which
regulates the concurrent updates to the process state made by the transitions. The verification of
models executed under this approach has not been considered.
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A  Theory Generation

This section describes the construction of the mathematical theory which which corresponds to a
given VDM specification. Each component of the VDM specification gives rise to a set of axioms and
proof obligations in the theory.
A.1 Explicit Functions
Pattern

f:AXxB—R

flz,y) & Jdef(z,y)

pre fpre(z, y)

Axioms
r: A y: B,
fprz(z‘,g),
fdef(z,y): R
f(z,y) = fdef(z,y)

Proof obligations

r: Ay B,
Ay B _pre-satis | ———
fpre wff f:c ¥ fore(z,y) Fpre-satis Jz: A, y: B

pre(z,y): B - fdef(z y) R fore(z,y)

A.2 TImplicit Functions
Pattern

g(z:Ay:B)r:R

pre gpre(z, y)

post gposi(z,y,r)
Axioms

r: A,y B, r: Ay B,
gpre(z, y), gpre(z, ),

Ar: R - gposi(z, y,r) Ar: R - gposi(z, y,r)
-wi : -defn ’
9(z,y): R gpost(z,y, g(z,y))

Proof obligations

z:A,y: B, r R,

gpre(z,y): B gpost(z,y,r): B

r: Ay B,

T A7 B e 9) gpre(z,y)

dr: R - gpost(z,y, )
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A.3 State Definitions

Pattern
state .S’ of
a: A
b: B
c: C
end

inv mk-S(z,y,2) & Sinv(z,y,z2)

init s 2 Sinit(s)
behav mk-S(z, y, z)

Axioms
z:A,y: B,z C,
—— Sinv(z, y, 2)
S-form mk-S(z,y,2): S

5: 5
mk-S(S.a,5.b,5.¢) =s

— mk-S(z,y,2): S
mk-S(z,y,2).a =z

Same for b and ¢ component.

Proof obligations

r:A,y:B,z:C
v Sinv(z,y,2):B

J2:A,y:B,2: C-

Sinv(z, y, 2)

v mk-S(I;yaz):S
Shehav(z, y,2): B

& Sbehav(z,y, z)

— mk-S(z,y,2): S
Sinv(z,

y,2)

k-S(z,y,2): S

m :
mk-S(z,y,2).a: A

s

: S - Sinit(s)
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A.4 Operations

Pattern

OP (i:1) 0: 0O
extrd a: A
wr b: B

pre OPpre(i,a,b)
post OPpost(i, o, a, T, b)

Proof obligations
i:I,mk-S(z,y,2): S, Shehav(z,y, z)
OPpre(i,z,y):B

i:1,0:0,
mk-S(z, y,2): S, mk-S(z,y,2): S,
Sbehav(z,y , z), Sbehav(z, y, 2),
OPpre(i,z, ¥ )

e
OPpost(i,o0,z,y ,y):B

i: I, mk-S(z,7y,2): S,

.ZI, k-S ,l_; :S: U
i: 1, m (lbi z) Sbehav(z, 7y , 2),
Sbehav(z, 7y , 2), OPpre(i,z, y)
A - preit, T, Y
0 - v
0 pre(z,m, y) vo;O,y;B~Sinv(z,y,Z)

Jo: 0,y: B - Sinv(z,y, 2) AOPpost(i v, y)
. v post\t,o0,r, Y,y
ANOPpost(i,o,z,y ,y) = Shehav(z,y, z)

Proof opportunities
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B Merlin Implementation

This section provides a set of Merlin process model implementation facts, which are interpreted by
the Merlin kernel to provide the enactment of the process model described in Section 6.

The facts shown in this section collectively provide a program which can be executed within Merlin.
For explanation of these process facts the reader should refer to the user guide [PS92].

B.1 Document Information
The Merlin facts defined in this section describe the process state by declaring instances of documents
and the relations between them.

B.1.1 Document Definitions

Firstly the document structure, its icon representation to be displayed in the merlin user interface,
and possible states are to be defined. Here we have declared both the specification and theory to be
ascii files, with defined icons, and with the appropriate statuses as states.

document_type-structure( specification, ascii-file).
document_type-icon( specification, icons/vdm-spec).
document_type-states( specification, [unchecked, checked]).

document_type-structure( theory, ascii_file).
document_type-icon( theory, icons/vdm_theory).
document-type-states( theory, [raw, raw-ckd, in_step, completel).

B.1.2 Document Relations

Only one document relation type is defined in this case study: a theory discharges a specification.

document_relation_type(discharges, theory, specification). I

B.1.3 Instances

To populate the model we shall define two document instances: dev_spec which is a specification
and is physically located in the file unix_src/dev#spec; and dev_theory which is a theory and is
physically located in the file unix_src/dev#theory. The theory dev_theory discharges the specifi-
cation dev_spec.

document (dev_spec, specification, unix_src/devi#spec).
document(dev_theory, theory, unix_src/dev#theory).

document-relation(discharges, dev_theory, dev_spec).

B.2 State Transitions

The statecharts in Figure 16 define the initialisation and different transitions that occur during the
process. The statecharts are translated into Merlin facts as shown below.
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B.2.1 Initial Document States

Initialisation information is given as document_state facts. Initially dev_spec has status unchecked
and dev_theory has status raw.

document_state(dev_spec, unchecked).
document_state(dev_theory, raw).

B.2.2 Triggered Transitions

Triggered transitions are given as next_state_or_cond facts.?

The consistency condition facts below correspond to transitions 1-4 of Figure 16 respectively. For
example, transition 1 changes the status of a theory from raw to raw_ckd if the theory is related by
the discharges relation to a specification document with status checked. The corresponding fact
indicates that the theory is the source of the discharges relation and the other document is the
destination.

next_state_or_-cond( theory, raw, raw_ckd,

[[destination, discharges, checked]]).
next_state_or_-cond( theory, in_step, raw,

[[destination, discharges, unchecked]]).
next_state_or_cond( theory, complete, raw,

[[destination, discharges, unchecked]]).
next_state_or_cond( theory, raw-ckd, raw,
[[destination, discharges,

unchecked]]) .

B.2.3 Tool Activity Transitions

Tool activity transitions correspond to a change in process state when a tool activity is applied on a
document. The tool invocation facts below correspond to transitions 5-13 of Figure 16 respectively.

A tool invocation fact consists of a description of the type of document on which the tool is invoked, the
tool that is applied, the access privilege required, and the status changes that occur. For example, the
third fact below indicates that the specification checker (check_spec) can be applied to a specification
document whose status is unchecked; read access to the specification is required; on completion of
the checker the resulting status is either unchecked or checked.

*See [PS92] for an explanation of the different kinds of triggered transitions supported by Merlin. We could have
equally as well used next-state-and-cond here.
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document_type-tools( specification, edit_spec, writeable,
checked, [unchecked]).

document_type-tools( specification, edit_spec, writeable,
unchecked, [unchecked]).

document_type-tools( specification, check-_spec, readable,
unchecked, [unchecked, checked]).

document_type-tools( theory, check_theory, readable,
in_step, [in_step, complete]).
document_type-tools( theory, edit-theory, writeable,
raw, [raw]).
document-type-tools( theory, edit-theory, writeable,
raw_ckd, [raw_ckd]).
document_type-tools( theory, edit-theory, writeable,
in_step, [raw_ckd]).
document-type-tools( theory, edit-theory, writeable,
complete, [raw_ckd]).
document-type-tools( theory, update, writeable,
raw-ckd, [in_step]).

The tools are synonymous with unix commands which are passed references to documents to be
analysed or modified, and which implement the functional definition provided in the statechart.
For instance, edit_spec carries out the operation spec[self] := EDIT_SPEC(spec[self], USER_
INPUT).

In implementing the process model all batch tools (i.e. those without USER_INPUT - namely update,
check_spec and check_theory) were simulated. Merlin provides support for batch tools, however we
simulated them as interactive tools, in which the user browsed or edited the documents to reflect the
functionality of the activity. The choice to simulate batch tools as interactive tools resulted in two
alternative status results for transitions 7 and 8 of Figure 16. Process enactment requires the user to
choose between the two alternative statuses based on their interactive analysis of the documents at
run-time.

B.3 Auxiliary Information

For completeness, we include here the remaining facts that Merlin requires, describing roles and
responsibilities in the software development process.

B.3.1 Project Developers

A project called vdm_development will have its development controlled by the process program de-
scribed in the previous section. Let us suppose the developers miller and smith are assigned to the
project.

project(vdm_development, [miller,smith]). I

B.3.2 Developer Roles

Let us assume miller is a specifier and smith is a verifier.

has_roles(miller, [specifier]).
has_roles(smith, [verifier]).

27



B.3.3 Role Access

The role access defines when the different documents may be manipulated and accessed by the
developers of a particular role. In this case, let us assume a specifier can modify a specification with
any status and a verifier can modify a theory with any status. The other fields represent the related
documents to be presented to the user performing this role.

roletype_document_work_on(specifier, specification, unchecked, [1, [1, [1).
roletype_document_work_on(specifier, specification, checked, [1, [1, [1).

roletype_document_work-on(verifier, theory, raw, [1, [1, [1).
roletype_document_work_on(verifier, theory, raw_ckd, [1, [1, [1).
roletype_-document_work_on(verifier, theory, in_step, [1, [1, [1).
roletype_document_work-on(verifier, a, 0, .

theory, complete,

B.4 Developer Document Responsibilities

Finally, let us assume miller, when acting as a specifier, can access the specification dev_spec, and
smith when acting as verifier can access the theory dev_theory.

responsibilities(miller,specifier, [dev_spec]).
responsibilities(smith,verifier, [dev_theory]).
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