SOFTWARE VERIFICATION RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE
THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT
No. 95-10
The datalogger case study in Care
Peter A. Lindsay

June 1995

Phone: 4+61 7 365 1003
Fax: +61 7 365 1533

Note: Most SVRC technical reports are available
via anonymous ftp, from ftp.cs.uq.edu.au in the
directory /pub/SVRC/techreports.

The Data Logger case study in CARE

Peter A. Lindsay*
Software Verification Research Centre
email: pal@cs.uq.edu.au

Abstract

This paper presents an extended case study in the use of the CARE
language for formally verified software development. The case study
concerns storage of variable-length records into a fixed-size memory
space. The problem is specified, and a design given, using the CARE
language. The solution assumes the existence of certain low-level li-
brary modules whose specifications (only) are given here. The design
is shown rigorously to meet its specification.

1 Introduction

1.1 Background

The case study is based on a software module for logging events in a medical
embedded device such as described in [3]. The device has a limited battery
life, so a primary safety requirement for the software is that it be time (CPU)
efficient.

The device has a fixed-size memory, which means that in normal use the
memory will sometimes be filled to capacity. In such a case, when a new
event occurs that requires logging, it will be necessary to overwrite some of

*The CARE project is a collaboration between the SVRC and Telectronics Pacing
Systems Pty Ltd, supported by Generic Technology Grant No. 16038 from the Industry
Research and Development Board of the Australian Government’s Department of Industry,
Science and Technology.

the other event records. The more recent events are the more important:
the oldest records should be overwritten first. A design is required which
maintains as many of the records as practicable.

From time to time, the complete stored event log will be uploaded from
the device and the logger will be reinitialized.

1.2 Informal description of software requirements

The application is concerned with storing variable-length records into a fixed-
size memory space. (Memory size is determined at compile time, so a sym-
bolic constant should be used in the design.) The design is required to be
time (CPU) efficient foremost, but the more records that can be stored the
better. When free memory space is no longer available, new records should
overwrite the oldest records first. Each new record to be stored is given in
full at the time of insertion. There should be operations for reinitializing
the log, for inserting a new record, and for reading (uploading) the complete
stored event log in a last-in first-out manner.

1.3 This paper

Section 2 gives a formal specification of the data logger in CARE verbose
notation [2]." 7 [4] notation is used for giving mathematical definitions.

Section 3 describes the basic theory for storing records in a fixed-size
array. Section 4 gives specifications of the CARE “primitives” that will be
assumed (for records, arrays, etc). Section 5 describes a design for the data
logger. Section 6 sketches a rigorous verification that the design meets the
specification.

2 Formal specification

Let Record represent the mathematical set of all possible event records. There
will be a CARE type for records:

Type Record has specification: Record .

LA verbose notation for data refinement is introduced.

The following CARE type is used for the log of records stored in the
device:

Type DataLog has specification: seq Record .

The following CARE type is used for the sequence of records read from
the log:

Type RecordSeq has specification: seq Record .

Initially the data log is empty:
Fragment initialize() has specification:
output m:DataLog such that #m = 0.
Here is the specification of the fragment for reinitializing the log:

Fragment reinitialize(d:Datalog) has specification:
output m:DataLog such that #m = 0.

Here is the specification of the fragment which reads from the log:

Fragment readDataLog(m:DataLog) has specification:
output s:RecordSeq such that s = rev(m).

Here is the specification of the fragment for inserting a new record into

the log:

Fragment insertRecord(x:Record,d:Datalog) has specification:
output m:DataLog such that Jlost : Record e d ™ (z) =

lost ™ m.

Note that, while the specification of insertRecord is underdetermined,
the implementation is expected to do the best it can: i.e., it should return
the “longest possible” such m.

3 Mathematical modelling of the problem

This section describes the basic theory for storing records in a low-level data
structure (a fixed-size array).

3.1 Records

This section describes a basic mathematical theory of records. For storage,
records will be decomposed into sequences of individual (“byte-sized”) data
items. Let DataPieces be the mathematical set of all possible data pieces.
The following functions will be defined on records: a function decompose for
decomposing a record into its constituent data pieces; a function numecells
which gives the size (in number of data pieces) of a record. The number
mazrecsize represents a (fixed) upper bound on the size of records.

decompose : Record — seq DataPieces
maxrecsize : Ny
numcells : Record — (1 .. mazrecsize)

Va : Record @ numcells(z) = #decompose(x)

3.2 Storage arrays

This section describes a basic mathematical theory of arrays: memsize is the
number of cells in the array (assumed to be large enough to store at least
one record); Index is the set of indexes of the array.

‘ memsize 1 Ny

‘ maxrecsize < MemMsize
Index == (1 .. memsize)
Indext == (1 .. memsize + 1)

Cells can contain size data, data pieces, or other kinds of thing (left
unspecified here) - see Fig. 1:

Cell ::= scell(1 .. mazrecsize)) | deell{{ DataPieces)) |
An array is modelled as a function from indexes to cells:

Array == Index — Cell

3.3 Storing records

A record will be written into the array from a certain point by recording its
size in the first cell and then its decomposition into individual data pieces
consecutively in the following cells: see Fig. 1. This section describes some

basic mathematical theory associated with such a model.

[\ next record
wy ZA

size data K data pieces

Figure 1: Record pieces are stored in consecutive cells of an array.

hasRecord(a, i) is a predicate which indicates whether or not array a has

a record in the cells from index ¢ onwards.

hasRecord : Array < Index

hasRecord(a,i) &
Jz : Record @ i + #s < memsize A a(i) = scell #s
AVE:1.. #sea(i+ k)= decell s(k)

where s = decompose(x)

hasRecords(a,1,j) is a predicate which indicates whether or not array «a
has a (possibly empty) sequence of records in the cells from index i to j — 1.

hasRecords : Array < Index™ x Index™

Vi: Indext o hasRecords(a,i,1)
Vi,j:Indezt 01 < j=
(hasRecords(a,i,j) <
hasRecord(a,i) A\ hasRecords(a, i+ scell” a(i) 4+ 1,7))

getRecords(a, i,) finds the sequence of records (if any) in array a from

index 7 up to index j — 1.

gelRecords : Array x Indext x Index™ - seq Record

dom getRecords = hasRecords
Vi: Index o getRecords(a,i,i) = ()
Va : Record; i : Index™ o let s = decompose(z)in
a(i) = scell #s ANVj:1.. #sea(i+j)=decell s(j) =
getRecords(a, i, i + #s+ 1) = (z)
Vi, g, k:Indext oi <j<k=
geltRecords(a,i, k) = getRecords(a,i,j) " getRecords(a,j, k)

The following useful lemma is a logical consequence of the definition of
gelRecords:

Va,b: Array; p,e: Index o
(hasRecords(a,p,e+ 1) AVi: Index o p < i < e = a(i) = b(7))
= hasRecords(b,p, e+ 1) A getRecords(b,p, e + 1) = getRecords(a,p, e+ 1)

4 CARE primitives for the problem domain

This section gives specifications of the types and fragments which will be
used as primitives in the design. Note that, since only the specifications of
primitives will be given here, the design is independent of how the primitives
are implemented.

4.1 Types
The following CARE type will be used for passing size data:

Type NumCells has specification: (1 .. mazrecsize)

The following CARE types will be used for arrays and indexes:

Type Array has specification: Array
Type Index has specification: Index
Type Index+ has specification: Indext

4.2 Fragments for records and arrays

The following fragment finds the size (in number of “bytes”) of a given record:

Fragment numcells(x:Record) has specification:
output n:NumCells such that n = numcells(z).

The following fragment returns the size of the array:
Fragment arraysize(a:Array) has specification:
output n:Nat such that n = memsize.

The following fragment returns an arbitrary array (for initialization):

Fragment arbArray() has specification:
output a:Array.

The following fragment extracts size data from array a at index p:

Fragment getsize(a:Array,p:Index) has specification:
precondition hasRecord(a, p)
output s:NumCells such that a(p) = scell(s).

4.3 Reading and writing individual records

The following fragment reads a single record from the cells following index p
in array a (assuming such a record exists):

Fragment readRecord(a:Array,p:Index) has specification:
precondition hasRecord(a, p)
output x:Record such that s : N; e getRecords(a,p,p +
s + 1) = <x>

The following fragment writes a record into the cells following index p in
array a:

Fragment writeRecord(a:Array,p:Index,x:Record) has spec-
ification:
precondition p + numcells(z) < memsize
output b:Array such that
hasRecords(b,p,p+ s+ 1) A getRecords(b,p,p+s+1) =
(z) A
(p..pt+s)da=(p..p+s)<€b

where s = numcells(z:).

4.4 Fragments for reporting

The following fragments will be used for reporting the sequence of records

read from the log:

Fragment emptyRecordSeq() has specification:
output s:RecordSeq such that #s =0.

Fragment apndlRecordSeq(x:Record,s:RecordSeq) has spec-
ification:
output t:RecordSeq such that ¢ = (z) " s.

Fragment concatRecordSeq(s:RecordSeq,t:RecordSeq) has spec-
ification:
output r:RecordSeq such that r=s " ¢.

4.5 Arithmetic
The following type will be used for natural numbers:

Type Nat has specification: N

The following fragments will be needed for performing integer arithmetic:*
0() 0:Nat
1() 1:Nat
+(m:Nat,n:Nat) m 4+ n:Nat
-(m:Nat,n:Nat) maz{0,m — n}:Nat
equal (m:Nat,n:Nat) if m = n then report yes else report no
lessthaneq(m:Nat,n:Nat) if m < n then report yes else report no

5 The Design

5.1 The data model

Informally, the data logger will be designed as follows: After reinitialization,
the first new record will be written into the array in the cells following index
1. After that, new records will be written into the array consecutively until

2Terse CARE notation is used here.

no more fit; writing then begins from index 1 again, overwriting existing
records.

Thus, the “state” of the device at any time during its operation will be
one in which there is a sequence of “newer” records starting at index 1 in
the array, followed by a sequence of “older” records towards the end, with
the two sequences possibly separated by a gap: see Fig. 2. In what follows,
the sequence of newer records will be called the low set and the sequence of
older records the high set.

low set high set

K\/\/—\/\k/—\

1 T memsiz

Figure 2: Design of the data log.

As a CARE data refinement, the DataLog will be implemented in terms
of an array a with three pointers as follows: u indicates the end of the low
set (the next cell after the last cell corresponding to the last record of the
low set); v indicates the start of the high set (size data cell corresponding to
the first record of the high set); and w indicates the end of the high set. This
is represented by a CARE data refinement as follows:

Type DataLog has
specification: seq Record
refinement:
value d:Datalog
is refined by a:Array,u,v,w:Index+
with invariant v < v < w A hasRecords(a,1,u) A\ hasRecords(a, v, w)

with refinement relation d = getRecords(a, v, w) " getRecords(a,1,u).

The invariant defines which quadruples (a, u, v, w) represent data logs.
The refinement relation relates the “abstract” value of the data log d (a
sequence of records) to the “concrete” values a, u, v, w.

5.2 Initialization and reinitialization
Initially the values of u, v and w will be 1.

Fragment initialize() has
specification:
output m:DataLog such that #m = 0.
implementation:
compose arbArray,1,1,1 into m:Datalog;
return m.

The log gets reinitialized by setting all three indexes to 1.

Fragment reinitialize(d:Datalog) has
specification:
output m:DataLog such that #m = 0.
implementation:
decompose d to a:Array,u,v,w:Index+;
compose a,1,1,1 into m: DataLog;
return m.

5.3 Reading the data log

Here is the implementation of the fragment for reading the log:

Fragment readDatalog(d:DatalLog) has
specification:
output r:RecordSeq such that r = rev(d)
implementation:
decompose d to a:Array,u,v,w:Index+;
return concatRecordSeq(readRecords(a,1,u),readRecords(a,v,w)).

where

Fragment readRecords(a:Array,p,e:Index+) has
specification:

precondition p < e A hasRecords(a, p, €)

output r:RecordSeq such that r = rev(getRecords(a,p,e)).
implementation:

10

return readAccum(a,p,e,emptyRecordSeq) .

Fragment readAccum(a:Array,p,e:Index+,u:RecordSeq) has
specification:

precondition p < e A hasRecords(a, p,e)

output r:RecordSeq such that r = rev(getRecords(a,p,e))”
u.
implementation:

cases equal(p,e) of:
yes: return u.

no: assign apndlRecordSeq(readRecord(a,p),u) tow:RecordSeq;

return readAccum(a,p+getsize(a,p)+l,e,w).

variant: p —e

5.4 Inserting a new record

The algorithm for inserting a new record into the log can be described infor-
mally as follows:

o If there is enough room for the new record after the low set, then
append the record to the end of the low set.

— If the record fits into the gap between the low set and the high
set, then the high set can remain unchanged.

— Otherwise, check to see if any records from the high set will not

be overwritten:

* If there are any remaining records, they become the new high
set. (The other records get overwritten.)

* Otherwise, the new high set is empty. (The v and w pointers
are both set equal to the new u.)

o Otherwise, the new record gets written at the start. The new low set
consists of the latest record alone. The old high set gets thrown away.
The new high set is defined from the old low set as follows:

— If there are any remaining records, they become the new high set.

11

— Otherwise, the new high set is empty.

This algorithm is expressed as a CARE fragment implementation in Fig. 3
below, where findRemRecords(a,p,e,n) is used for finding the index of the
first (if any) record which starts after index p+n and ends at or before index
e in array a (Fig. 4).

6 Verification

This section sketches a justification of the correctness of the design.

6.1 The data refinement

In order for the refinement to be valid, each concrete value should correspond
to exactly one abstract value (the “representation proof obligation”). Since
the refinement relation is functional in the concrete values, this obligation is
trivially true.

Strictly, there is also an obligation (“adequacy” — cf. [1]) to show that
every abstract value has at least one corresponding concrete value. In our
case this obligation clearly cannot be discharged: there is a fixed bound on
the number of records the array can hold. To address this problem we need
to put a constraint on the length of sequences that are used to model the

data log; unfortunately this cannot be done in any straightforward manner.”

6.2 Initialization and reinitialization

Partial correctness of initialize follows from the refinement relation and
the fact that getRecords(a,1,1) = ():

#(getRecords(a,1,1) ™ getRecords(a,1,1)) = #({) () =#() =0

Well-formedness of ‘compose a,1,1,1” requires showing that the invariant

holds:
1 <1< 1A hasRecords(a,1,1) A hasRecords(a,1,1)

This follows easily from the fact that hasRecords(a,i,) for all i.
The proof obligations for reinitialize are similar.

3This is yet another example of the constraint propagation problem.

12

Fragment insertRecord(x:Record,d:Datalog) has
specification:
output m:DatalLog
such that Jlost : seq Records ¢ d ™ (z) = lost ™ m

implementation:

decompose d to a:Array,u,v,w:Index+;

assign numcells(x) to s:NumCells;

cases lessthaneq(u+s,arraysize) of:

yes: cases lessthaneq(u+s+1,v) of:
yes: assign writeRecord(a,u,x) to a’:Array;
compose a’ ,u+s+1,v,w into m:Datalog;

return m.
no: cases findRemRecords(a,v,w,u+s-v)
of :

found: assign output(s) to v’ :Index;
assign writeRecord(a,u,x) to a’:Array;
compose a’ ,u+s+1,v’ ,w into m:Datalog;
return m.
none: assign writeRecord(a,u,x) to a’:Array;
assign u+s+1 to u’:Index+;
compose a’,u’,u’,u’ into m:Datalog;
return m.
no: cases findRemRecords(a,1,u,s) of:
found: assign output(s) to v’:Index;
assign writeRecord(a,1,x) to a’:Array;
compose a’,s+1,v’,u into m:Datalog;
return m.
none: assign writeRecord(a,1,x) to a’:Array;
assign s+1 to u’:Index+;
compose a’,u’,u’,u’ into m:Datalog;
return m.

Figure 3: Design of the function for inserting a new record into the log.

13

Branching fragment
findRemRecords(a:Array,p,e:Index+,n:Nat) has
specification:
precondition p < e A1 < n A p+ n < memsize A
hasRecords(a, p, €)
result defined by cases
if 3i: Index @ p+n < i< eA hasRecords(a,i,e)
then report found and return i:Index
such that p+ n <i < e A hasRecords(a,i,¢)
else report none
implementation:
cases equal(p,e) of:
yes: report none
no: cases lessthaneq(e,p+n) of:
yes: report none
no: assign getsize(a,p) to s:NumCells;
assign p+s+1 to k:Index+;
cases equal(k,e) of:
yes: report none
no: cases lessthaneq(n,s+1)
of:
yes: report found and return k
no:
findRemRecords(a,k,e,n-(s+1))

variant: n

Figure 4: The auxiliary fragment for finding the (index of the) first record

which will not be overwritten.

14

6.3 Reading the data log

We examine each of the fragments in turn:

readDatalog:

Partial correctness of readDataLog amounts to showing
rev(getRecords(a,1,u)) ™ rev(getRecords(a, v, w)) = rev(d)

which follows easily from the refinement relation.
Well-formedness of the calls to readRecords amounts to showing

1 < u A hasRecords(a,1,u), v < w A hasRecords(a, v, w)

which follow from the refinement invariant.

readRecords:

Partial correctness and well-formedness are straightforward.

readAccum:

Partial correctness of the first path follows from the fact that p = e on this
path:

rev(getRecords(a,p,p)) T u=(rev()) Tu={() "u=u

as required.
Partial correctness of the second path amounts to showing

rev(getRecords(a,p+ s+ 1,€)) ~ w = rev(getRecords(a,p,e)) " u
from the following facts about the path:
p #£ e, a(p) = scell(s), getRecords(a,p,p+s+1)=(z), w={(z) " u

With a little effort, the desired result can be shown to follow from the fol-
lowing fact:

getRecords(a, p, e) = getRecords(a,p,p+ s+ 1) getRecords(a,p + s + 1, ¢)

15

Well-formedness of the calls to readRecord and getsize on the second
path follows from the fact that p < e on this path, using the following lemma:

p < e A hasRecords(a,p,e)=
hasRecord(a,p) AN p+ s+ 1 < e A hasRecords(a,p+ s+ 1,¢)

where s = scell™ a(p).
Termination of the recursion follows from the fact that

0<e—(p+s+l)<e—p

6.4 Inserting a new record
insertRecord:

Let us first consider partial correctness of the algorithm for inserting a record
into the log. From the refinement relation we can assume

d = getRecords(a, v, w) " getRecords(a,l, u)
m = getRecords(a’, v',w') ™ getRecords(a’, 1, u')

where a’, u’, v' and w’ are the new values of the array and pointers defined

in the algorithm. We are required to show that d ™ (z) = lost ™ m for some
sequence of records lost. Let us consider each of the paths in turn:

1. Room for z at the end of the existing low set before the high set starts.
The following facts hold at the end of this path:

u+s <memsize, u+s+1<v, v =u+s+1, v =v, v =w,

getRecords(a’, 1, u) = getRecords(a,1,u), getRecords(a’,u,u’) =

It is easy to show that getRecords(a’,1,u') = getRecords(a,1,u) ™ (z).
Thus the desired result holds, with lost = ().

2. Room at end of low set but some (not all) of high set gets overwritten.

u + s < memsize, — (u +s+1< 'u),
u+s <v <w, hasRecords(a,v',w), W' =u+s+1, v = w,
getRecords(a’, 1, u") = getRecords(a,1,u) ™ (x)

16

(z)

N

It is easy to show that getRecords(a,v,w) = getRecords(a,v,v’)
getRecords(a’, v', w').
Thus the desired result holds, this time with lost = getRecords(a, v, v').

3. Room at end of low set and all of high set gets overwritten.

u+s < memsize, 7 (u+s+1<v), v/ =v=w =u+s+1,
getRecords(a’,1,u") = getRecords(a,1,u) ™ (z)

The desired result holds, this time with lost = getRecords(a, v, w).

4. No room at end of low set and some (but not all) of low set gets
overwritten.

= (u+ s < memsize), 1 < v' < u, hasRecords(a,v', u),
u'=s+1, w = u, getRecords(a’,1,s + 1) = (z)

N

It is easy to show that getRecords(a,1,u) = getRecords(a,l1,v’)
getRecords(a’, o', w').
The desired result holds, with lost = getRecords(a, v, w)" getRecords(a,1,v").

5. No room at end of low set and all of low set gets overwritten.

= (u+4 s < memsize), s+ 1 < v' < u, hasRecords(a,v', u),
u'=v' =w =s+1, getRecords(a’,1,u’) = (z)

The desired result holds, with lost = d.
Now consider the well-formedness of fragment calls:

1. For the first three occurrences of calls to writeRecord, the precondition
is u + numecells(z) < memsize, which is a consequence of one of the
path tests on the paths concerned. For the other two occurrences, the
precondition is 1 + numcells(z) < memsize, and this follows from the
fact that

numcells(z) < mazrecsize < memsize

17

2. The precondition of findRemRecords(a,p,e,n) is
p<eAl<nAp+n<memsize A\ hasRecords(a,p,¢)
It is straightforward to check both of the cases that arise.

3. The data abstraction ‘compose a,u,v,w’ is well-formed provided the

following holds:
u < v <w A hasRecords(a,1,u) A\ hasRecords(a, v, w)

It 1s straightforward to check each of the cases that arise.

findRemRecords:

For partial correctness of findRemRecords there are five paths to consider:

1. Correctness of the first path follows from

I1<nAp=e=-di:Indezop+n<i<e

2. Correctness of the second path follows from

e<p+n=-di:Indexoep+n<i<e

3. Correctness of the third path follows from the following lemma
pts+l=e= = 3i:Index o p<i<eA hasRecords(a,i,e)
where s = scell™ a(p).
4. Correctness of the fourth path follows from the fact that
p+n<p+s+1<eAhasRecords(a,p+s+1,¢)
on this path.

5. Correctness of the fifth path is obvious upon noting that k+n—(s+1) =
p+ n.

Termination and well-formedness of the recursive call to findRemRecords
are straightforward.

18

7 Conclusion

The design has been shown to satisfy the specification, in terms of its intended
functionality. The algorithm for inserting records into the log is of reasonable
complexity and, in the absense of CARE , would take some concerted thought
to convince oneself of its correctness. The case study thus demonstrates how
the CARE method can be used to increase assurance in the correctness of
designs.

The author would like to thank his colleagues on the CARE project for
their useful contributions to this case study.

References

[1] C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall
International, second edition, 1990.

[2] P.A. Lindsay. The CARE method of verified software development. Tech-
nical Report 95-9, Software Verification Research Centre, University of
Queensland, 1995.

[3] R. Mojdehbakhsh, W-T. Tsai, S. Kirani, and L. Elliott. Retrofitting
software safety in an implantable medical device. TEEFE Software, pages

41-50, January 1994.

[4] J.M. Spivey. The 7 Notation: a Reference Manual. Prentice-Hall, New
York, 1989.

19

