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Abstract

This report defines a syntax for computer system specification that integrates
some of the best features of VDM-SIL. and Z, together with an approach to seman-
tics which is simpler than current approaches. The syntax has three main parts:
a small set of core mathematical constructs from which more complex math-
ematical constructs can be defined; a syntax for modelling system components
and the relationships between them; and a syntax for modelling the functionality
of a system using state machines. The report defines the static semantics of the
new syntax, and outlines the denotational semantics. It indicates briefly how Z
and VDM-SL specifications can be translated into the integrated syntax.
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1 Introduction

Z, and VDM-SL are two of the most commonly used formal specification languages for
computer system software. Superficially they use very different notations but closer
inspection reveals a high degree of structural similarity. However, as users and support
tool developers have discovered, the two methods were primarily designed as pencil-
and-paper approaches, with little early consideration given to how to provide effective
support for reasoning about specifications. A number of projects have attempted to
develop “proof theories” for the two methods, with varying degrees of success [1, 3,
9, 11, 16, 18]. The emerging ISO Standards for 7 [4] and VDM-SL [5] both include
semantics for their notations, but the semantic definitions are large, complex and
difficult to understand — a point which seriously undermines their usefulness.

The Z4+VDM project set out to develop a single, simple semantic framework within
which the two specification languages can be integrated. Recognizing that the choice
of structures underlying a specification language is the key to providing a simple se-
mantics and effective tool support, the project has defined a new syntax for system
specifications which combines the best features of Z and VDM-SL. The result — which
is presented in this report — is called ViZ, for VDM-SL integrated with Z.

This report defines the ViZ syntax and its “static semantics” (syntax and type re-
strictions), and outlines the denotational semantics. Working papers present the full
denotational semantics [13], the mapping from Z and VDM-SL into ViZ [15], and a par-
tial axiomatization which includes a definition of the procedures for generating proof
obligations [12].

Motivation for the choice of the structures underlying ViZ is given in brief. For a
fuller discussion of the issues involved and the reasoning behind the choices, the in-
terested reader is referred to an earlier technical report [14] where a number of case
studies in formal verification of specifications were presented. In particular, Section 8
of that report summarizes requirements for an improved specification language captur-
ing the best individual features of Z and VDM-SI,; ViZ is our attempt to satisfy those
requirements.

The issue of appropriate concrete syntaxes for specification languages is outside the
scope of the Z4+VDM project. Similarly, issues associated with specification in the
large, and with refinement of specifications are not considered here.

This report is structured as follows: Section 2 gives an overview of the ViZ approach.
Section 3 presents an abstract syntax for ViZ via an EBNF grammar. Section 4
illustrates the syntax on some small examples. Section 5 defines syntax restrictions
on the grammar and Section 6 defines type restrictions; together these definitions
constitute what is sometimes called the static semantics of the language. Section 7 is
a brief remark describing a modification to the syntax which allows propositions to be
distinguished syntactically from mathematical terms — a key difference between 7 and
VDM-SL. Finally, Section 8 outlines the semantic framework for ViZ.



2 Overview

2.1 The integrated specification syntax
The ViZ syntax has three main parts:

1. A small set of core mathematical constructs from which more complex mathe-
matical constructs can be defined.

2. A syntax for modelling system components and the relationships between them
(also known as the data model of a system), expressed in terms of mathematical
abstractions of the interfaces between components. The data model defines the
“domain of discourse” for describing a system.

3. A syntax for modelling the functionality of a system (also known as the state
machine of a system), expressed in terms of an abstract “state” of the system
and the ways in which the state changes during operation of the system, including
how information flows in and out of the system.

Note that a specification can be underdetermined, in the sense that different state
machines, with different behaviour, can satisfy the same specification. The difference
stems from the fact that the “generic” (primitive) parts of an abstract specification can
be interpreted differently in different settings (e.g. the results returned by a generic
list-sorting procedure depend on the ordering supplied). However, the systems that
satisfy a specification can be said to have the same functionality, even though they
have different behaviours.

The ViZ syntax has constructs which allow specifiers to assert properties they believe
follow as logical consequences of their specifications, and the ViZ semantics gives a way
of checking such assertions. One of the constructs allows specifiers to state and prove
behavioural invariants of the system: i.e., properties that hold in all ‘reachable’ states
of the system.

An abstract syntax for ViZ is defined in Section 3 below. The reader should not be
mislead by the fact that the syntax contains keywords and identifiers: the intention is
simply to make the syntax easier to read, not to define a concrete syntax for ViZ.

2.2 Semantic framework

The main components of the ViZ semantic framework are outlined below.

Denotational semantics

The denotational semantics defines exactly which state machines satisfy a given spec-
ification. In brief:

o Well formed mathematical expressions denote mathematical values in a given
semantic universe based on Naive Set Theory [8].
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o Well formed data models denote collections of interpretations, which are struc-
tures similar to the models of predicate calculus used in Model Theory [2, 7].

e Well formed specifications denote collections of state machines [10] — one for each
interpretation of the specification’s data model. The semantic framework defines
the behaviour of a given state machine in terms of traces (valid sequences of
operations).

More details are given in Section 8 below. The denotational semantics forms the basis
for reasoning about specifications.

Internal consistency checks

These checks ensure that a specification is mathematically sensible, in the sense that
mathematical constructs are used consistently throughout the specification, the spec-
ification is self-contained, assertions are valid consequences of the definitions and as-
sumptions of the specification, and all expressions have defined meanings in context.

Three levels of internal consistency check will be defined:

Syntax checks: These ensure for example that names are used only in scope, vari-
ables are not repeated in binding lists, and functions are used with their correct
arities. The checks are fully automatable. No assumptions are made here as
to how these checks are done: e.g. whether they are performed by an indepen-
dent checking tool after the specifier has drafted the specification; or whether
they are enforced by appropriate User Interface mechanisms in the specification
development environment, say.

Type checks: These ensure that functions are applied to the correct types of argu-
ment, etc. Once again, the checks are fully automatable. They are separated
from syntax checks here to allow more freedom to developers of support environ-
ments for ViZ.

Semantic checks: These check that all specification components are mathematically
meaningful (we say well formed): e.g. that the bindings of variables are set-
valued, that functions are applied to arguments within their domain; and that
assertions are logical consequences of the definitions in a given specifiation. As
we shall see, not every well typed term is mathematically meaningful. Well
formedness is undecidable in general; this activity is carried out by constructing
formal proofs.

The first two levels of checks are defined in Sections 5 and 6 below.

Axiomatization

Axiomatizations forms the basis for formal reasoning about specifications. Using the
denotational semantics, it will be possible to give a number of different axiomatizations



of the ViZ notation — or more precisely a mechanical means of generating axiomatiza-
tions for individual specifications — in a form suitable for implementation on different
mechanical proof assistants. The axiomatizations will include a number of generic
proof obligations such as those arising from well formedness and semantic checking.
They will also include proof obligations for verifying behavioural invariants for “closed”
systems (systems whose functionality is entirely described by the specification).

3 The integrated specification syntax
This section defines an abstract syntax for ViZ via an EBNF grammar in three parts:

1. a grammar for mathematical terms;

2. a notation for data models, including a definition mechanism for extending the
mathematical vocabulary with user-defined constructs;

3. a notation for specifying state machines.

The abstract syntax has been “sugared” with keywords and other symbols to aid
readability; as remarked above, however, discussion of appropriate concrete syntaxes
is not within the scope of the Z+VDM project.

3.1 Mathematical terms
3.1.1 Overview

In defining a language of mathematical terms, ViZ follows a ‘set theoretic’ approach
similar to Z. It starts with a small ‘core’ set of primitives (essentially sets, pairs, inte-
gers, Booleans and user-introduced primitive types) and gives the specifier the ability
to define new mathematical constructs in terms of these. This has many advantages,
not the least being that it reduces the size and complexity of the semantic framework
required. From the specifier’s point of view, it also gives access to a very useful form
of subtyping — already familiar to 7 users — whereby, for example, a binary relation
can be regarded as a set of pairs and an n-ary function can be regarded as a set of
(n+1)-tuples. By contrast, VDM-SL makes a strict separation between sets, sequences,
maps, etc.

Unlike Z, however, ViZ insists that functions are used with fixed numbers of arguments
(arities) and that logical variables range over certain “base types” only and not over
general higher-order types such as functions. Logical variables can however range over
sets in ViZ, which means that the language is not purely first order; ViZ is a second
order monadic language [2]. Second order monadic logic is a restricted sublogic of
higher order logic which avoids many of the foundational and practical difficulties of
higher order logic. (In particular, it is supported by a broader range of mechanical
proof assistants than higher order logic.) As we shall see, however, the expressive



power of higher order logic can be simulated in ViZ by defining a notion of functions
as values together with a function evaluation mechanism (cf. Fig. 3 below).

To accommodate the VDM practice of identifying logical propositions with Boolean-
valued terms, the ViZ class of mathematical terms includes a ‘Boolean’ type of truth
values and treats predicates as Boolean-valued functions. A fortuitous consequence
of this decision is that it reduces the number of syntactic categories and simplifies
the definitions of many parts of the semantic framework. Users who would prefer to
maintain a strict separation between propositions and “mathematically valued terms”
can do so simply by adding further type-checks to the ViZ type system: see Section 7
below for details.

3.1.2 A grammar for mathematical terms

An EBNF grammar for the class Term of ViZ mathematical terms is given in Fig. 1.
The unexpanded (“terminal”) classes of the grammar are:

Variable for object-level (logical) variables, such as the formal parameters in function
definitions and the variables bound by quantifiers;

FunName for the names of mathematical functions, including predicates;

PrimType for user-introduced “primitive” (not further analysed) types, including
the “generic” types in a parameterised specification;

TypeVar for type variables, as used in polymorphic function definitions.

An expanded version of the ViZ syntax [13] has support for arbitrary tupling, record
structures and finite sets, but the corresponding constructs have been omitted here
to simplify the explanation. The choice of core contructs is somewhat arbitrary; our
particular choice here was guided by a desire for comprehensiveness and comprehensi-
bility.

Note that integers and Booleans are built into ViZ.

The class Declaration is used for variables declarations. The mathematical terms after
the 7 in a declaration are called the bindings of the variables being declared; they
should be set-valued. The term after the ‘[’ in a declaration is called its constraint;

it should be Boolean-valued. If the constraint is omitted it is taken to be ‘true’ by
default.

There are plans to extend the ViZ syntax to include user-defined binding operators
along the lines of those provided by the mural framework [11], but in the meantime
we simply use various syntactic short-hands, such as:

e ‘3D e P’ stands for ‘= VD e = P’
o ‘{z:A] P} stands for ‘{z: A | P e}’ etc

o ‘let z = a of type A in F’ stands for ‘ca: A [z =a o I’



Term

Integer

Declaration

= Variable

PrimType

TypeVar

FunName‘(” {Term} )’
CB?

‘true’

‘=7 Term

Term ‘A’ Term

‘Y’ Declaration‘e’ Term
(Z’

Integer

Term ‘4’ Term

Term ‘*” Term

‘P’ Term

Term ‘%’ Term
‘("Term *,” Term *)’
‘w1’ Term

‘my) Term

Term ‘€’ Term

Term ‘=" Term

Term ‘<’ Term

— |417 | |4_17 |

= {Variable " Term} ‘|” {Term}.

‘{’ Declaration‘es’ Term ‘}’

‘¢’ Declaration ‘e’ Term

variable

primative lype

type variable

function application
booleans

truth

negation

conjunclion

universal quantification
integers

individual integers
addition

multiplication

power sel

set replacement
cartesian product

pair

projection (1st element)
projection (2nd element)
unique choice operator
membership

equalily

integer inequalily.

Figure 1: Abstract syntax for mathematical constructs.




3.1.3 Types

The ViZ notation is typed. In keeping with Z, type expressions (often called types
for short) are simply mathematical terms of a certain form. More precisely, we define
a subclass ‘Type’ of the syntactic class ‘Term’ as follows:

Type = PrimType | TypeVar | ‘B | VA | ‘P’ Type | Type ‘x’ Type.

A base type is one with no type variables. The denotational semantics of ViZ asso-
ciates a unique set of mathematical values with each base type; the base types partition
the ViZ universe of discourse into sorts (see Section 8). Section 6 defines a method for
assigning types to mathematical terms. A term is said to be T-typed if it has type
T.

3.2 Data models
3.2.1 Overview

A data model is a collection of type and function declarations. The data model
may be underspecified, in the sense that it contains types and functions which are
incompletely defined: such components are called primitives and assumptions about
their properties are called constraints. Reasons for underspecifying a data model may
include:

o It makes the specification more abstract. The specifier may consider that giving
full definitions would result in a level of detail which is inappropriate for the
purposes to which the specification will be put.

e The specification is generic and covers more than one application. For example,
the specification of a generic sorting module might be parameterised by the type
of elements in the lists to be sorted and by the ordering relation to be used.
Variants of such specifications would be formed by instantiating the primitives
in different ways later in the development life-cycle.

e The specification involves “black box” components for which full formal details
are not available. Note that, while it might not be possible to fully characterize
such components mathematically, it may never-the-less be possible to formalize
some of their properties as mathematical assertions.

In Section 8.4 below we define the notion of an interpretation of a data model as a
mathematical structure [2, 7] over the language of the data model: that is, a many-
sorted collection of “values” together with “operators” on those values (roughly, func-
tions from tuples of values to values). The structure’s carrier sets (“sorts”) are those
defined from integers, Boolean truth values and user-introduced primitive types by ap-
plying Cartesian Product and Power Set sort constructors. To simplify the framework,
all sorts are considered to be pairwise disjoint, so values belong to unique sorts. This
also make type checking simpler since we do not have to consider multiple types.



GivenType = ‘given type’ PrimType.
Signature = ‘[" {TypeVar} ‘" {Term} ‘to’ Term.

FunDeclar = Signature {Variable} Term.

GivenFun = ‘given function’ FunName ;" FunDeclar.
Definition = ‘definition’ FunName > FunDeclar Term.
Metavars = ‘type metavars’ {TypeVar}

‘schematic metavars’ {FunName :” Signature}
‘ordinary metavars’ {Variable *:" Term}.

Constraint = ‘for’ Metavars ‘assume’ Term.
Assertion = ‘for’ Metavars ‘assert’ Term.
DMComp = GivenType | GivenFun | Constraint | Definition | Assertion.

DataModel = { DMComp }.

Figure 2: Abstract syntax for data model components.

An interpretation associates a sort with each type declared in the data model and an
operator with each function. Note that, because of underspecification, a data model
can have more than one possible interpretation. These ideas are a simple extension of
the classical approach to Model Theory for first order logic (cf. Chapter 4 of [7]).

An EBNF grammar for the class DataModel of ViZ data models is given in Fig. 2
below. The different classes of individual data model components are explained in
more detail below.

3.2.2 Type declarations

A type declaration is used to introduce a new type name. The type can be declared
to be primitive or it can be defined by a set-typed term using the ‘function definition’
mechanism described below. A primitive type is one that will not be analysed further
in the specification: we follow Z in saying it is simply “given”.
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3.2.3 Function signatures

Z, and VDM-SL both support parametric polymorphism, by which we mean that cer-
tain functions can be applied to different types of arguments: for example, sequence
concatenation can be applied to any two sequences, provided that have the same type
of elements. ViZ supports the use of parametric polymorphism by allowing type vari-
ables in definitions. This gives the user the means to extend the mathematical language
flexibly while retaining decidable type-checking.

Each user-introduced function must have a declared signature, consisting of a set
of type variables (for expressing polymorphism), a sequence of domain sets, and a
range set. For example, the signature for the usual binary union operator on sets is
‘(X] PX,PX to PX’, meaning it takes two sets of elements of any sort X and returns
a set of elements of sort X.!

The ViZ approach to semantics means that polymorphic constants will not be allowed:
in particular, the empty set must have different names for different base types (e.g. 0p,
07). As we shall see, there are simple ways of avoiding cumbersomeness, but it does
mean that it is necessary to place some mild restrictions on the form of function signa-
tures:roughly, the domain sets of a signature must make use of all the type variables,
so that the type of the function’s output value can be defined uniquely; the precise
conditions are defined in Section 6 below.

3.2.4 Function declarations

We follow VDM in insisting that preconditions be given for all functions. (When the
precondition is not given explicitly, it is taken to be ‘true’ by default.) The precondition
defines the function’s domain of application (or domain for short): that is, the set of
values on which the function is guaranteed to be defined. As we shall see, there may be
interpretations of the function for which function application is defined on a broader
set of values than that defined by the precondition. Checking that preconditions hold
will be part of the semantic checking of specifications.

A function declaration thus consists of a signature, a list of formal parameters, and
a precondition. The number of formal parameters in a function declaration is called
its arity; it should agree with the number of domain types in the signature. The
precondition should be a Boolean-typed term involving some or all of the function’s
formal parameters and the type variables from the signature.

A primitive function is one for which a declaration (only) is available. Such functions
are essentially parameters of the specification which may be interpreted differently
under different interpretations of the data model. The following sugaring of the syntax
will be used for primitive function declarations:

[y

precond xy,...,z, = P

Note that, as part of the sugaring of the syntax, commas are used to separate the items in an
EBNF list.
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where f is the function name, Y the signature, 21,..., x, the formal parameters and P
the precondition. When the precondition is ‘true’ then simply the name and signature
need be given.

We say function application f(a,b) has a defined value (or is defined, for short) if
a, b satisfy the precondition of f. For example, suppose that integer division =+ has
declaration

_+_ 2, Lt Z
precond 2,y £y #0ANIn:Zeyrn=n2x

Then ‘6 + 2" and ‘-3 + 3’ are defined, but ‘0 — 0’ and ‘7 = 2" are not defined. The
question of what value (if anything) is denoted by f(a,b) when the precondition is
not satisfied may have different answers in different interpretations of the data model:
under different interpretations it may denote different values; in some interpretations
it may not even denote a value.

From the ViZ viewpoint, when the specifier states a function precondition, they are
giving an undertaking that the function will not be applied outside its domain: there
will be proof obligations to check this. Function preconditions thus allow the specifier
to express assumptions about the arguments to which a function will be applied and
to circumvent the need to define functions on arguments to which they will never be
applied. By contrast, the 7 semantics in [4] (for example) dictates that all well typed
terms denote values; thus e.g. 7+ 2 would have a value in the 7 semantics, even though
the term is mathematically meaningless.

3.2.5 Definitions

The following definition mechanism is provided in ViZ: A definition consists of a
function declaration and a definition body, which is a mathematical term possibly
involving type variables from the signature and formal parameters from the precondi-
tion. Fig. 3 gives some examples, in a sugared syntax which allows for infixed operators
and omission of certain redundant symbols. In the sugaring, the components of a defi-
nition are given in the following order: first, the function name and its signature; next,
the function “applied” to its formal parameters, followed by the ‘2’ symbol and the
definition body; finally, the precondition (if any). Underscores () are used to indicate

infixed operators, etc.

Note that the definition mechanism does not support recursive definitions. Instead,
recursive functions must be declared as primitive functions together with a set of
equations expressed as constraints. This approach has the advantage that all fixed
points of the equation set are admitted as possible interpretations of the function, not
simply the least fixed point. There are however times when it is useful to be able to
stipulate that the least fixed point interpretation is desired: e.g. so that appropriate
axioms schemes for induction can be derived (cf. the treatment of free types in §3.10
of [17]). We may therefore want to extend the definition mechanism in future versions
of ViZ.
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definition false: B
false £ — true

definition _V _: BB to B
PVvQ2-(-~PAr-Q)

definition N: PZ
N2 {n:Z]0<n}

definition : [X] P X to P X
04 2 {z: A | false}

definition {_}:[X] X to P X
{a} 2 {e: X | = = a}

definition _U _:[X] PX,PX to PX
AUB&2{e:X [2€ AV € B}

definition _ — _: [X, Y] PX,PY to PP(X x Y)
A« B2P(A xB)

Y] (X & Y)to PX

definition dom: [X,
(Jy: Y eo(z,y) € R)}

dom R 2 {z: X |

definition _ + _: [X, Y] PX,PY to P(X < V)
A+ BE2{R: A B|Va:A; b,by:B e
((1,])1)6R/\((1,])2>€R:>1)1:bz}

definition _at _: [X, V] X (X » YV)to V
fataZeh:Y | (a,b)Ef
precond a € dom f

Figure 3: Some example definitions in ViZ.
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3.2.6 Constraints and assertions

Constraints are used to state assumptions about the specification’s parameters. For
example, we might wish to require that the ordering relation in a sorting module 1s
a total ordering; or we may wish to model certain properties of black-box functions
(e.g. “we know the function always returns ‘0’ on positive integers but we’re not sure
what it returns on negative integers”).

Assertions are used to express logical consequences of the definitions of the data
model: i.e., properties that the specifier believes can be shown to follow from the
definitions given earlier in the data model. Because logically they are redundant,
assertions add no further constraints to a specification; they can however be extremely
useful in clarifying points about the specification and noting facts that might not
otherwise be immediately apparent.

In ViZ constraints are distinguished from assertions for methodological reasons. For
each assertion, there will be a proof obligation to show that the assertion holds in all
possible interpretations of the data model. Such proof obligations would be discharged
as part of the semantic checks of a specification. By contrast, constraints are used
to restrict the class of data model interpretations that will be considered; there will
be proof obligations to show that constraints are well-formed (only). Note that this
situation is reversed when one comes to instantiate the specification for use in a partic-
ular application: then there will be proof obligations to show that the constraints are
satisfied under the particular instantiation; assertions, on the other hand, will require
no extra proof, having already been shown to be logical consequences of the earlier
parts of the specification.

3.2.7 Metavariable declarations

Constraints and assertions can be stated “schematically” in ViZ through the use of
metavariable declarations. There are three classes of metavariables, ranging over
values, operators and sorts; for simplicity they are represented syntactically by the
classes ‘Variable’, ‘FunName’ and ‘TypeVar’ respectively.

As an example of the use of metavariables, consider the following schema for induction
over sequences:

for type metavars X
schematic metavars P: ListsOf (X ) to B
assume
P({()x) A (Vh: X, t: ListsOf (X)) @ P(t) = P(cons(h,)))
= Vs: ListsOf (X ) o P(s)

(See Fig. 6 below for definitions of lists and functions on lists.)

14



3.3 System specifications
3.3.1 Overview

As explained in Section 2, the functionality of systems is modelled via abstract state
machines in ViZ.

A state machine is a nondeterministic, input/output, labelled transition system
which is described by giving a set of states (called the state space), an optional
set of possible initial states, and a collection of operations. Each operation repre-
sents a class of possible transitions of the state machine. The operation’s declaration
defines the circumstances under which the transition can take place and describes the
resulting change in the state of the system, including what information it causes to flow
into or out of the system. For each operation, the types of input and output values are
fixed. Transitions are labelled by the name of the operation to which they correspond.

State machines are nondeterministic in the sense that the machine may start in any
of its possible initial states and different transitions may be possible from any given
state of the system; even for a single operation a number of different transitions may
be possible.

For convenience, the components of a state space are labelled by state variables,
which are similar in nature to program variables in an imperative programming lan-
guage. Operations’ declarations define which state variables may be accessed (read)
by the operation and which may be modified; they also define the types of the input
and output values associated with the transition. To retain referential transparency,
however, state variables will not be used in mathematical terms in ViZ, since the val-
ues of the state variable may change during execution of the state machine. Instead,
special mechanisms are introduced to “access” the values of state variables in spec-
ification components (see below); the ViZ approach is a generalization of the Z and

VDM approaches allowing both Z’s priming (') and VDM’s hooking () conventions
to be used.

3.3.2 Grammar for system specifications

An EBNF grammar for state machines in ViZ is given in Fig. 4 below. The syntax
involves three new terminal classes:

MachineName for the name of the state machine;
StateVar for names of state variables; and

OpName for names of operations.

The individual classes of the grammar are explained in more detail below.

15



StateDefn = ‘statespace of’” MachineName ‘has’ {StateVar ;" Term}
‘with invariant’ {Variable} ‘2’ Term.

Init = ‘initially’ Term.

OpSpec = ‘operation’ OpName Frame
‘precondition’ Term
‘postcondition’ Term.

Frame = ‘in’ {Variable > Term}
‘out’ {Variable > Term}
‘reads’ {StateVar ‘::” Variable}
‘modifies’ {StateVar ‘:: (” Variable ‘,” Variable‘)’}.

BehAssert = ‘behavioural invariant’ Term.

SystSpec = DataModel StateDefn [Init] {OpSpec} {BehAssert}.

Figure 4: Abstract syntax for state machines.
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3.3.3 State spaces

A state space is defined by giving a list of state variables and bindings (i.e., mathe-
matical terms representing the sets over which the state variables range). The values
of state variables in a state space can be constrained further by defining a state in-
variant, given via a list of formal parameters which correspond one-to-one with the
state variables and a predicate. When the state invariant is omitted it is taken to be
‘true’.

The set of possible initial states of a state machine is defined by giving a predicate
which further constrains the state space; the predicate uses the formal parameters from
the state invariant. The set of initial states is optional in ViZ because there are often
cases when it is impracticable to define them at specification time.

3.3.4 Operations

An operation is defined by giving its name, framing information, a precondition and
a postcondition. Note that, unlike Z, operations are distinguished from functions in
ViZ.

The framing information declares input and output parameters for the operation, to-
gether with their types, and defines which state variables the operation can read and/or
modify. In an operation declaration, the expression ‘reads svar::name’ means that
state variable svar is readable, and name stands for the value of svar immediately
before the operation takes place (the so-called pre-value of svar). The expression
‘modifies svar::(old, new)’ means that svar is modifiable by the operation; old stands
for the pre-value of svar and new stands for the post-value of svar (i.e., the value
immediately after the operation takes place). Note that pre-values and post-values
are represented syntactically by ‘Variables’; the scope of these variables is explained
below; their types are determined from the type of the corresponding state variables.
As remarked above, this approach is a generalization of the Z and VDM approaches
designed to maintain referential transparency. The 7 convention of using state vari-
ables as logical variables and priming the post-state can be simulated in ViZ by “pun-
ning”: that is, by using the same spelling for the type different kinds of variables: e.g.
‘modifies svar::(svar, svar’)’. The VDM-SL practice of using a hook to indicate the

pre-state can be simulated similarly: e.g. ‘modifies svar::(svar, svar)’.

We follow VDM in insisting that users explicitly define operations’ preconditions. The
interpretation of operation preconditions in ViZ is that the specifier intends that a given
operation is enabled (i.e., the state machine can make the corresponding transition)
only in states for which the operation’s precondition holds. Note that this view is
more strict than the view sometimes expressed, that if an operator is invoked when
its precondition is false then anything can happen. The ViZ approach is that the
operator is not only undefined where its precondition is false; it is in fact disabled.
The stricter view is more appropriate for a system specification language, since there
are times when the specifier wants to say that certain operations are disabled in certain
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states.?

The precondition should be a Boolean-typed term, possibly involving the input pa-
rameters and the “pre-values” of the state variables. The postcondition should be a
Boolean-typed term, possibly involving any of the parameters in the frame.

3.3.5 Behavioural invariants

ViZ allows the user to assert behavioural invariants. These are properties which hold
in all ‘reachable’ states of all state machines that satisfy the specification. There will
be proof obligations to show that such properties are true initially and are preserved
by all enabled operations. Note that this means that behavioural invariants can be
established only for “closed systems” in which the set of initial states has been defined
and all operations have been declared.

3.4 Formalization of the metalogic

The metalogic of ViZ will be defined semiformally below by describing metafunctions
which range over the different classes of ViZ expressions. For precision we shall use
7, notation to formalize parts of the ViZ metalogic. The paper stops short of full
formality because the proliferation of uninteresting detail would threaten the paper’s
comprehensibility.

For the purposes of this paper it suffices to assume there are sets Term, Integer,
Declaration, DMComp, etc whose values correspond to terms in the corresponding
classes of the ViZ language defined above. If desired, full formal definitions could be
generated almost mechanically from the grammars: e.g.

Term ::= var(( Variable))

ptype(PrimType))

tvar {( Type Var))
Jnapp({(FunName x seq Term))
bool

Readers wanting more details of the formalization process are referred to Section 7
of [14] which gives full definitions of a number of metafunctions for a small EBNF
grammar.

2e.g. “firing shall not occur until certain tests have been carried out”, “document editing is possible
only with the correct access privileges”.
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4 Examples

Figures 5 and 6 extend the set of definitions given in Fig. 3 above.

definition _ ¢ = [X] X, PX to B
af s (a€s)

definition inverse: [X, Y] (X < Y)to (V < X)
inverse(R) = {p: R o (map, m1p)}

definition _ — _: [X, Y] PX,PY to P(X « V)
A= B2{f:A+ B|domf= A4}

definition AreBijective: [X] PX,PX to B
AreBijective(A, B) £ 3f: A — B e inverse(f) € B — A

definition _.. : Z,Z to PZ
m..né{m:Z[mSI/\xgn}

definition isFinite: [X] P X to B
isFinite(A) = I n: N o AreBijective(A,1..n)

definition #: [X] PX to N
#A 2 en:N | AreBijective(A,1.. n)
precond isFinite(A)

definition _ <4 _: [X, Y] PX, (X & Y)to (X « V)
SARE{p:R|mpecS}

Figure 5: Some more definitions in ViZ.

4.1 Birthday Book

This section illustrates the ViZ syntax on the “Birthday Book” example from the
tutorial introduction to the 7 Reference Manual [17]. In brief, the problem is to specify
a system for recording birthdays. Operations are required for adding new information,
for finding the birthday of a given person, and for finding those people whose birthdays
fall on a given date.
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definition ListsOf:[X] PX to P(N-»X)
ListsOf (A) 2 {f:N->A [ dom f = 1.. #f}

definition (): [X] P X to ListsOf (X)
()a =04

definition (_): [X] X to ListsOf (X)
(a) = {(1, 0)}

definition _ ™ _: [X] ListsOf (X)), ListsOf (X) to ListsOf (X)
st 2 sU{itl. e (it+H#s,lati)}

definition cons : [X] X, ListsOf (X)) to ListsOf (X)
cons(h,t) = (h) "t

Figure 6: Some list definitions in ViZ.

To specity the birthday book we first introduce primitive types for names and dates:

given type NAME
given type DATE

The system has state two variables: known is the set of names in the birthday book
and birthday is a partial function relating people’s names to their birthdays.

statespace of BirthdayBook has
known P NAME
birthday : NAME - DATE

with invariant s, m £ s = dom m
Initially the book is empty:
initially #s =0

To add a birthday to the birthday book, we require an input name and a date. The
name must not already be in the birthday book. The new name and date are simply
added to birthday mapping:

operation AddBirthday

in name: NAME, date: DATE

modifies known: : (oldset, newset), birthday: : (oldmap, newmap)
precondition name ¢ oldset

postcondition newmap = oldmap U {(name, date)}
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The following read-only operation will give the corresponding birth-date for a name,
provided the name is in the birthday book.

operation FindBirthday

in name: NAME

out date: DATE

reads known:: set, birthday: : map
precondition name € sel
postcondition dale = map at name

The following read-only operation will find the names of people whose birthday falls
on a given date.

operation Remind

in today: DATE

out cards: P NAMFE

reads known:: set, birthday: : map

postcondition cards = {n: known | (map at n) = date}

The system would also need operations for deleting names (and associated birthdates)
from the birthday book and for correcting erroneous birthdates, but these are not
specified here.

4.2 A message transmitter

This case study was inspired by [6] and is discussed in more detail in [14]. The example
has purposefully been kept small to better illustrate the issues involved.

The problem is to specify a transmitter which relays messages from one agent to an-
other (Fig. 7), using the following simple “send and wait” protocol: after transmitting
a message, wait until acknowledgement is received before transmitting the next mes-
sage, buflering any other messages that arrive in the meantime. The transmitter will
thus have two modes of operation: ready to transmit, and waiting to receive acknowl-
edgement that the last message transmitted has been received. Transmission will be
blocked when awaiting an acknowledgement. The main behavioural requirement of the
transmitter is to ensure that messages are transmitted in the same order in which they
arrive, with no loss of messages.

We introduce a primitive type MSG representing the set of all possible messages that
may be transmitted:

given type MSG
The transmitter has four state variables:

o recetved records the sequence of messages received for transmission;

o sent records the sequence of messages successfully transmitted;
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= message

message

ReceiveM SG +— acknowledgement

Transmitter

Figure 7: A message transmitter with buffering.

e index is a pointer indicating the last message which has been acknowledged (if
any);

o readyToTransmit indicates whether the transmitter is ready to transmit (i.e., it
is not still awaiting an acknowledgement).

There is no state invariant.

statespace of Transmitter has

received : ListsOf (MS@)
sent : ListsOf (MS@)
index N

readyTo Transmit :B
initially in, out, i, ready = #in =0 A #out =0 A i = 0 A ready = true

The first operation accepts a new message for transmission, buffering it until its turn
comes:

operation AcceptNewMessage
in msg: MSG
modifies received: : (oldlist, newlist)

postcondition newlist = oldlist ™ (msg)

The second operation transmits a message, if available. The message at index gets
transmitted, and the mode changes from ‘ready’ to ‘waiting”:

operation TransmitMessage

out msg: MSG

reads recewved: :in, index:: 1

modifies ready To Transmit: : (oldmode, newmode)
precondition oldmode = true A i < #in
postcondition newmode = false A msg = (in at i+1)
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The third operation notes acknowledgement of successful transmission. The index is
incremented by 1, a copy of the transmitted message is appended to the list of messages
sent, and the mode changes from ‘waiting’ to ‘ready’:

operation Receive Acknowledgement

modifies index:: (i, j),
readyTo Transmit: : (oldmode, newmode),
sent:: (oldsent, newsent)

precondition oldmode = false

postcondition newmode = true A j = i+1 A newsenlt = oldsent ™ (msg)

The following statement says that the index does not point beyond the end of the
received list:

behavioural invariant i < #n

Finally, the following statement formalizes the assertion that messages have been sent
out in the order received (in fact, it says something slightly stronger):

behavioural invariant (1 .. z) < in = oul

The reader is referred to [14] for more discussion.

5 Syntax checking

This section and the next section define the static semantics of ViZ. This section defines
syntax restrictions which are primarily concerned with the use of names only within
their defined scopes and with correct use of function arity; Section 6 defines type
checks. The syntax restrictions are expressed as requirments for syntactic correctness
(“syntax checks” for short). Such restrictions would typically be enforced by a syntax
directed editor for the language, or by a syntax checking procedure.

5.1 Mathematical terms

A syntactic context consists of a set of primitive types and type variables, a set of
variables, and a set of function names together with their arities:

SynContext
types: P(Prim Type U Type Var)
vars: P Variable

funs: FunName +— N

In particular, the syntactic context defined by data model M consists of the
primitive types declared in M, the primitive and defined functions declared in M
(with arities defined by the number of domain sets in the function’s signature), and no
variables or type variables.
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A mathematical term e is syntactically correct with respect to syntactic context
I if all free variables and type variables in e are declared in I', all functions in e
are declared in I and have the correct number of arguments, and all declarations are
syntactically correct.

A declaration d is syntactically correct with respect to syntactic context I if its decla-
ration list is unambiguous (i.e., has no repeated variables), the bindings of the variables
are syntactically correct with respect to I', and the constraint is syntactically correct
with respect to I' extended by the variables being declared.

5.2 Data models

A data model is syntactically correct if each of its components is syntactically correct
with respect to the syntactic context defined by its preceding components, where the
syntactic correctness of individual components is defined by cases as follows:

Given type: The type is not already declared in I'.

Signature: The domain sets and the range set are syntactically correct with respect
to I' extended by the new type variables.

Function declaration: The function’s name is not already in I'. The number of
formal parameters agrees with the number of domain sets in the signature. The
signature 1s syntactically correct with respect to I'. The precondition is syntac-
tically correct with respect to I' extended by the type variables of the signature
and the formal parameters of the declaration.

Given function: The function’s declaration is syntactically correct with respect to

I.

Definition: The function’s declaration is syntactically correct with respect to I'. The
definition body is syntactically correct with respect to I' extended by the type
variables of the signature and the formal parameters of the declaration.

Metavariables: The bindings of the ordinary metavariables are syntactically correct
with respect to I'. The signatures of the schematic metavariables are syntacti-
cally correct with respect to I" and contain no type metavariables. (The latter
condition is imposed to ensure that schematic metavariables range over functions
rather than classes of functions.)

Constraint, Assertion: The metavariables are syntactically correct with respect to
I'. The statement is syntactically correct with respect to I' extended by the
declared metavariables, where the arity of the new function symbols (from the
schematic metavariables) is defined from their signatures.
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5.3 System specifications

A system specification is syntactically correct if its data model is syntactically
correct and its state machine components satisfy the following conditions:

State definition: There are no repeated state variables. The bindings of the state
variables are syntactically correct with respect to I', where I' is the syntactic
context defined by the system specification’s data model. The formal parameters
of the state invariant agree in number with the state variables and the body is
syntactically correct with respect to I' extended by the formal parameters.

Initial states: as for the state invariant.

Operation: There are no repetitions among the variables in the frame, nor among
the state variables in the ‘readable’ or ‘modifiable’ fields. The bindings of the
input and output variables are syntactically correct with respect to I'. The
precondition is syntactically correct with respect to I' extended by the input
variables and the pre-values of the ‘readable’ and ‘modifiable’ state variables.
The postcondition is syntactically correct with respect to I" extended by all the
frame variables.

Behavioural assertion: as for the state invariant.

6 Type checking

6.1 Overview

This section describes how types can be assigned to a subset of the syntactically cor-
rect ViZ mathematical terms. Type-checking is a quick and easy way to check that a
specification is mathematically meaningful. Terms for which types cannot be assigned
are mathematically meaningless, but the converse does not hold: we shall see exam-
ples below of terms which are syntactically and type-correct and yet which cannot be
assigned be assigned values.

We first introduce a notion of an n-ary (polymorphic) function type, which is a
partial function from n-tuples of types to types:

FunType, == Type™ - Type

The mapping defines the type of values that result from applying the function to an n-
tuple of values of given types. Table 1 gives function types for of the operators defined
in Fig. 3 above. Thus for example type restrictions ensure that the operator _ U _ is
only ever applied to two sets with the same underlying types of values.

A type context (or typing for short) consists of a set of primitive types and type
variables, an assigment of types to variables, and an assigment of function types to
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Operator Name | Function type

disjunction _Vv_ | {(B,B) — B}

union _U_ | {X:Type o (PX,PX)— PX}

binary relation | _ < _ | {X, Y: Type o (PX.PY)— PP(X x Y)}

Table 1: Function types for some of the operators defined above, written as sets of
maplets.

functions:

Typing
types: P(PrimType U Type Var)
vtype: Variable + Type

ftype: FunName - | o FunType,
n_

In effect, typings are a generalization of the notion of syntactic contexts, in the sense
that syntactic context information can be extracted from a typing (e.g. the arity of a
function can be determined from its function type). In the type checking literature,
typings are often referred to simply as ‘contexts’.

6.2 Terminology

This section defines a (partial) metafunction
type-of : Term x Typing + Type

which, given a typing 7, attempts to assign a unique type to a mathematical term e.
If type-of(e,7) is defined, we say e is well typed (or type correct) with respect to 7.

Before giving the definition of type_of we first introduce some terminology. If type_
of (e,7)is FE wesay ¢ is F-typed under 7. If type_of(e,7)is P T we say e is set-typed
under 7, with base type 7. This leads to an auxiliary metafunction

base_type: Term x Typing +— Type

which returns the base type of a set-typed term. Part of the type-checking process
in ViZ will ensure that all variable bindings are set-typed (see below), and hence that
variables in subterms have uniquely determinable types.

Given a typing 7 and a declaration d of the form x1: Ay,..., x,: A, | P such that each
of the A;’s is set-typed under 7, the set of typings derived from d under 7 is the
extension 7" of 7 by variable typings #; — T4,..., 2, — T, where T; is the base type
of A; under 7.% This leads to an auxiliary metafunction

typingFromDecl: Declaration x Typing +— Typing

3If any of the z;’s already receive type assignments under 7, these assignments are overwritten by
the new assignments in 7’.
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A declaration d of the above form is a well typed declaration with respect to 7 if
in addition P is B-typed under typingFromDecl(d, 7).

6.3 The type of a mathematical term
The definition of type_of(e,7) is given by cases as follows:
e If ¢ is a variable v in dom T.vlype, then type-of(e,7) is T.vlype(v).
e If ¢ is a primitive type or type variable T in v.types, then type.of(e,7)is P T.

e If ¢ is a function application f(er,...,e,) with f € dom7.fval and each of the
eis is well typed, then type-of(e,7) is 7.ftype(f)(Ti,..., Tn) where T; = type-
of (€,7).

o lype_of (B, 7) is PB, type_of(true,7) is B.

o lype_of (= P,7)is B if type_of (P,7) = B.

o lype_of (P N\ Q,7) is B if type_of (P, 1) = type-of (Q,7) = B.

o If d is a well typed declaration and @ is B-typed under typingFromDecl(d,T),
then type_of (Vd e Q,7) is B.

o lype-of (Z,7)is PZ.
o lype_of(n, ) is Z for each integer n.

e If m and n are Z-typed under 7, then type_of(m + n,7) and type_of (m * n,7)
are both Z.

o If A is set-typed under 7, then type_of (P A, 7) is Ptlype_of (A, 7).

o If d is a well typed declaration and a is T-typed under typingFromDecl(d,T),
then type-of ({d @ a},7)is P T.

o If A and B are set-typed under 7, with base types § and T say, then type.
of(AxB,7)is P (SxT).

o If type_of (p,7) is of the form Sx T, then type_of (m1p,7) is S and type_of (xop, )
is T.

o If d is a well typed declaration and a is T-typed under typingFromDecl(d, ),
then type-of(ed o a,7) is also T.

e If s is set-typed under 7 with base type equal to type_of(a, ), then
type-of (a€s,7) is B.

o lype_of(a =b,7)is B provided type-of(a,7) = type-of (b, 7).

o lype_of(a < b,7)is B provided type.of(a,7) = type_of (b,7) = Z.
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e If ¢ is not covered by any of the above cases then type-of(e,7) is undefined.

Note that it follows from our definition of type_of that e is well typed in a type context
7 only if e is syntactically correct with respect to the syntactic context corresponding
to 7.

6.4 Well typed data models

The following conditions define what it means for data model components to be well
typed with respect to a typing 7:

Given type: The type should not already be declared in 7.

Signature: Suppose the signature is [Xi,..., X,,] Di,..., D, to R and let 7/ be the
extension of 7 by Xi,..., X,,. Then we require that Dy,..., D,, R be set-typed
under 7. We also require that the set {Xq,..., X,,: Type @ (D;,..., D) — R'} of
maplets be a function type, where D/ is the base type of D; under 7’. As noted in
Section 3.2.3 above, this condition is imposed so that the result type of a function
application can be determined uniquely from its arguments’ types. In fact, we
shall impose a more stringent (but easier to check) requirement: namely, that
each X; occurs in some D). 4 In combination with the syntax checks this condition
is stronger than the earlier one since it means that the appropriate instances of the
X!s can be deduced from the types of the arguments to the function application
by simple pattern matching, and hence the appropriate instance of R can be

deduced. For example, [X, Y] X x YV to Y x X is well typed but [X] PX and
[X,Y] X to YV are not.

Function declaration: The signature should be well typed with respect to 7. The
precondition should be B-typed under 7", where 7”7 is 7 extended the type vari-
ables of the signature and by the variable typings v; — T;, where v; is the func-
tion’s ¢th formal parameter and T; is the base type of the function signature’s
tth domain set.

Given function: The function’s declaration should be well typed with respect to 7.

Definition: The function’s declaration should be well typed with respect to 7. The
definition body should be T-typed under 7", where 7" is as above and T is the
base type of the function’s range set.

Metavariables: Let 7/ be the extension of 7 by the type metavariables. The bindings
of the ordinary metavariables should be set-typed under 7/, and the signatures
of the schematic metavariables should be well typed with respect to 7.

Constraint, Assertion: The metavariables should be well typed with respect to 7.
The statement should be well typed with respect to 7”7, where 7" is 7 extended by

“Note that we look to the base type rather than simply checking whether X; occurs in D; since
certain occurrences may be entirely spurious: e.g. X is spurious in the term {z: X,y: Y o y}.

28



the appropriate typings for the metavariables. (The function type of a schematic
metavariable can be calculated directly from its signature.)

The typing defined by data model M consists of the primitive types declared in
M, the primitive and defined functions declared in M (with function types defined
from the function signatures), and no variables or type variables.

Finally, a data model is well typed if each of its components is well typed with respect
to the typing defined by its preceding components.

6.5 Well typed system specifications

Given a syntactically correct system specification S, let 7 be the typing defined by the
data model of S. Then S is said to be type correct if its data model is well typed
and its components satisfy the following conditions:

State definition: The bindings of the state variables should be set-typed under 7.
The body of the state invariant should be B-typed with respect to 7 extended by
variable typings for the formal parameters (as for function declarations above).

Initial states: as for the state invariant.

Operation: The bindings of the input and output parameters should be set-typed
under 7. The precondition and postcondition should be B-typed under the ap-
propriate extensions of 7.

Behavioural assertion: as for the state invariant.

The system specifications in Section 4 above are both type correct.

7 Propositions vs Boolean-valued terms

This section returns to the remark in Section 3.1.1 that the decision to treat logical
propositions as mathematical terms can be reversed if desired. Propositions can be
distinguished from mathematical terms by restricting the form of types and adding
further type constraints to the language. The revised definition of type expressions is

NewType =B | MathType
MathType = PrimType | TypeVar | ‘7 |
‘P> MathType | MathType ‘x’ MathType.

This change should be filtered through all of the above, so that for example
FunType,, == NewType™ - NewType

The definition of what it means to be set-typed should be changed so that B is disal-
lowed as a base type. Note however that, in order to support user-introduced propo-
sitional connectives and predicates, B should be allowed to appear on its own as a
domain and/or range set in signatures.

29



The following conditions should be added to those given earlier:

e Consider PB to be ill-typed.
e In set replacements {d e ¢}, insist that e is not B-typed.

e In pairs (a, b) and equations a = b, insist that « and b are not B-typed.

& Outline of the denotational semantics

This section outlines the denotational semantics of specifications written in ViZ: the
reader is referred to working paper [13] for more details.

8.1 The mathematical universe of discourse

The basic semantic entities in our domain of discourse are sorts, values and op-
erators: these will be represented in the metalogic by Sort, Value and Operator
respectively.

The sorts of the ViZ universe are formed from basic sorts BOOLEAN, INTEGER and user-
introduced primitive types by applying sort constructors PAIROF (Cartesian product)
and SETOF (power sets). Each user-introduced primitive type will be assumed to
contain at least one value. Note that for each sort there is a corresponding type
expression without type variables.

The values in the ViZ universe are the usual values one would expect to find in a
model of Set Theory: Boolean values TRUE and FALSE; integer values ZERO, ONE,
Two, etc; a value EMPTYSETOFINTEGERS of sort SETOF(INTEGER); and so on.
Sorts are pairwise disjoint and every value has a unique sort. In particular, each Power
Set sort has an empty-set value which is unique to that sort.

Operators are partial functions taking sequences of values to values: for example,

e the negation operator NOT takes (TRUE) to FALSE and (FALSE) to TRUE;
e the addition operator takes (ONE, ONE) to TWO, and so on;

e the modulus operator MOD takes (FIVE, THREE) to Two, and (S1X, THREE)
to ZERO but is not defined for (FIvE, ZERO).

Operators can be polymorphic: for example, the union operator can act on two sets
of integers, two sets of Booleans, and so on. However, our attention will be restricted
to deterministic operators whose result sort can be calculated uniquely from its input
sorts. More precisely, we shall consider only operators with which a fixed function type
can be associated.
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8.2 Structures and interpretations

A structure is a collection of sorts and operators which is closed under application of
operators [7]. All structures for ViZ will be assumed to contain sorts BOOLEAN and
INTEGER and to be closed under application of sort constructors PAIROF and SETOF;
all operators will be assumed to have fixed function types.

An interpretation is a structure and an assignment of operators to function names.
An interpretation is defined by giving its primitive types and a mapping of function
names to operators:

Interpretation

|7ptypes: P Prim Type

fval: FunName -+ Operator

Given an interpretation I, an I-sort is a sort involving primitive types from [.plypes
only.

A semantic context (or valuation) is an extension of an interpretation to include
assignments of sorts to type variables and values to variables:

Valuation
ptypes: P Prim Type

tval: TypeVar - Sort

voal: Variable + Value
fval: FunName -+ Operator

Note that valuations generalize the notion of type contexts, in the sense that type
information is implicit in a valuation (e.g. the type of a variable can be determined
from the sort of its value).

8.3 The meaning of mathematical terms
In [13] we define a metafunction

denotes: Term x Valuation — Value

which, given a valuation, attempts to assign a value to mathematical terms.

The following terminology is used in the definition of denotes:

o If denotes(e,v) is defined, with value E say, we say e is well formed with respect
to v and that ¢ denotes E in v.

o If denoles(e,v) is TRUE we say e is true in v.

o If ¢ is well formed and type_of(e,7) = T, where 7 is the typing corresponding
to v, we say e is T-valued under v. In particular, if e is B-valued under v, then
e 1s said to be a well formed formula.
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o If ¢ is well formed and type-of(e, ) is of the form P T, we say e is set-valued
under v.

o A declaration d of the form x;: Ay,...,x,: A, | P is a well formed declaration
with respect to v if each of the A;’s is set-valued with respect to v and P 1s a
well formed formula with respect to every extension v’ of v by variable valuations
21 —Xi,..., T, —X, where X; is a value in the set denotes(A;,v) for each i. The
set of all such valuations v’ is called the set of valuations derived from d
under v; this leads to the following metafunction

valuationsFromDecl: Declaration X Valuation - P Valuation

The definition of denotes(e,v) is given by cases according to the syntactic form of e.
For example, consider the case where € is of the form ¥V d ¢ Q. Then denotes(e,v) is
defined only if d is a well formed declaration and @ is a well formed formula for every v/
in valuationsFromDecl(d,v). If both these conditions are satisfied then denotes(e,v)
is TRUE if denotes(Q,v') = TRUE for every v’ € valuationsFromDecl(d,v) and FALSE
otherwise.

As a second example, consider the case where ¢ is of the form PA (). Then denotes(e, v)
is TRUE if denotes(P,v) = denotes(Q,v) = TRUE, and FALSE if P and @ are B-typed
and denotes(P,v) = FALSE or denoles((Q),v) = FALSE.

See [13] for full details.

8.4 Interpretations of a data model

An interpretation of a data model M is one which includes all the primitive types
declared in M and which assigns a meaning to each of the functions declared in M. A
valid interpretation of M is one which satisfies all the conditions imposed by the
data model.

For example, consider a primitive function declaration

given function f:[Xy,..., X,,] Dy,....D, to R
precond vy,...,v, = P

A valid interpretation I of such a declaration would assign an operator, F say, to f such
that for any extension v of I by valuations of the X;’s by I-sorts, and any extension v/
of v by valuations v; — a; such that «; € denotes(D;,v) and denotes(P,v') = TRUE,
then F(ay,...,a,) is defined and is an element of the set denotes(R,v).

In [13] we define what it means for a data model to be well formed: roughly this means
that all terms are well-formed in the appropriate context (the bindings of variables
are set-valued, the preconditions of function declarations are well formed formulae,
etc). The definition of well formedness is given in such a way that the well formedness
of later components do not depend on exactly which interpretation is given to earlier
components. There will be proof obligations to check that a data model is well formed.
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8.5 State machines

A state machine SM consists of a set States of states, a set Init of possible initial
states, and a collection Trans of possible transitions, subject to the following con-
straints: Init is a subset of States and States is closed under the transitions from

Trans.

A state is a mapping from state variables to values:
AllStates == StateVar -+ Value

Each state machine has a fixed set of state variables.

A transition consists of a label (an operation name), a pair of states (one for the
state immediately before the transition takes place, and one for the state immediately
afterwards), and a pair of assignment mappings of values to variables (for the values
of the input and output variables, respectively):

_ Transition
label: OpName

prestate: AllStates

inputs: Variable + Value
poststate: AllStates
oulputs: Variable + Value

prestate € States N\ poststate € States
dom prestate = dom poststale

A trace of a state machine is a description of one possible behaviour of that machine.
More formally, 1t consists of an initial state and a sequence of transitions, such that the
pre-state of each individual transition is the same as the post-state of the preceding
transition (or is the initial state, in the case of the first transition):

_ Trace
initial: AllStates
transitions: seq Transition

initial € Init
ran transitions C Trans
transitions(1).prestate = initial
Vn:2..#lransilions e
transitions(n).prestate = transitions(n-1).poststate

Note that the set of traces of a given machine is closed under taking initial segments.

The set of reachable states of a given state machine are all those states which can
be reached by the machine (including the initial states).

8.6 The semantics of system specifications

Recall that the data model of a ViZ system specification may have many different
interpretations. For each fixed interpretation, however, the ViZ specification defines a
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unique state machine. In what follows, suppose that [ is a valid interpretation of the
data model of a given system specification SM.

Suppose the state definition of SM is

statespace SM has svy: A1, ..., sv,: A,
with invariant zy,..., 2, £ P

Then the states of the machine defined by SM and [ are all mappings o of the state
variables svy,...,sv, to values in the sets denotes(Aq,1I),..., denotes(A,,I) respec-
tively such that denotes(P,v) = TRUE, where v is the extension of [ by valuations
z; — o(sv;).
Suppose the initial states declaration of SM is

initially @)
Then the initial states of the machine are those states o as above such that denotes(Q, v)

= TRUE, where v is as above.

Next consider an operation

operation Op

inz: A, out y: B

reads r:: u, modifies m:: (v, w)
precondition P

postcondition ()

of SM. The corresponding set of transitions of the machine consists of those transitions
(| label ~ Op, prestate ~ o, inpuls ~ {x — a}, poststate ~ o', outpuls ~ {y +— b} |)
such that o(sv) = ¢/(sv) for state variables other than m and

denotes(P,v) = denotes(Q),v) = TRUE
where a € denotes(A, ), b € denotes(B, 1), and v is [ extended by valuations
g a, y—b, u—o(r), v o(m), w— o'(m)

This definition generalizes in the obvious way to arbitrary operator definitions.

Finally, the behavioural assertion ‘behavioural invariant R’ is true for SM if
denotes(R,v') = TRUE for every valuation v’ formed by extending I by assignments
z; — o(sv;) where o is a reachable state of the machine defined by SM.

This completes the description of the denotational semantics of ViZ system specifica-
tions. There will be proof obligations to check the well formedness of specifications.
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9 Conclusions

The ViZ syntax combines the following strengths of Z and VDM:

o It follows the model-oriented specification approach common to the two meth-
ods, whereby the state of a system 1s modelled mathematically and each critical
function of the system is expressed as a relationship between the before and after
states.

o It uses a set theoretic approach to defining data models from a small core of
mathematical primitives, as in 7. This results in a simple and flexible conceptual
foundation for data definitions.

o [t uses fixed arity function application as in VDM. This means that the semantic
explanation is essentially first order, and makes no use of lambda functions and
other higher order abstractions.

o [t requires that users explicitly define preconditions for partial functions, as in
VDM. This gives the link between the syntax and the semantic explanation
of undefined terms (i.e., the denotational semantics is required only when the
function’s precondition is defined).

o [t follows VDM in requiring that users explicitly declare which components of
their specification define the system state, the possible initial states, and the
system transitions.

This paper has outlined a semantic framework within which Z and VDM can opearte.
The semantic framework overcomes what is commonly seen as some of the main weak-
nesses of the two methods:

e [t is small and easy to understand, and 1s based on well established, commonly
understood principles from mathematical logic, such as Set Theory, Model The-
ory and state machines.

e [t can be axiomatized in second order monadic logic — a restricted sublogic of
higher order logic — and so is suitable for a broader range of mechanical proof
assistants, including mural [11].

e It relates the state machine approach (of considering operations as individual
transitions) to the trace behaviour approach (of considering system behaviour
in terms of valid sequences of operations) by making precise exactly which state
machines satisfy a given specification. In particular, it is unequivocal about how
it interprets preconditions of system operations. This means it is possible to
formulate a notion of behavioural invariants and to derive deductive procedures
for establishing them.

The ViZ syntax is expected to lead to a stronger and simpler method of software
specification, better suited to formal verification. The new syntax is
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o stronger because it is more general than the two individual methods and has
a greater range of analysis techniques available to it, including stronger type-
checking and the ability to state and prove assertions about the behaviour of the
specified system;

e simpler because it is substantially smaller than either of Z and VDM-SL, and is
based on well established, commonly understood principles from mathematical
logic;

o better suited to formal verification because is based on more general foundations

than VDM-SL and on a weaker logic than Z.

The new syntax provides a means for users of one notation to communicate with users
of the other notation. But perhaps more importantly, because it has been designed
with machine support in mind, it is expected to make formal verification of software
easier. It does not however tackle issues of specification in the large and refinement.
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