SOFTWARE VERIFICATION RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE

THE UNIVERSITY OF QUEENSLAND

Queendand 4072
Australia

TECHNICAL REPORT

No. 94-10

On transferring VDM verification techniquesto Z

Peter Lindsay

M arch 1994

Phone: +61 7 365 1003
Fax; +61 7 365 1533

On transferring VDM verification
techniques to Z

Peter A. Lindsay

Software Verification Research Centre,
University of Queensland, St Lucia, Queensland 4072, Australia
email: pal@cs.uq.edu.au

Abstract. This paper discusses some of the necessary prerequisites for
transferring specification analysis and verification techniques from VDM
to Z. It starts by comparing 7Z and VDM in terms of the mathematical
and specification notations they use. It then explains the VDM approach
to reasoning about specifications, as supported by the mural tool-set, and
compares VDM’s Logic of Partial Functions with Classical Logic. It out-
lines VDM proof obligations for checking consistency and completeness
of specifications, and illustrates their use on a small example, compar-
ing the results with a Z-like analysis. The paper concludes with a brief
discussion of how the W logic for Z might be modified for LPF.

1 Introduction

1.1 Background and scope

Recent work [2] on proof in VDM, in conjunction with experience using the
mural support environment [13], has demonstrated a practical approach to for-
mal analysis of VDM specifications based on:

— an axiomatic semantics for a large subset of the VDM specification language
VDM-SL [4], presented in Natural Deduction style;

— a Logic of Partial Functions, LPF, which emphasizes the treatment of unde-
finedness;

— a process for generating proof obligations to check the well-formedness and
mathematical consistency of specifications (in a sense to be defined below);

— a large store of re-usable theorems.

The mathematical language in which theorem proving takes place is almost
indistinguishable from the mathematical component of VDM-SL. The main ad-
vantages of this integrated approach are that:

— formal proofs are expressed in a very natural form (similar to that of rigorous
proofs in mathematical textbooks) for which effective machine support can
be provided;

— analysis for well-formedness reveals certain incompletenesses in specifica-
tions.

The purpose of this paper is to bring the main points of the approach to the
attention of the Z community and to sketch how it might be transferred to Z. The
scope of this paper is restricted to verification techniques for Z-like specifications.

1.2 Verification of specifications

In this paper, verification refers to the use of mathematical analysis techniques—
including proof, but not limited to it—for gaining confidence in the correctness
of a specification. In general, correctness includes aptness, internal consistency,
completeness, implementability, robustness, and more. Verification tasks include:

— showing that certain properties are logical consequences of the specification
(including safety and liveness properties);

— syntax- and type-checking, including limiting the use of variables to the scope
of their definitions;

— well-formedness checking (see below);

— proof of mathematical consistency (or satisfiability), by showing that user-
introduced definitions are mathematically meaningful.

1.3 Well-formedness

We shall call an expression well-formed if it is syntactically (and type-) correct
and it defines a value. The most common form of undefinedness in specifications
involves the application of functions outside their domain: e.g.

1/0, 3modO0, head (), s(#s+ 1) where s € seqX,
min {}, mazN, pn:Z|n?=1

Other forms of undefinedness include non-termination of recursion and cases
missing from definitions.

1.4 This paper

The proof theory for the subset of VDM-SL used in this paper is that described in
Bicarregui at al [2]. Tt agrees in spirit—if not always in detail—with Jones [12]
and the emerging BST Standard [4], and is largely supported by mural. The
semantics for 7 used for comparison in this paper is that of the draft 7Z Base
Standard [3].

Sections 2 and 3 below provide the background needed to translate between
the two notations: section 2 describes the mathematical languages and section 3
compares their specification languages. Section 4 introduces LPF and explains
the treatment of partial functions. Section 5 outlines VDM’s proof obligations,
and section 6 compares the use of Z and VDM analysis and verification tech-
niques on a small example specification. Section 7 sketches how to adapt the W

logic for Z [3, 18] to LPF.

1.5 Other comparisons

Among other comparisons of Z and VDM, the recent paper by Hayes, Jones and
Nicholls [10] offers an understanding of “the interesting differences” between the
VDM and Z specification languages, together with some of the history of their
development. It is written in a lively, readable form and is well recommended
to readers; however, it restricts itself to expressibility of specifications and only
lightly touches on verification. The response by Hall [7] presents a specifier’s
perspective on the comparison.

Earlier comparisons [8, 16] similarly focus mainly on notational or structural
differences between the two methods. An SVRC technical report [15] compares Z
and VDM verification techniques on five specification case studies, and explores
the use of some other possible analysis techniques.

2 Comparison of mathematical languages

This section compares the more commonly used aspects of the VDM-SL and Z
mathematical languages, with an emphasis on how VDM-SL constructs translate
to their Z counterparts, so that readers familiar with 7Z can read the VDM
notation used in other parts of the paper.

2.1 Mathematical framework

At first sight, the Z and VDM-SL notations are quite different, but for the most
part the difference is superficial. The main grammatical differences are:

— Types, functions and values are distinct syntactic categories in VDM-SL but
not in Z.

— Types and functions can be passed as values and returned as results in 7
but not in VDM-SL.!

— Predicates and expressions are distinct syntactic categories in Z, whereas
VDM-SL has a ‘Boolean’ type and treats predicates as Boolean-valued terms.

The main historical reason for these differences is intimately linked with the use
of VDM as a development—not just specification—method, and is beyond the
scope of this paper. Apart from the above differences, however, the constructs
and primitives from one method can easily be expressed in the other method.?

2.2 Types

VDM types correspond to Z’s declared sets. Unlike the Z approach, however,
VDM makes a strict distinction between types: e.g. sets and sequences are dis-
joint types. Type constructors which have essentially the same meaning in the

1 Or at least, not in that part of VDM-SL covered by the proof theory described here.
2 e.g. Gilmore [6] describes a mechanical translation from a large subset of Z to

VDM-SL.

VDM type constructor corresponding Z term

terminology | notation |terminology |notation
sets X-set |finite sets FX
maps X 2. Y |finite (partial) functions| X + Y

injective maps|X —— Y [finite injective functions| X =~ Y
sequences X sequences seq X

Table 1. Translation of VDM type constructors into Z.

two methods, but for which different terminology and/or notation are used, are
shown in Table 1. This paper concentrates on data modelling using finitary (flat)
types only: see Section 4.3 below for more discussion.

VDM’s ‘composite types’ correspond roughly to Z schema types, except that
fields are ordered. An example VDM composite type with its corresponding 7
schema type 1s:

T :a: A -T
b: B a: A
b: B

inv mk-T(z,y) 2 Tinv(z,y)

Tinv(a,b)

2.3 Functions and values

The two methods have many value constructs in common. Constructs with es-
sentially the same meaning but different notation are summarized in Table 2.
Note that VDM has Boolean terms true and false, and a polymorphic condi-
tional construct

if _then _else _:Bx Ax A— A

Composite type definitions give rise to constructor and selector functions.
For example, the definition 7" above introduces a constructor function mk-T
which is a partial function from A x B to T with domain defined by Tinv. The
value of mk-T(z,y) thus corresponds to the Z binding { ¢ ~ z,b~+ y). Z and
VDM use the same notation for selector functions.

The two methods use different notation for set comprehensions: VDM writes

{f(z)|z: A P(z)} where Z writes {2z: A | P(z) o f(2z)}.

3 Comparison of specification notations

In model-oriented styles, a system specification consists of a (user-defined) data
model, a state space and state transitions. Data models are specified by defin-
ing types and values, together with auxiliary functions and predicates on those
types. (Auxiliary constructs are ones which are introduced for the purposes of
modelling, simplification or explanation of a specification, but which are not
intended to be implemented.)

construct| VDM Z construct| VDM Z
first| fstp first p empty sequence| [] ()
second| sndp |second p sequence head| hds |head s
set cardinality| card s s sequence tail| tls | tails
finite power set Fs Fs concatenation|s; ~ " sals; 7 so
number range|{¢,...,j}| ¢..j [|distributed concat|conc ss| "/ ss
empty map| {+—} {} sequence indices| inds s | dom s
map range| rngm ran m ||sequence elements|elems s| ran s
map overwrite| my ¥ ma |mq @ ma sequence length| lens s

Table 2. Some differences in notation for value constructors.

3.1 Types

Types are defined using the mathematical notation of Section 2.2 above. In
VDM-SL, a ‘type invariant’ can be used to restrict membership of a type: e.g.

IncreasingSeqs = N*

invs & ViN-1<i<lens= s(i)<s(i+1)

7 typically uses schema inclusion or set comprehension to achieve the same effect.

Recursive type definitions are allowed in VDM; however, in order to reason
effectively about such definitions, it is necessary to have corresponding induction
rules and as yet no fully general means has been developed for generating these.?
In Z, recursive type definitions can only be made via free types.

3.2 Auxiliary functions
In VDM-SL, user-introduced functions can be defined in two ways:

1. directly, by giving an expression whose value is the result returned by the
function, or
2. indirectly, in terms of pre- and post-conditions.

By contrast, Z uses ‘axiomatic definitions’, consisting of a ‘declared set’ (roughly,
the function’s signature) and a predicate which defines the function. A VDM
direct definition of the form

factorial :Z — 7
factorial(n) £ if n =0 then 1 else n * factorial(n — 1)

pre n >0

% of. §13.4 of Bicarregui et al [2].

corresponds to a Z axiomatic definition of the form
‘ factorial: 7.+ 7,

dom factorial = {n:Z | n > 0}
factorial(0) =1
Vn:Zen>0= factorial(n) = n * factorial(n — 1)

Note that, in VDM, the domain of a partial function is defined by stating a
precondition for that function in a pre clause. (Functions without explicit pre-
conditions are assumed to be total.) Note also that recursive definitions are
allowed.

A VDM indirect definition of the form

sgroot (n:N) rmN
post rkr<n<(r+1)*(r+1)

corresponds to a Z axiomatic definition of the form

‘ sqroot:N — N
VanNeIr:Ne

r = sqroot(n)
rer<n<(r+1l)x(r+1)

3.3 States

The ‘state’ of the system being specified is defined in a state environment in
VDM-SL; the state schema is not formally distinguished from other schemas in
7. By way of example, Fig. 1 shows a VDM state definition for a simple Directed
Acyclic Graph (DAG) system, together with its auxiliary functions. Initially
the graph is empty (has no nodes). The constraints—including the requirement
that the graph be acyclic—are written in an invariant (inv) clause. The initial
condition, defining the set of all possible initial states, is written in the init
clause. The auxiliary function has-path checks whether there is a path through
the graph from one node to another; has-no-circs checks that there are no
circular paths.

A corresponding 7 specification is given in Fig. 2. The Z specification is
more concise in this case—as in many cases—because it is better able to take
advantage of the Z mathematical toolkit.

3.4 State transitions

State transitions are modelled as ‘operations’ in VDM. Operation specifications
can involve input and/or output variables. An ‘external variables’ (ext) clause
(or “frame’) says which state variables are used in or affected by the operation:
rd variables are read-only; wr variables are read/write; unmentioned variables do
not change value. This corresponds roughly to Z’s A and = conventions.

state DAG of
nodes: X -set
edges: (X x X)-set
inv mk-DAG(V,E) &
Ve,y: X - (z,y) € E =
teVAyeV)
A has_no-circs(I)
init dag 2 dag.nodes = {}
end

has-no-circs : (X x X)-set — B

has_no-circs(E) 2
Ve: X - - has-path(z,z, I)

has-path : X x X x (X x X)-set — B

has_path(z,y, E) & Fps: X*.
lenps > 1A ps(l) ==z
A ps(lenps) =y
A(VEk:Ny -k <lenps =
(ps(k), ps(k +1)) € E)

Fig. 1. Part of the data model for DAG in VDM.

paths: (X — X) —= (X < X)
VE:X < X e paths(E) = E*

has_no_circs:P (X « X)

has_no_circs =
{E:X < X |
Vz:X e(z,z) ¢ paths(E)}

~DAG

nodes:IF X
edges: X — X

edges C nodes X nodes
edges € has_no_circs

- DAGy;:

DAG
nodes = { }

Fig. 2. The corresponding DAG data model in Z.

As with functions, both direct and indirect definitions of operations are possi-
ble in VDM-SL, although direct definitions use an algorithmic subset of VDM-SL
which is not covered in this paper. Indirect definitions are stated in terms of pre-
and post-conditions. The ‘precondition’ (pre) is a formula involving input vari-
ables and state variables from the externals clause only; the effect of an operation
is defined only on those values which satisfy the precondition. The ‘postcondition’
(post) is a formula involving input/output variables and state variables from the
externals clause. For writable state variables in the postcondition (only), a hook

(T) indicates the variable’s value before the operation is applied; the unadorned
variable denotes its value afterwards.* This contrasts with the Z convention of

* Note that the hook is not used in the precondition.

using a primed variable for the post-value and an unadorned variable for the
pre-value.

AddFEdge (z: X,y: X) candidate : X x X x (X x X)-set
ext rd nodes: X-set - B

wr edges: (X x X)-set candidate(z,y, E) 2
pre {z,y} C nodes z # y A —has_path(y,z, E)

A candidate(z, y, edges)
post edges = edges U {(z,)}

Fig.3. A VDM operation for adding an edge to the DAG, with an auxiliary function.

Fig. 3 shows a VDM operation for adding an edge to the DAG, together with
its auxiliary function. The operation’s precondition ensures that adding the edge
will not create a circularity. (In Section 5 below there is a proof obligation to show
that the stated precondition is strong enough to ensure that the postcondition
is achievable.) Fig. 4 shows a corresponding Z specification.

ADAG = DAG N DAG’

_AddEdge
ADAG
2?7, y7: X

nodes’ = nodes
edges’ = edges U {(z7,y7)}

Fig.4. The Z operation for adding an edge to the DAG.

3.5 Discussion

The 7Z schema notation is a rich, flexible notation for structuring specifications
which has no equal in VDM.

In 7, schemas are used for many different purposes, including for the def-
inition of the state, types and operations, as well as for expressing auxiliary
concepts. Schema inclusion is a very effective technique not supported in VDM.

The schema calculus is used for defining new schemas in terms of old ones: for
example, in Fig. 5 the schema IsNode is an auxiliary schema, used to simplify
the definition of other schemas—there is no intention that it be implemented.

_IsNode _InsertNode

DAG ADAG

7 X 7 X

z? € nodes nodes’ = nodes U {27}
edges’ = edges

AddNode = = IsNode A InsertNode

Fig.5. The Z operation for adding a node to the DAG.

On the other hand, a VDM specification has more formal structure than a Z
specification, in the sense that it makes a formal distinction between state defini-
tions, types and operations, and it insists that preconditions be given explicitly
for partial functions and partial operations.

4 The Logic of Partial Functions

This section discusses the logic underlying VDM: the Logic of Partial Functions
(LPF) [1, 2, 5, 14].

4.1 Motivation

Classical treatments of logic differ in how they handle undefined terms such
as hd[], and many treatments simply ignore them. One common approach is
to assign them an “arbitrary” value and to be careful that nothing non-trivial
can be deduced about that value: for example, in the deductive system for Z in
the Z Base Standard [3] all well-typed terms are assumed to denote values. By
contrast, LPF was developed as a logic for models in which undefined terms do
not denote values.

4.2 The formal logic
Formally, LPF differs from most classical treatments of logic in four main ways:

1. Formulas (propositions) are treated as just another kind of term (namely,
Boolean-valued terms). Predicates are treated as Boolean-valued functions.
2. Only fully defined, well-typed terms denote values.

3. Propositions may not define a truth value (i.e., a proposition may be neither

‘true’ nor ‘false’).
4. An assertion ‘a: A’ means that the term « is fully defined and denotes a

value of type A.

A term is said to be well-formed if it denotes a value. It is called a well-formed
formula if 1t denotes a Boolean value.

An example of an undefined proposition is the equation 1/0 = 2/0. On the
other hand, the formula

s#[]= hds € elemss

is true for all sequences s, even though hd [] is not defined. To accommodate the
presence of undefined subterms in expressions, the semantics of the propositional
connectives are “extended” in LPF, as indicated in the following truth tables:

A |true false L = |true false L
true |true false L true [true false L
false|false false false false|true true true

1L | L false L 1L |true L L

where | represents undefinedness.
Since in LPF a proposition may be neither true nor false, it follows that

not all of the laws of classical logic are valid in LPF. The converse does hold
however: that is, all laws of LPF are valid classic laws. Fig. 6 shows some of the
laws which are common to both logics, presented in Natural Deduction style.?

PAQ PAQ P,Q P,-P P, P=Q
i v ¢ [P] ?]
Pl [Q

P Q
PVQ PVQ Pve g R

Fig. 6. Laws common to LPF and classical logic.

An example of a classical law which is not valid in LPF is the law of “Excluded
Middle”

Pv-P

® In mural, the Natural Deduction approach was carried through to full formality. An
important innovation was to allow scoping of variables within subproofs (“blocks”):

see §1.3 of [2].

which does not hold in LPF when P is an undefined proposition. Typically,
however, the laws of classical logic can be converted into valid LPF laws by
adding hypotheses to ensure their conclusions are well-formed. For example, the
LPF version of “Excluded Middle” is:

P B
PV-P

(In other words, PV — P is true provided P denotes the value ‘true’ or ‘false’.)

In practice, this means that LPF has a number of different laws where clas-
sically a single law would suffice. For example, there are two LPF laws for A-
formation:

[P] [Q]
P:B Q:B Q:B P:B
(PAQ):B (PAQ):B

The first says that P A @ is a well-formed formula if P is a well-formed formula
and, assuming P is true, @ is a well-formed formula. This rule accounts for the
well-formedness of, for example, the term ‘s # [] A hd s € elems s’. The second
law covers the symmetric case.

A more subtle example is the “Deduction Theorem”, which is stated classi-
cally as follows:

(P]
Q
P=Q

(In other words, if @ can be proven by assuming P, then P=- (@ is true.) The
semantics of LPF say that it is possible to deduce anything from an undefined
proposition P, but that P= @ is undefined if P is undefined and @ is false.
Thus, the LPF version of the Deduction Theorem needs an extra hypothesis to
ensure that P is a defined proposition: viz.

(P]
P:B Q
P=0Q

In LPF, quantified variables range over defined values of a type only, so the
laws for quantifiers are the same as for (typed) classical logic:

[z: A]
P(z) a: A, Vz: A P(2)
Vy: A- P(y) P(a)

Equality is ‘strict’, so the law of reflexivity of equality requires a well-formedness
hypothesis:

a: A

a=a

a: A, s: A-set a: A a:A, b: A, s: A-set
{}: A-set add(a,s):A-set a&{} b€ add(a,s) & b=aVbeEs

[a: A, s: A-set, a & s, P(s)]

P P(add(a, 5))
Vs: A-set- P(s)

Fig. 7. LPF laws for sets.

Some other laws of LPF are given in Figs. 7 and 8.5

Note that the assertion a: A implies that a denotes a value of type A, and
in particular that e satisfies any invariants that might be associated with A
(e.g. when A is a composite type). This very strict interpretation of typing as-
sertions means that type-checking is undecidable in this logic.

[P] [z: A] m
P:B Q:B P(z):B a: A, fIAJT).BéaEdomf
(P=Q):B (Vy:A-P(y)):B a):

Fig. 8. Some LPF laws for well-formedness and type-checking.

4.3 Finiteness

This paper concentrates on data modelling using finite values only: i.e., finite
sets rather than possibly-infinite sets, and finite functions rather than total
functions. Partly our reasons are foundational, and for example concern the
non-computability of equality between infinite values.” But partly also they are
practical: for example, it is much easier to reason in the theory of finite sets
than in, say, Zermelo-Frankel Set Theory, since the former has a simple Induc-
tion Principle (cf. Fig. 7).

As it happens, the restriction to finite values is often not overly constraining
for the specifier.® In practice, it often simply means using finite power sets (IF)
rather than arbitrary power sets (P), and finite functions (+) rather than total
(—) or partial (=) functions.

¢ Note that add(a,s) A g U {a}.

7 See Chapter 13 of Bicarregui et al [2].

® Hodges [11] argues that all the specifications in Hayes [9] can be rewritten so that
they use (hereditarily) finite sets only.

5 Verification in VDM

In the mural approach to specification verification, each VDM specification has
a corresponding mathematical theory, in which the definitions of the specifi-
cation are represented as axioms and definitions of the theory. Type-, well-
formedness and satisfiability checking are carried out by proving that certain
theorems (called proof obligations) are logical consequences of the axioms and
definitions of the theory. The mathematical theory and proof obligations are
generated by mechanical translation from the specification.

This section briefly outlines the proof obligations for VDM specifications.
Figures 5h—13 sketch the axioms and proof obligations corresponding to each of
the main specification constructs discussed in Section 3 above.

The axioms are formulated in such a way as to adhere to the strictures of LPF:
enough hypotheses are given to ensure that the conclusions are valid, without
assuming in advance that the definitions are well-formed. Thus, for example,
the axiom which introduces a direct function (see Fig. 10) has hypotheses which
ensure that the arguments are well-formed and of the correct type, that the
precondition holds, and that the body of the definition is well-formed and of the
correct type. There are separate proof obligations to show that the precondition
is a well-formed formula, and that the body is well-formed and of the correct
type. Once the proof obligations have been established, it is easy to derive a
‘working version’ of the introduction rule for the function, in the form

z: A, y: B, fpre(z,y)
flz,y) = fdef(z, y)

5.1 Well-formedness

The role of well-formedness proof obligations is to check that definitions are
mathematically complete. The well-formedness proof obligations for the different
specification constructs can be paraphrased as follows:

type definitions: the invariant is a well-formed formula.

direct function definitions: the precondition is a well-formed formula; the
body is well-formed and of the correct type.

indirect function definitions: the pre- and post-conditions are well-formed
formulae. (Note that the postcondition is only required to be well-formed on
the function’s domain: i.e., the precondition can be assumed when proving
that the postcondition is well-formed.)

state definitions: the state invariant and initial condition are well-formed for-
mulae. (The state invariant can be assumed when dealing with the initial
condition.)

operation definitions: the pre- and post-conditions are well-formed formulae.
(The state invariant can be assumed in both cases, and the precondition can
be assumed when dealing with the postcondition.)

Pattern Pattern
r=4 fiAXB—R
invi & Tinv(t) f(z,y) A fdef(z,y)
pre fpre(z,y)
Axioms .
Axiom
t: A, Tinv(t) T t T Ay B,
t: T t:A Tinv(t) fore(z, y),
fdef(z,y): R
f(z,y) = fdef(z, y)
Proof obligations Proof obligations
t A z:A, y:B z: A, y: B, fpre(z,y)
Tinv(t): B fore(z,y): B fdef(z,y): R

Fig. 9. Axioms and proof obligations for a type definition T.

Fig. 10. Axioms and proof obligations for a direct function definition f.

Under the LPF approach, the presence of mathematical incompletenesses
in the definitions of a specification is revealed by the inability to discharge a
well-formedness proof obligation. The point where the proof stalls is typically
the point where the undefinedness occurs, and consideration of how to make
progress in the proof often shows how to fix the specification. This is illustrated
in numerous examples on a sizeable case study in Chapter 12 of [2].

5.2 Satisfiability

The other kind of proof obligation is called a satisfiability proof obligation: it
checks that an implicit definition is mathematically consistent (or mathemat-
ically meaningful), in the sense that there exists a mathematical object which
satisfies the definition. Satisfiability of axiomatic definitions (cf. implicit function
definitions below) is a necessary prerequisite for a data model to be mathemat-
ically consistent: e.g. using

Vs:FN\{{}} edm:Nemazs<m
it is possible to derive a contradiction from the following ill-declared definition:

‘ evens: FIN
‘ evens = {n:N | nmod 2 = 0}

Pattern

Pattern
state S of
g(z:A,y:B) r:R a A
pre gpre(z, y) b: B
c. C

post gposi(z,y,r)
inv mk-S(z,y,2) 2 Sinv(z,y,2)

inits A init(s)

Axiom end
r: A, y: B,
gpre(z, y), Axioms
Ar: R - gpost(z,y,r) A g B, 2 C,
g(z,y): R A gpost(z,y,g(z,¥)) Sinv(z, y, 2)
mk-S(z,y,2): S

etc, as for composite types
Proof obligations

A, y:B, R,
z:A, y: B gpre(z,) Proof obligations
gpre(z, y): B gpost(z,y, r): B A y:B, z:C 5: 5
Sinv(z,y,2): B init(s): B
A, y: B,
gpre(z, y)
Ar: R - gpost(z, y,r) To 5 nil(s)

Fig.11. Axioms and proof obligations for an indirect function definition g.

Fig.12. Axioms and proof obligations for a state definition S.

The satisfiability proof obligations for specification components can be para-
phrased as follows:

indirect function definitions: for all arguments in the domain of the func-
tion, there is at least one corresponding result which satisfies the postcondi-
tion.

state definitions: the state invariant is satisfiable (so the state space is non-
empty); if an initial condition has been given, it should be satisfiable.

operation definitions: if the operation is enabled for a given input and state
of the system, then there exists a transition to some other state, with an
appropriate output value, which satisfies the operation’s specification.

Failure to discharge a satisfiability proof obligation often reveals hidden as-
sumptions about the conditions under which the operation will be invoked.

Pattern

OP (i:I) r R
extrd a: A
wr b: B

pre opre(i,a, b)
post opost(i,r, a, T, b)

Proof obligations

i: I, mk-S(z,y,2): S
opre(i,z,y): B

I, r R,
mk-S(z,y,2): S, mk-S(z,y,2): 5,
opre(i,z, 7y)
opost(i,r,z,y ,y): B

i: 1, mk-S(z,y,2): S,

opre(i,z,)
Ar:R,y: B - Sinv(z,y,2) A

opost(i,r,z, Y ,y)

Fig. 13. Axioms and proof obligations for an operation specification OP.

Note that if the operation’s precondition has been derived by calculating the
weakest precondition [17], then that calculation can serve as a proof of satisfia-
bility.

5.3 Other proof opportunities

To the above satisfiability proof obligations could be added various “proof oppor-
tunities” —statements which would normally be true, but which are not strictly
required by the methodology. For example, since it would not normally be the
specifier’s intention that a defined type is empty, there is an opportunity to show
that each defined type is inhabited (i.e., its invariant is satisfiable):

3t A - Tinv(t)

Similarly, defined functions should be non-trivial (i.e., their preconditions

should be satisfiable):

dz: A, y: B fpre(z, y)
dz: A, y: B - gpre(z, y)

For each operation, there should be at least one set of circumstances under
which the operation is enabled (i.e., its precondition should be satisfiable):

i: I, mk-S(z,y,2): S opre(i,z, y)

Wordsworth [19] (p.259) gives two proof obligations for Z specifications: con-
sistency of the state, which corresponds to satisfiability of the state definition
above; and “implementability of operations”, which corresponds to the satisfia-
bility proof opportunity for operations above.

6 An example

This section illustrates some of the main points of the above sections on a sim-
ple specification. First, a simple case study is described informally and a naive
Z specification is given. The requirements are then formalized in VDM, and
the effect of the restriction to finite values is noted. Finally, the analysis and
verification techniques from Sections 4 and 5 are applied.

The case study concerns a simple Traffic Management System (TMS). The
TMS is to manage a traffic region which is divided into a number of individual
zones. Each zone has a defined limit to the number of vehicles it can contain
(its capacity). Among the operations to be specified is one for moving a vehicle
from one zone to another, subject to the safety property that zones’ capacities
are not exceeded. There would be other operations for adding new vehicles to
the system, changing the configuration of zones, and so on, but they will not be
considered here.

6.1 A Z analysis

A first attempt to specify the TMS in Z is shown in Fig. 14. Capacity information
is modelled as a (total) function from zones to natural numbers. Location of
vehicles 1s modelled as a function from vehicles to zones. The safety property is
stated as a constraint on the state space. The operation moves vehicle v7 into
zone 27,

Calculation reveals the weakest precondition to be

_pre MoveVehicle
TMS
v?: Vehicles; 27:Zones

location(v?) # 27 = #location™ {27} < capacity(z?)

Equipped with such knowledge, we might well question whether the operation
should be allowed to “move” a vehicle into a zone it already occupies; if not,
then location(v?) # 27 should be added to the schema body.

Turning to the analysis of 7 specifications suggested by Wordsworth [19], in
order to show the state schema is satisfiable, it is necessary to give values for the
location and capacity which satisfy the schema predicate. To be able to actually

[Zones, Vehicles] ATMS = TMS N TMS'

~TMS _Mowe Vehicle

capacity: Zones — N ATMS

location: Vehicles — Zones v?: Vehicles; z7:Zones

YV z: Zones o capacity’ = capacity
#location™{z} < capacity(z) location’ = location & {v? — 27}

Fig. 14. A naive Z specification of the TMS.

exhibit a value of the state satisfying the invariant, it would be necessary to
postulate the existence of an infinite set of distinguished zones (say z, 21, ...)
and an enumeration of the vehicles (say g, v1,...); then one could give e.g. the
following term as a witness value:

(capacity ~ X z: Zones o 1, location ~ {i:N e v; — z;} |

Similarly, the MoveVehicle operation is “implementable” provided there is a
state in which some zone is under capacity. These proof obligations seem to do
little to further our understanding of the system being specified.

6.2 A VDM analysis

We now specify the TMS in VDM, modelling the state variables as finite func-
tions of types Zone —— N and Vehicle —— Zone (Fig. 15). Since the expression
which finds the number of vehicles in a given zone is relatively complicated in
VDM-SL, we have decided to encapsulate it as an auxiliary function content.
Formally, the proof obligation to show well-formedness of content is

z: Zone, loc: Vehicle —— Zone

(card (dom (loc > {z}))): N

The constraint that zone z’s capacity is not exceeded can be stated as
content(z, loc) < cap(z), where loc is the value of the location mapping and cap
is the value of the capacity mapping. But since cap is a finite function, cap(2)
will be defined for only finitely many zones z. We must ask ourselves, for which
z are we interested in expressing the constraint? A reasonable answer would be
to restrict to occupied zones (i.e., z € rng loc) and to state the constraint as

Vz: Zone - z € tng loc = content(z, loc) < cap(z)

To be able to prove that this formula is well-formed, however, it is necessary
to ensure that cap(z) is defined for all z € rngloc, or in other words, that
rng loc C dom cap. This constraint has been added to the state invariant in

state TMS of

. m MoveVehicle (v: Vehicle, z: Zone)
capacity: Zone — N '

location: Vehicle =~ Zone ext rd capacity: Zone — N

inv mk-TMS (cap, loc) A wr location: Vehicle — Zone

rng loc C dom cap A
Vz: Zone - z € rngloc =
content(z, loc) < cap(z)

pre v € dom location A
z € dom capacity A
content(z, location) < capacity(z)

end post location = location t {v — z}

content : Zonex(Vehicle = Zone)
— N

content(z,loc) &
card (dom (loc 1> {z}))

Fig.15. The TMS specification in VDM.

Fig. 15. The proof that the full state invariant is well-formed is straightforward.
The state invariant is satisfiable for example when cap = loc = {+— }.

Now let us turn our attention to the operation for moving a vehicle v into
zone z. Formally, the satisfiability proof obligation for Move Vehicle is

v: Vehicle, z: Zone, mk- TMS (cap, Ez): TMS,
v € dom loc A z € dom cap A content(z,‘lo_c) < cap(z)
Jloc: Vehicle = Zone - inv-TMS(cap, loc) A loc = Toc {v— z}

where inv-TMS(cap, loc) is the state invariant. For the new value of location to
be consistent with the state invariant, we need at least that

rng (207 7{v— 2z}) C domcap

and hence that z € dom cap, or in other words that z is one of the known zones.
With experience, the specifier would also question whether vehicle v is already
known to the system (v € dom loc) or whether it is a “new” vehicle; let us assume
the former. Finally, to achieve the safety property, the destination zone z must
have room to accomodate v, so a statement saying that z is below capacity has
been added to the precondition.

The crux of the satisfiability proof is in showing that the state invariant holds
for the new value of the location variable, but this is quite straightforward, given
the operation’s precondition. Detailed examination of the proof would show that
the precondition is stronger than it needs to be: e.g. the assumption that z is

under capacity is not required in the case when 110_0(1)) = z. Just as in the 7

analysis, one is lead to question whether the operation should be allowed to
“move” a vehicle into the zone it is already occupying.

6.3 Discussion

It is dangerous to draw too many conclusions from a single small example. The
requirements analysis performed in formulating the Z specification was rather
superficial, and did little more than write down—albeit more formally—the re-
quirements from the case study’s description. Of course, the results depend to
some degree on modelling decisions, and many experienced Z specifiers would
undoubtedly take the analysis a lot further than illustrated above. But the ex-
ample illustrates that partiality analysis has a role to play in the analysis of
specifications. In this case, it revealed an implicit requirement which may not
have been obvious in the informal specification of the problem: namely, that all
occupied zones have defined capacities.

The example illustrates how the combination of LPF and the techniques
of Section 5 can reveal hidden deeper relationships between different parts of
the specification, which in turn can reveal hidden assumptions or previously
undisclosed requirements.

7 Adapting W for LPF

The above techniques could easily be incorporated into a Z methodology as a
discipline, without necessarilly formalizing the analysis. For those readers who
might be interested in how to formalize partiality analysis for Z specifications,
however, this section contains some notes on adapting W [3, 18] for LPF.

It is first necessary to weaken some of the basic rules of W to make them
consistent with a new underlying semantic model in which the meaning of ex-
pressions and predicates may be undefined. A sequent

d | p1:~~~:pm'_ d1,-- -5 9m

would be valid in the new interpretation if, whenever the environment is enriched

with the declarations of d in such a way that the property of d and the predicates

P1, ..., pm denote the truth value true, then at least one of the ¢; denotes true.
Under this new interpretation, the W rule for negation introduction

_PE
F=P

would not be valid when P is undefined. The rule needs an additional hypothesis
to the effect that P is defined. One solution would be to add a Boolean type
to Z and to use the typing approach from above (i.e., add P:TB as hypothesis).
Another solution, requiring a less radical change to Z, would be to represent the
fact that P is defined by the assertion 6 P, where P == = (P A = P). The new
rule for negation introduction would be:

6P P
F-P

As it happens, this is the only required amendment to the basic rules for propo-
sitional calculus given by Woodcock and Brien [18], although some new basic
rules are required (see Fig. 16). Note that the rule for negation introduction can
be derived from the axioms in Fig. 16.

- P P kP
F—==P —=PF =PF

P,QF FP FQ F-P-Q -PF -QF
PAQF FPAQ F-(PAQ) —(PAQF

Fig.16. A W style axiomatization of propositional LPF.

Under a ‘strict’ interpretation of equality, the formula ¢ = b would denote a
truth value iff ¢ and b denote values of the same underlying type: viz.

a:T,b:T F é6(a=0b)

where T is a metavariable ranging over base types. From this and Leibniz’s rule
can be derived a (modified) law of reflection:

T Ft=t

8 Conclusions

7 and VDM are very closely related as specification methods, but there are some
differences which affect the nature of the analysis techniques they support. This
paper has attempted to describe some of the specification verification techniques
available to VDM which might not be so familiar to Z users: in particular, the
analysis of partial terms and the use of a Logic of Partial Functions to ensure
that specifications are mathematically well-formed, and the use of satisfiability
analysis to show they are mathematically meaningful.

It is not necessary to use LPF to derive much of the benefit of partiality
analysis. Many incompletenesses in a specification can be revealed simply by re-
stricting oneself to partial functions, explicitly noting their domains of definition,
and then systematically checking that such functions are applied only to values
in their domains. We have found LPF to be a relatively concise logic which dif-
fers minimally from classicial logic while recognizing that terms and formulae do
not always define values. In practice, reasoning in LPF is almost identical to rea-
soning in classical logic, except for the abundance of well-formedness hypotheses
to be discharged. We have sketched how the W propositional calculus could be
adapted to accommodate the principles of LPF, but more work is needed to
carry the ideas through to the rest of W.

In terms of practical consequences for the specifier, adoption of LPF would
make it necessary, for example, to add sufficiently many conjuncts to schema
bodies to ensure that the conjunction denotes a truth value. For example, the
schema,

_T
fiA+ B
z:A; y: B

flz) =y

would require an extra conjunct of the form z € domf to ensure that f(z) is
well-formed.

Underlying logic aside, for the purposes of specification verification the main
differences between Z and VDM-SL are that Z offers better support for structur-
ing specifications, while VDM-SL specifications contain more explicit informa-
tion (most notably, explicit preconditions in functions and operations). Although
it is sometimes cumbersome to have to do so, we believe that preconditions are
such an important part of any development methodology that they should always
be stated explicitly.

We have argued that the above points, in conjunction with the use of finitary
data types, can lead to a deeper understanding of the requirements being formal-
ized. Such analysis often reveals assumptions that may otherwise go overlooked
until much later in the development. Considering that top-level specification er-
rors might only become apparent after the system has been implemented and is
in operation, such analysis techniques can be highly cost-effective.

Acknowledgements

The author gratefully thanks Erik van Keulen, Tan Hayes, Gordon Rose, Kelvin
Ross, John Fitzgerald, Jim Grundy, Tony Cant and colleagues at the SVRC
for many useful discussions on these topics, and his ex-mural colleagues (and
especially Cliff Jones) for collaboration on verification techniques for VDM.

References

1. H. Barringer, J.H. Cheng, and C.B. Jones. A logic covering undefinedness in pro-
gram proofs. Acta Informatica, 21:251-269, 1984.

2. J.C. Bicarregui, J.S. Fitzgerald, P.A. Lindsay, R. Moore, and B. Ritchie. Proof
in VDM: a Practitioner’s Guide. FACIT Series. Springer-Verlag, 1994. ISBN no.
3-540-19813-X.

3. S.M. Brien and J.E. Nicholls. 7 Base Standard, Version 1.0. Technical Report
SRC D 132, Oxford University Programming Research Group, November 1992.

4. British Standards Institute, Working Group IST/5/19. VDM Specification Lan-
guage Proto-Standard: Draft, November 1993.

5. J.H. Cheng. A logic for partial functions. Technical Report UMCS-86-7-1, Uni-
versity of Manchester, Department of Computer Science, 1986.

10.

11.
12.

13.

14.

15.

16.

17.

18.

19.

S. Gilmore. Correctness-Oriented Approaches to Software Development. PhD the-
sis, University of Edinburgh, Department of Computer Science, 1991.

A. Hall. A response to Florence, Dougal and Zebedee. FACS Europe, 1(1):31-32,
1993.

. I. Hayes. VDM and Z: A comparative case study. Formal Aspects of Computing,

4(1):76-99, 1992.

. I. Hayes, editor. Specification Case Studies. Prentice-Hall, second edition, 1993.

First Edition published in 1987.

1.J. Hayes, C.B. Jones, and J.E. Nicholls. Understanding the differences between
VDM and Z. FACS Europe, 1(1):7-30, Autumn 1993.

W. Hodges. Another semantics for Z. draft preprint, August 1991.

C.B. Jones. Systematic Software Development Using VDM. Prentice Hall, New
York, second edition, 1990.

C.B. Jones, K.D. Jones, P.A. Lindsay, and R. Moore. Mural: A Formal Develop-
ment Support System. Springer-Verlag, 1991.

C.B. Jones and C.A. Middelburg. A typed logic of partial functions reconstructed
classically. Technical Report Logic Group Preprint Series 89, Department of Phi-
losophy, Utrecht University, April 1993.

P.A. Lindsay and E. van Keulen. Case studies in the verification of specifications
in Z and VDM. Technical Report TR 94-3, Software Verification Research Cen-
tre, University of Queensland, March 1994. Available by anonymous ftp from
ftp.cs.uq.edu.au.

B. Monahan and R. Shaw. Model-based specifications. In J.A. McDermid, editor,
Software Engineer’s Reference Book, chapter 21. Butterworth-Heinemann, London,
1991.

J.C.P. Woodcock. Calculating properties of Z specifications. ACM SigSoft Soft-
ware Engineering Notes, 14(5):43-54, 1989.

J.C.P. Woodcock and S.M. Brien. W: a logic for Z. In J.E. Nicholls, editor, Z User
Workshop, York 1991. Springer-Verlag, 1992. Proceedings of the Sixth Annual Z
User Meeting.

J.B. Wordsworth. Software Development with Z: a Practical Approach to Formal
Methods in Software Engineering. Addison-Wesley, Wokingham, England, 1992.

This article was processed using the INTRX macro package with LLNCS style

