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Abstract

This paper describes the CARE method for developing formally verified soft-
ware. The method partitions the software development task in such a way that
formal verification takes place in parallel with design and implementation. The
aim is to separate the software design aspects of verified software development
from the formal mathematical aspects.

This paper presents the conceptual basis for the CARE method of algorithm
development from formal program specifications. The CARE notation is intro-
duced, together with a process of proof obligation generation. The method is
illustrated on a small development.
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1 Introduction

1.1 Motivation

Computer software is increasingly used to control systems whose malfunction may
threaten life, compromise national security, or have other serious consequences. For-
mal (mathematically-based) techniques of software development are proposed as a
means of significantly enhancing the nature of assurance in the correctness of the de-
livered software. The emerging importance of formal methods is increasingly being
recognised by government regulatory and standards authorities, as evidenced by the
growing number of standards which mandate or recommend the use of such methods
in the development of trusted software [1, 2, 3, 4, 5].

Formal specification techniques offer improved understanding of the system being de-
veloped and present opportunites to perform cross-checks on specifications, thereby
discovering and fixing mistakes early in the development life-cycle. Formal specifica-
tion techniques are already being used widely [6, 25, 30].

Formal development techniques extend the benefits of formal specification further into
the development process by allowing the user to express design and implementation
strategies for meeting formally specified requirements. Formal verification can then be
used to check the correctness and completeness of those strategies, perhaps revealing
gaps that need to be plugged. As currently practised, however, formal software devel-
opment is a laborious and time-consuming task, calling for specialized mathematical
skills.

Formal verification of a medium-sized application typically would include the following
tasks. Each software component is formally specified and implemented, and the imple-
mentation is shown to satisfy the specification. Each software module, consisting of a
collection of individual software components, is formally specified and the combination
of components is shown to satisfy the module specification. Interfaces between software
modules — and between software and other system modules (hardware devices, users,
off-the-shelf products, etc.) — are formally specified, and the modules are shown to
respect the interfaces. The whole design is shown to meet its functional specification as
well, perhaps, as satisfying certain other high-level properties, such as having certain
safety or security features.

In principle, formal development can be carried all the way through to code. In practice
however very few target implementation languages have complete formal semantics. As
a result, most formal development methods stop at the level of programs expressed in
a formally-defined intermediate language. Programs are then ported to the desired
target language.

The most cost-effective time to establish correctness is during development when design
decisions are being made and checked, rather than afterwards during testing as is done
when using traditional development techniques. After-the-fact verification is generally
not feasible: correctness needs to be designed into a product. For these reasons it is
important that formal development techniques be usable by non-mathematicians.

A method is needed which structures the development process in such a way that
verification steps are individually manageable by the software developer. Such an



approach has shown to be successful when the design space is tightly constrained, for
example in the AMPHION system [28] where programs are derived from specifications
written by space scientists, using a library of formally-specified Fortran routines. In
AMPHION's case, proof obligations are discharged by a mechanical theorem prover
behind the scenes.

1.2 The CARE method

This paper describes the CARE approach to developing formally verified software.
CARE stands for Computer Assisted Refinement Engineering. The aim of the
CARE method is to partition the software development task in such a way that formal
verification takes place in parallel with design and implementation, as unobtrusively
as possible. The aim is to separate the “engineering” aspects of verified software
development (such as requirements specification, algorithm design, and choice of data
structures) from the “scientific” aspects (such as mathematical modelling, proof obliga-
tion generation, and formal proof of correctness). As far as possible, formal verification
aspects of the method are consigned to automated tools, allowing the software engi-
neer to concentrate instead on the design and development of usable, efficient pieces
of software.

The CARE language is used to express program specifications and designs. Special-
purpose tools produce code in a compilable target language, together with a certificate
of correctness for the code (see Fig. 1). The method is essentially independent of the
particular specification notation used, and is largely target language/compiler/platform
independent.

Under CARE, the programming/verification task is structured in a natural and effective
manner, whereby programming knowledge is packaged into reusable components called
types and fragments. Roughly speaking, a CARE type is an abstract data structure,
and a CARE fragment is a package of programming knowledge corresponding roughly
to a function or procedure in a procedural programming language.

Each CARE type and fragment has a formal specification and an implementation.
Primitive types and fragments provide access to target language data structures and
basic functionality, and are provided to the CARE user as a library. Primitive types and
fragments are implemented directly in the target language. The formal specification
of a primitive type or fragment describes it mathematically.

Higher-level types and fragments express data refinements and algorithm designs, and
are written in a special purpose language. The CARE language supports simple design
constructs such as assignment of values to local variables, fragment calls, sequenc-
ing, branching of control, recursion, and data refinement. The specification part of
the language supports many-sorted predicate calculus. CARE components may have
associated applicability conditions which define the circumstances under which the
component may be applied.

The CARE language has a formally-defined mathematical semantics. Using this se-
mantics, higher-level components can be shown to be correctly implemented, assuming
the subcomponents they use have themselves been correctly implemented. Proof obli-
gations, generated mechanically from the components’ definitions, check that appli-



cability conditions are satisfied and that implementations achieve their specifications.
When a component set is complete and the proof obligations have been discharged, a
target language-specific CARE tool synthesizes a complete source code program from
the set. The CARE process is summarized in Fig. 1.
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Figure 1: The CARE process of verified software production.

1.3 Verification under CARE

The CARE method is designed to allow much of the verification task to be done off-
line, in reusable fragments, independent of other software development tasks. The
main aspects of the approach are:

1. The correctness of each higher-level fragment is verified in isolation as far as
possible, using information from the specifications (only) of the fragments they

call.!

Verification of termination, however, generally requires full details of the set of mutually recursive
fragments.




2. The choice of design constructs supported by the CARE language strikes a balance
between design flexibility and ease of verification.

3. The interface to the target language is via primitive types and primitive frag-
ments, taken from a library. The correctness of primitive components is estab-
lished off-line, by techniques appropriate to the target language in question (not
part of the CARE method).

4. The CARE language is typed and type-checking is fully automatable. This takes
some of the load off the theorem prover by revealing certain classes of semantic
error earlier. It also allows the theorem prover to use type information in its
reasoning.

5. Designs can be expressed largely independently of the target language, which
means they are more easily portable. 2

6. Common program refinement techniques can be expressed as parameterized frag-
ment templates and verified off-line for later reuse: see Section 7 for an example.

Because the logical relationship between specification and implementation is main-
tained by the method, the code produced by the method is fully traceable back to the
program specification, and vice-versa. Software designs can be modified by changing
individual fragments, and then rerunning the tools on the whole design to generate
a new certificate of correctness and a new target language program. Components of
the final design which are platform — or language — specific are isolated in primitive
fragments, for separate verification. The sum effect of this approach is that the design
aspects of software development are separated out from the mathematical aspects of
software verification in a practical and effective manner.

1.4 Using CARE in system development

CARE is a method for developing verified software from formal program specifications.
The method itself i1s largely independent of the particular specification language em-
ployed: this paper uses the 7Z notation [27] since it is widely familiar, but the method
could be tailored to fit with other formal specification notations, such as VDM-SL. [10]
or the Larch Shared Language [13]. The CARE language currently supports applicative
programming techniques only, but there are plans to extend this to cover fragments
which can change the value of a hidden state.

For software system development, we imagine that CARE would be used in conjunction
with a method or methods for requirements capture, system specification and system
design, where such a method results in program module specifications: see [22] for an
example. CARE is most effective where there is a requirement for formally verified
software, such as when dealing with high integrity software components, or when the
logic of the program to be developed is complex or unfamiliar. Because they are
target language source-code programs, CARE-synthesized programs can be integrated

2GSee e.g. the Larch literature [13] for a discussion of the importance of separating design consider-
ations from target language considerations.



with other system components and tested using traditional integration techniques: see
Fig. 2. Also, CARE can be used to produce programs in target languages which do
not have fully formally-defined semantics, by restricting primitive fragments to pieces
of target language code which have a mathematically-definable meaning.
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Figure 2: Use of CARE in system development using the traditional waterfall model.

CARE can also be used in conjunction with formal development techniques such as
VDM [20] or the Refinement Calculus (RC) [24]. We are still investigating the re-
lationship between the different techniques, but all available evidence seems to in-
dicate that CARE developments can easily be translated into VDM or RC develop-
ments/refinements and vice-versa: see [21] for the translation from RC to CARE. In
part, CARE can be seen as a way of giving further structure to VDM or RC devel-
opments — structure which is useful for raising the level at which one reasons about
designs and design choices, while hiding lower-level verification aspects. We plan to
further investigate a closer integration of these different approaches.

The CARE method is informed — and partly inspired [26] — by the Verification Con-
dition Generation (VCQG) approach to program verification [11, 12], and could be com-
bined with such approaches. In particular, we have purposefully left open the range of



techniques used for verification of primitive (target-language implemented) types and
fragments.

We have also left open the kinds of theorem prover that could be used with CARE.
Our project is currently exploring two different technologies. Keith Harwood and
his team at Telectronics have developed a purpose-built automatic theorem prover
based on many-sorted resolution under equality. At the SVRC we have adapted the
Ergo interactive proof assistant [29] by using its store of theorems about many-sorted
set theory and developing special-purpose simplification procedures and appropriate
tactics and heuristics for the kinds of proof that arise under CARE. Since the CARE
method is largely independent of the mathematical language used in specifications, it
would be possible to adapt it — if desired — to other mathematical languages and
other theorem provers, such as Boyer-Moore [8] or the EVES prover [11].

Finally, the Telectronics team are prototyping a set of tools for assisting the CARE
user in constructing top-down developments by selecting and instantiating program
templates (also known as scenarios).

1.5 This paper

This paper presents the conceptual basis for the CARE method of algorithm develop-
ment. (CARE also covers data refinement [20] but the topic will not be treated here.)
The CARE language has been evolving over a number of years [14, 15] and the nota-
tion has changed significantly during that time. This paper uses a verbose form of the
CARE notation intended primarily for expository purposes: our prototype tools use a
more concise notation more suited to machine processing.

The paper is structured as follows. Section 2 below outlines the mathematical notation
used in the paper for expressing program specifications and defines the CARE types
used. Section 3 explains the CARE notation for fragment specifications, illustrated
with a number of examples. Section 4 describes the CARE language for implementing
fragments. Section 5 discusses the semantics of the CARE language and outlines the
proof obligations associated with a fragment collection. Section 6 gives an example of
algorithm development in CARE. Section 7 illustrates how a programming technique
can be expressed as a CARE template.

A companion paper [18] formalizes the process of generating the proof obligations
associated with use of the CARE method. The report [23] describes code synthesis
— the process of combining target code from primitives using higher-level types and
fragments to guide the construction of a target-language program. As outlined above,
the CARE method is largely target-language independent: use of target-language code
is confined to primitive types and primitive fragments and will not be treated here.
Case studies in CARE are presented in [22], and [19] is a formal specification of the
CARE language.



2 Preliminaries

2.1 Mathematical notation

This paper uses 7 [27] as the mathematical notation for writing program specifications
since it 1s widely familiar. 7 uses a set-theory based, many-sorted predicate calculus
which has gained widespread usage. A recent U.K. survey [6] reported that, of the
400 respondents (70% from industry, 30% academic), over half currently use formal
methods, and that of these, the two most widely used are Z and VDM. Industrial or-
ganisations which use 7 include IBM, ICL, British Telecom, Hewlett Packard, British
Aerospace, BP, Logica and Tektronix (USA). An international standard for Z is cur-
rently being prepared under the auspices of the International Standards Organisation

(IS0) [9].

7, notation | meaning

Z the set of all integers

N the set of all natural numbers

(m..n) the set of integers between m and n inclusive

m div n the integer part of m divided by n (n # 0)

AUB the union of sets A and B

A— B the set of all total functions from set A to set B

a€ A a is an element of set A

maz A the maximum element in a finite, non-empty set of integers A
seq X the set of all finite sequences over X

< > the empty sequence

(€) the singleton sequence consisting of e alone

st the concatenation of sequences s and ¢

#s the length of sequence s

s(i) the element at index i in sequence s (i.e., the ith element of s)
head(s) the head (first element) of sequence s

tail(s) the tail (i.e., all elements but the first) of sequence s

last(s) the last element of sequence s

ran(s) the range of (i.e., set of all elements in) sequence s

rev(s) the reverse of sequence s

Table 1: The 7Z mathematical notation used in this paper.

Table 1 summarizes the 7 notation used in this paper. In the body of the paper,
CARE values and types are written in typewriter font and mathematical expressions
are written in italics using the 7 notation.

2.2 CARE types

The CARE type system links target language data structures with their abstract math-
ematical counterparts. The specification of a CARE type is an expression which denotes
the set of mathematical values which the CARE value can take (its “carrier set”).



Like fragments, CARE types can be primitive or higher-level. Primitive types are imple-
mented directly as target language data structures and are modelled as mathematical
sets. Table 2 gives some examples of mathematical modelling of programming language
data structures. Since this paper concentrates on the target language-independent as-
pects of CARE, details of the implementation of primitive types will not be given here.

Programming language data structure | corresponding mathematical
set of values

arbitrary precision integers Z

10-bit integers (=511..512)
arbitrary-length strings of characters | seq CHARACTERS
fixed-size arrays, of size k, of elements | (1..%k) — ELEMENTS
linked lists of elements seq ELEMENTS

Table 2: Examples of modelling of data structures in Z.

Higher-level CARE types are used for expressing data refinements: that is, changes of
mathematical representation of data types (called data reification in [20]). For example:
sets might be implemented in terms of non-repeating sequences; and rational numbers
might be implemented as pairs of integers. The case study [22] illustrates the use of
data refinement in CARE. The implementation in CARE of higher-level types will not
be discussed further in this paper.

Table 3 defines the CARE types used in this paper.

CARE type data structure mathematical set
Integer integers Z

Natnum natural numbers N

Element elements ELEMENTS
List lists of elements seq ELEMENTS
NatList lists of numbers seq N

Table 3: CARE types used in this paper.

3 Fragment specifications

3.1 Simple and branching fragments

There are two kinds of fragment: simple and branching.

A simple fragment takes inputs and produces outputs. The number and type of inputs
taken by a fragment is fixed. In addition, there may be a precondition (or applicability
condition) which further limits the inputs that can be supplied to the fragment: for
example, a fragment for finding the head of a list may require that the list be non-
empty. There will be proof obligations to show that the precondition is satisfied each
time the fragment is called.

10



Like a simple fragment, a branching fragment takes inputs and produces outputs. The
number and type of inputs is fixed, and there may be a precondition. Unlike a simple
fragment, however, the number and type of outputs of a branching fragment may be
different for different inputs. For example, a branching fragment for “decomposing”
a list may have two different cases: one for when the list is empty (in which case it
returns no outputs), and the other for when it is non-empty (in which case it would
return the head and tail of the list). The different cases are distinguished by formulae
called guards. A branching fragment produces a report to indicate which case has

arisen.

3.2 Specification notation

A fragment’s specification describes the fragment mathematically. The specification
defines the types of the inputs, the precondition, the different results (reports and
output types) that may arise, and the required input/output (I/0) relationship in each
of the cases. These notions are illustrated on examples below.

Fragment specifications may be underdetermined, in the sense that more than one
output may satisfy the required I/O relationship for any given input. This degree of
nondeterminism is useful for writing abstract specifications and for allowing detailed
design choices to be postponed until later in the development process [17]. This is
illustrated by an example in Section 6 below.

Example (1) The specification of a simple fragment for finding the head of a non-
empty list:

Fragment car(s:List) has
specification:
precondition #s # 0
output h:Element such that h = head(s).

The name of the fragment is car. (The reason for the LISP-like naming will become
apparent as the paper progresses.) The fragment has a single input parameter s of type
List. The fragment’s precondition is that the input be non-empty: this is expressed
as #s # 0, where s is the mathematical value corresponding to the CARE value s.
(This convention applies to all CARE variables: typewriter font is used for the CARE
value and italics for the corresponding mathematical value.) The fragment’s output h
is of type Element and is defined in terms of the relationship it has to the original list:
in this case, h = head(s).

Example (2) The specification of a simple fragment for finding the tail of a non-empty
list:

Fragment cdr(s:List) has
specification:
precondition #s # 0
output t:List such that ¢ = tail(s).
Example (3) The specification of a simple fragment for the empty list:

11



Fragment nil has
specification:
output s:List such that #s = 0.

(Where the precondition is ‘true’ it is omitted.)

Example (4) The specification of a simple fragment for putting an element onto the
front of a list:*

Fragment cons(e:Element,s:List) has
specification:

)

output r:List such that r = (e) 7 s.

Example (5) The specification of a branching fragment for checking whether a list is
empty:

Branching fragment null(s:List) has
specification:
result defined by cases:
if #s = 0 then report yes
else report no.

The null fragment has two branches. The first branch, with guard #s = 0, simply
reports yes without returning any outputs: this branch is taken when s is empty. The
second branch is taken when s is not empty: in this case, the fragment reports no,
again with no outputs.

Example (6) The specification of a 3-way branching fragment for comparing two

integers:

Branching fragment compare(m:Integer,n:Integer) has
specification:
result defined by cases:
if m < n then report lessthan
elseif m = n then report equal
else report gtrthan.

For this example, the guards on the three branches are m < n, m = n and true,
respectively. (As usual, the ‘true’ is omitted.) As the notation suggests, the guards
are evaluated in turn to determine which branch should be taken: the first branch is
taken if m is less than n, the second if m is equal to n, and the third branch otherwise.

Example (7) The specification of a branching fragment which searches a list for the

index (if any) of a given element:

Branching fragment search(s:List,x:Element) has
specification:

3An equivalent T/O relationship is r # () A head r = e A tailr = s.

12



result defined by cases:
if € ran(s) then report found
with output i:Natnum such that s(i) =z
else report notfound.

The search(s,x) fragment has two cases: when x occurs in s, it reports found and
returns an index at which x can be found; otherwise it simply reports notfound. Note
that the specification is underdetermined: for example, if x occurs more than once in
s, the specification does not uniquely define which index i should be returned.

4 Fragment implementations

4.1 Primitive fragments

Primitive fragments are ones whose implementation involves target language code.
Since this paper concentrates on the target language-independent aspects of CARE,
details of the implementation of primitive fragments will not be given here.

A primitive fragment’s specification describes the associated target code’s functionality
in terms of (a mathematical model of) the semantics of the target language and its
compiler. For example, a procedure which appends a new cell onto a linked list might
be modelled mathematically as a function which conjoins an element onto a finite
sequence.

Primitive fragments are written by a trusted party — a specialist in mathematical
modelling of target language code — and verified outside the CARE method using
techniques appropriate for the particular target language. The CARE method simply
assumes that primitive fragment specifications are correct: that is, that they accurately
capture the semantics of the fragment’s target code.

The ordinary CARE user does not write primitive fragments: they can only use the
ones supplied with the CARE system. At the same time, the only access the CARE user
has to the target language is via primitive fragments. In this way, primitive fragments
form a kind of firewall, preventing the ordinary user from interacting directly with the
target language. Over time, we anticipate that large libraries of reusable primitive
fragments will be developed by verification experts. The correctness of individual
fragments would be checked by rigorous peer review, and only those fragments which
pass the most stringent reviews would pass into general use.

The rest of this section describes the CARE language for constructing higher-level
fragments.

4.2 Simple fragments

Higher-level fragments are implemented in the CARE language, which is tree-structured.
Non-branching nodes of the tree correspond to bindings to local variables of the values
returned by simple fragment calls and/or variables. Branching nodes correspond to
calls to branching fragments; where branches return values, these values get bound to

13



local variables. The leaves of the tree define the fragment’s outputs — as well as the
report, in the case of branching fragments. These ideas are illustrated on examples
below using fragments whose specifications are given in Section 3.2 above.

Here is a simple fragment which takes an element and constructs a singleton list from
it:

Fragment makeList (e:Element) has
specification:

output s:List such that s = (¢).
implementation:

assign nil to t:List;

return cons(e,t).

For this example, the tree has no branching. Execution of makeList (e) assigns the
value of the nil fragment (the empty list) to local variable t, calls the cons fragment
on arguments e and t, and returns the result. A proof obligation (see Section 5 below)
will check that the result satisfies the makeList specification.

Nested calls to simple fragments are allowed, so an alternative implementation of
makeList is simply ‘return cons(e,nil)’.

4.3 Recursion and variants

Recursive calls and mutual recursion are allowed — e.g. fragment fragl can call frag-
ment frag2, where fragment frag2 calls fragment fragli — provided the recursion
eventually terminates. In order to prove termination, the CARE user supplies a vari-
ant function (or variant for short) whose value decreases on recursive calls.* For the
purposes of this paper, a variant will be an N-valued function defined on the input
variables, although in the full CARE method, the variant consists of a measure and a
well-founded ordering.

Here is a simple fragment which finds the last element in a linked list:

Fragment end(s:List) has
specification:
precondition #s # 0
output e:Element such that e = last(s).
implementation:
assign cdr(s) to t:List;
case null(t) of
yes: return car(s).
no: return end(t).
variant: #s.

In executing this fragment on input s, the tail of s gets assigned to t, and then
execution branches according to the result of null(t). If t is empty (so null(t)

*With a mutually recursive set of fragments, it may not be necessary to give a variant for all of
the fragments in the set: see [18] for details.

14



reports yes) then the value of car(s) is returned. Otherwise, the end fragment is
called recursively on t. The length of the input list has been given as the variant.

4.4 Branching fragments

In addition to outputs (if any), implementations of branching fragments have reports
at the leaves of the tree. Here is a branching fragment for “decomposing” a list:

Branching fragment decomposeList(s:List) has
specification:
result defined by cases:
if #s = 0 then report empty
else report nonempty
with outputs h:Element,t:List such that s = (k) 7 (.
implementation:
case null(s) of
yes: report empty.
no: report nonempty and return car(s),cdr(s).

Execution of decomposeList (s) has two possible cases. If s is empty, it reports empty
without returning any outputs. Otherwise it reports nonempty and returns the head
and tail of s.

4.5 Abort

An abort statement is provided for use in branches which will never be executed. For
the purposes of illustration, here is a (rather artificial) example of a simple fragment
which finds the second element in a list:

Fragment cadr(s:List) has
specification:
precondition #s > 2
output e:Element such that e = s(2).
implementation:
case decomposeList(s) of
empty: abort.
nonempty: assign outputs to a:Element,u:List;
case decomposeList(u) of
empty: abort.
nonempty: assign outputs to b:Element,v:List;
return b.

In this example neither empty case will arise, since the precondition ensures that the
input list has two or more elements. The abort statement signals to the proof obligation
generator that it is necessary to show that the branch will never be executed.

15



4.6 Anuxiliary fragments

As in functional programming, a complete program typically involves defining a set of
“auxiliary” fragments in addition to the main fragment being defined. For example,
here is a pair of fragments for reversing a list:

Fragment reverse(s:List) has
specification:

output r:List such that r = rev(s).
implementation:

return revAcc(s,nil).

Fragment revAcc(u:List,v:List) has
specification:
output w:List such that w = rev(u) ™ v.
implementation:
case decomposeList (u) of
empty: return v.
nonempty: assign outputs to h:Element,t:List;
return revAcc(t,cons(h,v)).
variant: #u.

In effect, the auxiliary fragment revAcc(u,v) works its way along the list u, prepend-
ing each successive element onto the front of the “accumulator” v. In the fragment
reverse(s), the accumulator v is initialized to be the empty list nil and u is set equal
to s. Thus, when the end of u is reached, v holds the reverse of the original value of
s, as required.

5 Fragment verification

The purpose of fragment verification is to check that a fragment’s implementation
satisfies its specification. This section outlines an informal semantics for fragments
and describes how to reason about their correctness.

5.1 Proof obligations

Under the CARE method, verification of a fragment set involves establishing a number
of proof obligations, which fall into four categories:

Partial correctness: The result returned at each (non-aborting) leaf of an imple-
mentation tree satisfies the appropriate 1/0 relationship.

Termination: For recursively-defined fragments, the variant is strictly decreasing on

recursive calls. Since the variant is bounded below by zero, it cannot decrease
indefinitely, so the recursion must eventually terminate.
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Well-formedness: For each fragment call, the fragment’s precondition (if any) is
satisfied.

Non-execution: Execution cannot reach an ‘abort’ leaf (at least, not for input values
which satisfy the fragment’s precondition).

If all of the proof obligations can be discharged (i.e., shown to be logical consequences of
the theory of the problem domain), the fragment set is guaranteed to be correct, in the
sense that execution of a fragment on input values which satisfy its precondition will
terminate and return a result which satisfies the fragment’s specified 1/0 relationship.

In practice, the proof obligations are generated by considering the different possible
execution paths through the fragment (or through the fragment set, for the termination
proof obligation when mutual recursion is present). For each path, the intermediate
results returned by fragment calls are assumed to satisfy the appropriate 1/0 relation-
ship. The proof obligations are illustrated on examples below. The interested reader
is referred to [18] for a more detailed treatment of proof obligation generation and its
justification.

5.2 Partial correctness

For simple fragments, each (non-aborting) leaf must satisfy the 1/O relationship given
in the fragment’s specification. The fragment’s precondition can be assumed to hold.
Consider for example the reverse fragment given in Section 4.6 above and repeated
here for convenience.

Fragment reverse(s:List) has
specification:

output r:List such that r = rev(s).
implementation:

return revAcc(s,nil).

Since both nil and revAcc have no precondition and the implementation is not re-
cursive, there is only partial correctness to consider. In this case the tree has a single
leaf, and the proof obligation is to show that the value r defined by revAcc(s,nil)
satisfies » = rev(s). From its specification, we know nil returns a list t such that
#1 = 0, or in other words that ¢ is the empty list (). From the specification of revAcc,

we can assume that the list r returned by revAcc(s,t) satisfies r = rev(s) 1, and
hence that r = rev(s) ™ () = rev(s), as required.

For branching fragments, the situation is slightly more complicated because it is nec-
essary to check that the report is appropriate and that the output satisfies the 1/0O
relationship corresponding to the report. For example, consider the branching fragment
example decomposeList from Section 4.4.

Branching fragment decomposeList(s:List) has
specification:
result defined by cases:
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if #s =0 then report empty
else report nonempty
with outputs h:Element,t:List such that s = (h) 7 ¢.
implementation:
case null(s) of
yes: report empty.
no: report nonempty and return car(s),cdr(s).

The partial correctness proof obligations amount to checking that, if execution reaches
a certain leaf then an appropriate result is returned. To reach the first leaf, for ex-
ample, null(s) must have reported yes and thus #s = 0, so ‘report empty’ is the
appropriate result. To reach the second leaf, null (s) must have reported no, so #s # 0
and ‘nonempty’ is the appropriate report; from the specifications of car and cdr, the

outputs h and t satisfy h = head s and ¢ = tail s, so s = (h) 7 1 as required.

5.3 Termination
As a more complicated example, consider the revAcc fragment:

Fragment revAcc(u:List,v:List) has
specification:
output w:List such that w = rev(u) ™ v.
implementation:
case decomposeList (u) of
empty: return v.
nonempty: assign outputs to h:Element,t:List;
return revAcc(t,cons(h,v)).
variant: #u.

For partial correctness, the 1/O relationship which is required to hold at the leaves of

the tree is that w = rev(u) 7 v. For this example the tree has two leaves. The first
(‘return v’) arises when decomposeList (u) reports empty, or in other words when u
is the empty list; in this case, the value of v is assigned to w and

rev(u) Tv=rev() Tw=()"w=w
as required. The second case arises when decomposeList (u) reports nonempty. In this
case, the outputs of decomposeList (u) are assigned to h and t. From the specification
of decomposeList we can assume that u = (h) 7 (. The result w returned at the leaf
is revAcc(t,cons(h,v)) which, according to the specifications of cons and revAcc

(used inductively), has value rev(t) ™ ((h) 7 v). It follows from simple properties of
sequences that

rev(u) " v =rev((h) T t) v = (rev(t) " (k) T v =rev(t) " ((h) "v)=w
as required.
For termination, we need to show that the variant is decreasing on recursive calls. In

this case, the value of the variant on the recursive call revAcc(t,cons(h,v)) is #t,

and #u = #((h) T 1) = #1 + 1, thus #¢ < #u as required.
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5.4 Well-formedness

To illustrate the well-formedness proof obligation consider the end example from Sec-
tion 4.3.

Fragment end(s:List) has
specification:
precondition #s # 0
output e:Element such that e = last(s).
implementation:
assign cdr(s) to t:List;
case null(t) of
yes: return car(s).
no: return end(t).
variant: #s.

In this implementation, the following fragment calls have nontrivial preconditions:
cdr(s), car(s), end(t). Well-formedness of the first two calls follows from the pre-
condition of the fragment being verified (namely, #s # 0). Well-formedness of end (t)
requires establishing that #¢ # 0, which follows from the fact that null (t) must have
returned no in order for execution to have reached this point.

As an aside, partial correctness of end follows from the following two facts:

#s £ 0N F#tail(s) =0 = last(s) = head(s)
#s £ 0N F#tail(s) # 0 = last(s) = last(lail(s))

5.5 Non-execution

Finally, as an example of the non-execution proof obligation, consider the second leaf
in the implementation tree for cadr(s) in Section 4.5.

Fragment cadr(s:List) has
specification:
precondition #s > 2
output e:Element such that e = s(2).
implementation:
case decomposeList(s) of
empty: abort.
nonempty: assign outputs to a:Element,u:List;
case decomposeList(u) of

empty: abort.
nonempty: assign outputs to b:Element,v:List;
return b.

From the fragment’s precondition we can assume that #s > 2, and from the specifica-
tion of decomposeList (s) we can assume s = <a>r\u. To show that decomposeList (u)
cannot report empty we need to show that #u # 0, which follows from the above as-
sumptions.
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6 An example development

This section illustrates the use of the CARE method by giving a stepwise development
of an algorithm for finding the integer part of the square root of a natural number [24].
The algorithm is developed through a series of design choices and each stage in the
design is verified before passing to the next stage.

6.1 Program specification

The program has fragment specification

Fragment sqroot (s:Natnum) has
specification:
output r:Natnum such that r? < s < (7‘ + 1)2.

6.2 First design step

The first step in a development of a program to satisfy this specification might be to
introduce a new local variables 1o and hi initialized to 0 and s + 1 respectively, and
then — keeping lo® < s < hi® invariant — to bring 1o and hi progressively closer
together until hi = lo+1. Such a design would be expressed in CARE notation as
follows:

Fragment sqroot (s:Natnum) has
implementation:
assign zero to lo:Natnum;
assign incr(s) to hi:Natnum;
return iterate(s,lo,hi).

where

Fragment zero has
specification:
output n:Natnum such that n = 0.

Fragment incr(m:Natnum) has
specification:
output n:Natnum such that n = m + 1.

are fragments one could expect to find in the library and

Fragment iterate(s,lo,hi:Natnum) has
specification:

precondition: lo < hi A lo® < s < hi”

output r:Natnum such that r* < s < (7‘ + 1)2.
implementation:
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case lessthan(incr(lo) ,hi) of
yes: assign closeGap(s,lo,hi) to lo,hi:Natnum;
return iterate(s,lo,hi).
no: return lo.
variant: hi — lo.

is a new, looping fragment which performs the necessary iteration using auxiliary
fragment closeGap, and

Branching fragment lessthan(x,y:Natnum) has
specification:
result defined by cases:
if < y then report yes
else report no.

would be another library fragment. closeGap is used to close the gap between lo and
hi, and has the following specification:

Fragment closeGap(s,lo,hi:Natnum) has
specification:
precondition lo +1 < hi A lo* <s< hi*
output u,v:Natnum such that v? < s <02 A0 < v —u < hi — lo.

As well as preserving the invariant, closeGap ensures that the variant of iterate
decreases on recursive calls. As we shall see, the form of the specification of closeGap
is largely dictated by the proof obligations for iterate.

6.3 Verification of first design step

Having expressed the design, let us now verify it. There are two proof obligations
associated with the sqroot fragment. Using the specifications of zero and incr, well-
formedness of the call to iterate from sqroot involves showing

Vs:seqNoO<s—|—1/\02§s<(s+1)2

Note that an error in the initialization of 1o or hi (e.g. hi = s) would be revealed here.
The partial correctness proof obligation for sqroot is to show that the result r returned
by iterate(s,lo,hi) satisfies r? < s < (7“ + 1)2, but this follows immediately from
the specification of iterate. This completes the verification of the sqroot fragment.

Turning next to iterate, partial correctness of the first leaf follows easily from the
specifications of closeGap and iterate (used inductively). The partial correctness
proof obligation for the second leaf amounts to showing

(lo < hi Nlo® < s < hi* No+1 £ hi) = lo” < s < (lo+1)?

which follows from the fact that lo < hi A lo4+1 £ hi = hi = lo +1. The termination
proof obligation for iterate follows immediately from the specification of closeGap.
The other proof obligations for iterate are straightforward.

Verifying the proof obligations for iterate gives us confidence that all of the salient
information for closeGap has been captured in its specification.
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6.4 Second design step

The next step in the development might be to refine closeGap by choosing a point
mid somewhere between lo and hi and — by comparing the value of mid* with s —
adjusting the value of lo or hi to equal mid appropriately. This could be expressed by
implementing closeGap as follows:

Fragment closeGap(s,lo,hi:Natnum) has
implementation:
assign chooseIntermed(lo,hi) to mid:Natnum;
return adjustBnds(s,lo,mid,hi).

where

Fragment chooseIntermed(lo,hi:Natnum) has
specification:

precondition: lo +1 < hi

output mid:Natnum such that lo < mid < hi.

and
Fragment adjustBnds(s,lo,mid,hi:Natnum) has
specification:
precondition: lo < mid < hi A lo° < s < hi’
output u,v:Natnum such that u? < s <v? A0 <v—u < hi—lo.
implementation:
cases lessthan(s,square(mid)) of
yes:return lo,mid.
no: return mid,hi.
where

Fragment square(m:Natnum) has
specification:
output n:Natnum such that n = m?.

The partial correctness proof obligations for adjustBnds are

(lo < mid < hi Alo® < s < hi® A s < mid®)
:>(102§s<mid2/\0§mid—lo<hi—lo)
(lo < mid < hi A lo* < s < hi* A s £ mid?)
= (mid* < s < hi® A0 < hi —mid < hi—lo)

The other proof obligations are easy to check.
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Program sqroot(s:Nat)
var lo,hi:Nat

procedure iterate(in s:Nat, var lo,hi:Nat) is
var mid:Nat
begin
mid = div2(lo+hi);
if s < mid*mid then lo,hi := lo,mid else lo,hi := mid,hi
end iterate;

begin
lo := 05 hi := s+1;
iter: 1f lo+1<hi then iterate(s,lo.hi); goto iter else return lo
end sqroot

Figure 3: The sqroot algorithm “synthesized” from the design.

6.5 Third design step

The final step in the development is to choose a value for mid such that lo < mid < hi.
Let us simply take the “midpoint” of lo and hi:

Fragment chooseIntermed(lo,hi:Natnum) has
implementation:
return div2(add(lo,hi)).

where

Fragment add (x,y:Natnum) has
specification:
output z:Natnum such that z = = + y.

Fragment div2(m:Natnum) has
specification:
output n:Natnum such that n = m div 2.

This completes the development of sqroot. Fig. 3 shows the algorithm that might
be synthesized from this design. (The actual code synthesized by CARE tools would
obviously depend on what target language was used.)
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7 An example programming technique

7.1 Templates

A template is a parameterized collection of CARE types and fragments, some fully
implemented and others simply specified. One or more of the fully implemented frag-
ments act as the seed of the template. A template may have applicability conditions
which dictate the circumstances under which the template can be used.

To use a template, the CARE user instantiates the parameters in such a way that
the template’s seed matches one of the problems at hand (i.e., a fragment requiring
implementation) and such that the applicability conditions can be discharged. The
instantiated template gets added to the fragment set: the fully implemented fragments
of the template become new auxiliary fragments, and the specified-only fragments
become the new problems.

Templates can be written, for example, for choosing the data structures to implement
abstract data types, or for defining algorithms to calculate required properties or to
achieve desired ends. An example is given below which illustrates the use of a template
to define a strategy for processing lists using an accumulator.

As indicated in Section 1, we envisage that common program refinement techniques
would be expressed as reusable templates, whose correctness is established once, off-
line, by a CARE expert. In this way, the software engineer’s verification task would be
reduced from proving the whole fragment set to showing that the template’s applica-
bility conditions are satisfied, which is generally a much simpler task.

7.2 An accumulator

A common strategy for defining programs which successively process the elements of
a list is to use an accumulator, which is a variable that holds intermediate values as
the list is processed. The strategy involves introducing a secondary procedure which
takes the accumulating value as a parameter.

For example, let sum be the function which sums the elements of a list of numbers:

‘ sum : seqZ — Z

sum() =0

Vao:Z e sum(z) =z

Vs,t:seqZ o sum(s ™ t) = sum(s) + sum(t)
Here is a CARE program for calculating sum:

Fragment sum(s:NatList) has
specification:

output n:Natnum such that n = sum(s).
implementation:

return sumAcc(s,zero).
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Fragment sumAcc(s:NatList,m:Natnum) has
specification:
output n:Natnum such that n» = sum(s) + m.
implementation:
case decomposeList(s) of
empty: return m.
nonempty: assign outputs to h:Natnum,t:NatList;
return sumAcc(t,add(m,h)).
variant: #s.

The result is a tail-recursive procedure whose algorithmic complexity is linear in the

length of the list.

7.3 A template for accumulators

Generalizing from the above, a simple template for list accumulators is:

Fragment processList(s:ElemList) has
specification:

output b:Acc such that b = f(s).
implementation:

return accumulator(s,base).

Fragment accumulator(s:ElemList,a:Acc) has
specification:
output b:Acc such that b = foldl(hd, a,s).
implementation:
case decomposeElemList (s) of
empty: return a.
nonempty: assign outputs to h:Elem,t:ElemList;
return accumulator(t,processElem(a,h)).
variant: #s.

Fragment processElem(b:Acc,x:Elem) has
specification:
output c:Acc such that ¢ = hd(b, z).

Fragment base has
specification:
output b:Acc such that b = base.

Branching fragment decomposeElemList(s:ElemList) has
specification:
result defined by cases:
if #s = 0 then report empty
else report nonempty
with outputs h:Elem,t:ElemList such that s = (h) ™ ¢.
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where Acc, Elem and ElemList are CARE types with carrier sets ‘Ace’, ‘Flem’ and
‘seq Elem’ respectively, and foldl is the function for “folding left” [7] over a list:

—[X, Y]
foldl : (X xY — X)x X xseqV — X
Vi XxY—=X;2:Xefoldlf,z,()) =z
Vi XxY—=X;2:X;h:Y;l:seqY o

JoldI(f,x, (k) ™ t) = foldl(f, f(x,h), 1)

The template’s seed is the processList fragment. The non-type parameters of the
template are given in Table 4. (dh is an auxiliary function — to be supplied by the user
— which is used in the applicability conditions. Its purpose is to provide information
which is required in discharging the template’s proof obligations.) The names of the
CARE types and fragments can be changed to suit the problem at hand.

Name | Signature Explanation

f | seq Elem — Acc the function to be computed
base | Acc the initial value of the accumulator
hd | Ace x Elem — Ace | the function for processing successive elements

dh | Elem x Acc — Acc | an auxiliary function

Table 4: Value parameters of the template.

The applicability conditions for the template are:
1. f () = base
2. Vh: Elem; t:seq Flem o f((h) ™ 1) = dh(h, f(1))
3. Yz : Elem o dh(z, base) = hd(base, z)
4. Vz,y: Elem; a: Acc o dh(z,hd(a,y)) = hd(dh(z,a),y)

Note that when Acc = Flem and hd is associative and commutative, it is sufficient to
define dh(z,a) £ hd(a,z) and to establish the first two conditions.’

See Section 7.7 below for a proof that these conditions are sufficient to establish the
correctness of the template. The proof involves induction and advanced properties of
foldl, but by presenting the applicability conditions in the above form we have shielded
the CARE user from such details. Verification of the applicability conditions requires
only knowledge of the problem domain, as the examples below show.

Keith Harwood has developed a set of accumulator templates with a whole range of
applicability conditions [16].

5A function ¢ : X x X — X is said to be associative and commutative if

Ve,y: X eg(z,y) =gy, z)
Vz,y,2: X eg(z,9(y,2)) = 9(9(z,y), 2)
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7.4 Example: summing a list

To implement the sum fragment using the accumulator template, instantiate the pa-
rameters as follows:

FElem -~ N base ~ 0
Ace ~ N hd(a,z) ~ a+z
f(s) ~ sum(s) dh(z,a) ~ 2z+a

The Acc, Elem and ElemList types could be implemented by Natnum, Natnum and
NatList respectively. The processElem, base and decomposeElemList fragments
could be implemented by add, zero and decomposelList from above, respectively.
The resulting implementation of sum is then exactly as given in Section 7.2 above.

The applicability conditions become:
1. sum () =0
2. Vh:N; t:seqN o sum((h) ™ t) = sum(t) + h
3.Ve:Nez+0=0+=z
4. Ve,y,z :Nex+(y+z)=(r+y)+=2

These are all valid statements, as is easily checked.

7.5 Example: reverse a list
To implement the reverse fragment

Fragment reverse(s:List) has
specification:
output r:List such that r = rev(s).

using the accumulator template, instantiate the parameters as follows:

Elem ~ FELEMENTS base ~ ()
Ace ~  seq ELEMENTS  hd(a,z) ~ (2) " a
f(s) ~ rev(s) dh(z,a) ~ a™ (z)

The Acc, Elem and ElemList types could be implemented by List, Element and List
respectively. The base and decomposeElemList fragments could be implemented by
nil and decomposeList from above, respectively. The processElem fragment could
be implemented as follows:

Fragment processElem(b:List,x:Element) has
specification:

output c:List such that ¢ = b ™ (z).
implementation:

cons(x,b).
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The resulting implementation of reverse is then essentially the same as given in Sec-
tion 4.6 above.

The applicability conditions become:
L rev() = ()
2. Vh: ELEMENTS; { : seq ELEMENTS o rev((h) ™ t) = rev(t) ™ (h)
3. Vo : ELEMENTS o () ™ (z) = (z) ™ ()
4. Va,y: ELEMENTS; a :seq ELEMENTS o ((y) ™ a) ™ (z) = (y) 7 (a ™ (x))

These are all valid statements, as is easily checked.

7.6 Example: list maximum

Suppose maximum is a fragment for finding the maximum element of a list of numbers
with the following specification:

Fragment maximum(s:NatList) has
specification:
output n:Natnum such that n = maz(ran(s)U {0}).

This can be implemented using an accumulator by instantiating the template’s param-
eters as follows:

FElem
Ace

/(s)

N base ~ 0
N hd(a,z) ~» largerOf(a,z)
maz(ran(s) U {0}) dh(z,a) ~ largerOf(a,z)

¢ ¢

where

‘ largerOf : Z x 7. — 7

Vo,y:Zeif 2 <y
then largerOf(z,y) =y
else largerOf(z,y) =«

The applicability conditions are easily checked.

7.7 Verification of the template

This section shows that the applicability conditions given in Section 7.3 are sufficient
to establish the correctness of the processList and accumulator fragments.

Partial correctness of accumulator follows from the following facts:

foldl(hd,a,()) = a
Joldl(hd, a,(h) ™ t) = foldl(hd, hd(a,h),t)
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Termination of accumulator follows from the fact that #t¢ < #s.

The partial correctness proof obligation for processList is
Vs :seq Elem o f(s) = foldl(hd, base, s)

which can be established by (left) induction on s as follows:

Base case

The base case is

I () = foldl(hd, base, ())
which follows immediately from condition (1) and the definition of foldl.

A useful lemma
For the induction step we first prove the following lemma:
Vh: Elem; L :seq Elem o dh(h, foldl(hd, base,t)) = foldl(hd, base,(h) ™ 1)

by (right) induction on {. The base case is straightforward:
dh(h, foldl(hd, base, ()))

= dh(h, base) by properties of foldl

= hd(base, h) by (3)

= foldl(hd, base, (h)) by properties of foldl

= foldl(hd, base,(h) " ()) as required
The induction step — from t = uwtot =u " (e) — is

dh(h, foldl(hd, base, u ™ (€)))
= dh(h,hd(e foldl(hd base, u)) by properties of foldl
= hd(dh(h, foldl(hd, base u)), e by (4)

)

)
= hd(foldl(hd, base,(h) ™ u)),e) by the sub-induction hypothesis

= foldl(hd, base,({(h) ™ u) ™ (€))

)

€) by properties of foldl
= foldl(hd, base,(h) ™ (u " (e))

as required

The induction step

The induction step for the main proof amounts to proving

J((h) ™ t) = foldl(hd, base, (h) ™ 1)
from the induction hypothesis f(t) = foldl(hd, base, t):

£(4h) ~ 1)

= (. 1(1) by (2)
= dh(h, foldl(hd, base, 1)) by induction hypothesis
= foldl(hd, base,(h) " 1) by the above lemma

This completes the proof of the partial correctness of processList, and hence of the
template.
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8 Conclusions

This paper has outlined the CARE method of development of formally verified software,
concentrating on the development of algorithms from formal program specifications.
The method structures the development process in such a way that engineering aspects
are separated from formal mathematical aspects as far as possible. This is achieved by
factoring the verification task into several parts:

¢ generalized design steps (templates) are verified off-line;

e problem-specific design steps are accomplished by instantiating templates and
verifying applicability conditions;

o the interface to the target language is restricted to primitive fragments and types
(corresponding roughly to standard library routines), which are verified off-line
by appropriate means.

The result is a framework which supports reuse of design fragments and hiding of
verification detail. Under the CARE approach, software development becomes a pro-
cess of selection and instantiation of fragments, and verification amounts to checking
“correctness of fit” of the fragments, using a formal requirements specification as a
guide. As far as possible, the goal has been to consign formal verification aspects of
the method to automated tools, allowing the software engineer to concentrate instead
on the design and development of usable, efficient pieces of software.

The method is general and can be used in conjunction with a variety of other methods,
both formal and informal. It can be used with a wide variety of specification languages,
theorem provers and target languages.

A series of prototype tools have been built to support the method, including parsers,
syntax/type-checkers, pretty-printers, proof obligation generators, mathematical sim-
plifiers, an automatic theorem prover, automated supported for formal reasoning in
an interactive theorem prover, and a code synthesizer with C as target language. A
large library of pre-proven fragment templates has been produced, together with a tool
which assists software engineers in selecting and instantiating templates.
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