SOFTWARE VERIFICATION RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT
No. 95-52

The CARE toolset for developing
verified programs
from formal specifications

David Hemer and Peter Lindsay

December 1995

Phone: 4+61 7 3365 1003
Fax: +61 7 3365 1533

Note: Most SVRC technical reports are available
via anonymous ftp, from ftp.cs.uq.edu.au in the
directory /pub/SVRC/techreports.

The CARE toolset for developing verified programs
from formal specifications *

David Hemer and Peter Lindsay
Software Verification Research Centre

The University of Queensland, St Lucia Qld 4072

15 December 1995

Abstract

This paper describes the CARE toolset for interactive development of verified programs
from formal specifications. The software engineer begins by giving a characterization of
the application domain in the form of a mathematical theory. CARE tools are then used
to progressively design a program by sketching out the program structure and gradually
filling in the details. At any stage the correctness of the partial design can be checked
by using one of the CARE tools to generate proof obligations. Another tool gives access
to pre-proven parameterised design templates which encapsulate useful programming
knowledge. When the design is complete, a third CARE tool is used to automatically
synthesize a source code program which — if all the proof obligations can be discharged
— is guaranteed to meet its formal specification.

The knowledge base of CARE can be extended by users in a soundness-preserving
manner to include reusable domain theories, library routines, design templates and proof
tactics. The CARE toolset includes a fully automatic resolution-based theorem prover
which will discharge many of the simpler proof obligations, and a general-purpose inter-
active theorem prover for the rest.

1 Introduction

1.1 Motivation

The need for formal methods during the software development is becoming increasingly rec-
ognized by the software engineering community, particularly in critical applications [13]. This
is evidenced by the emergence of a number of software standards that insist formal methods
be used at various stages of the software development lifecycle, for example for security-
critical [4] and safety-critical applications [5]. Many companies, especially in Europe, are
now using formal specification techniques but the next step — formal verification of programs
— is generally regarded as a difficult, time-consuming task requiring esoteric mathematical

skills.

The CARE project aims to bring formal verification within the reach of software engineers
trained in formal specification. The CARE system addresses the problem in two ways: firstly,
by providing a framework within which programming knowledge can be recorded and reused

*The CARE project is a collaboration between the SVRC and Telectronics Pacing Systems Pty Ltd, sup-
ported by Generic Technology Grant No. 16038 from the Industry Research and Development Board of the
Australian Government’s Department of Industry, Science and Technology.

with minimal need for re-proof; and secondly by providing tools for generating and discharg-
ing conditions which guarantee that the program meets its specification. We feel that the
combination of interactive tools with appropriate libraries of reusable, formally verified pro-
gramming knowledge is the best route to realizing the aim of making formal verification
feasible for software engineers with an understanding of formal specification.

A major innovation of the CARE approach is that it supports the development of verified
software for target languages which themselves do not have a formal semantics. It does this
by restricting the user’s use of target-language code to formally specified library routines
which are verified “off-line”. Code in the target language is automatically synthesized from
programs written in the CARE language.

1.2 Program development using CARE

CARrE stands for Computer Assisted Refinement Engineering. The CARE prototype
toolset supports a simplified version of the well-established VDM approach to program devel-
opment from formal specifications [6, 8, 11, 17]. Unlike VDM and many other broad-spectrum
languages, however, CARE uses a simple set of core constructs for algorithm and data refine-
ment which means that the notation is easy to learn and easy to apply. In brief, the major
steps in the use of the CARE toolset are:

Domain theory: The software engineer begins by defining a mathematical theory which
characterizes the problem domain within which the application is to be developed.
The theory typically consists of mathematical definitions of the types of object to be
considered, together with functions on those objects and relationships between them.
The CARE toolset accepts definitions written in a mathematical notation based on
the Z “mathematical toolkit” which in turn is based on many-sorted set theory [10,
29]. A large user-extensible library of theorems is supplied with the toolset, including
theories of commonly used mathematical constructs such as sets, sequences, relations
and mappings.

Program specification: The next step is to formally specify the application program, by
defining the desired relationship between its inputs and outputs. The data types to
be used by the program also need formal specifications, in the form of mathematical
expressions which define their carrier sets (that is, the set of values which belong to the
type). The specifications may be abstract, in the sense that they involve mathematical
concepts which are not immediately implementable in code. They may for example be
defined implicitly or in terms of properties which are required to be kept invariant. In
particular, CARE specifications are not necessarilly executable [14].

Program development: Using CARE, the software engineer typically develops a program
design by progressively adding algorithmic detail and refining abstract data structures
into more concrete representations. The CARE toolset includes a user-extensible li-
brary of generic design templates which record useful algorithm and data refinements.
Program development eventually bottoms out when so-called “primitive” components
are reached, which correspond to library routines and which are written directly in the
target language. (The prototype toolset has C as its target language, but the examples
in this paper will use Pascal, for clarity.) Note that the CARE user does not write
target code.

Design verification: At any stage the correctness of the partial design can be checked by
using the CARE tools to generate proof obligations which check that the components

fit together properly and achieve the desired effect. Proof obligations are written as
mathematical formulae whose truth should be judged before proceeding further with
the design. In the first instance, the truth of the proof obligations should be judged
informally by the software engineer, who needs to convince him or herself that they are
logical consequences of the domain theory. If the proof obligations cannot be discharged
it could be because the design is incorrect or the domain theory is incomplete.

The CARE toolset includes a fully automatic resolution-based theorem prover which will
discharge many of the simpler proof obligations, and a general-purpose interactive the-
orem prover for the more difficult ones. We have found that many of the steps involved
in going from high-level abstract specifications to efficient executable implementations
depend on leaps of mathematical insight which seem to be well beyond the abilities of
current generations of automatic theorem provers [22]. In interactive theorem provers
such as HOL [1] and Isabelle [2], however, such leaps can be encoded as proof tactics.
The CARrE library will be populated with general and domain-specific proof tactics,
with the intention that CARE users experiment with different combinations of tactics
until they find proofs (or refutations) of their proof obligations.

Code synthesis: When the program design is complete, another CARE tool is used to au-
tomatically synthesize a source-code program with the same structure as the CARE
program and with the target code from the primitive components included. If all the
proof obligations can be discharged, then the synthesized program is guaranteed to
meet its formal specification. (This assumes of course that the primitive components
are correct: that is, that their mathematical specifications accurately characterize the
target-code segments they contain.)

The prototype toolset produces compilable C code, but in principle the approach could
be adapted to produce code in most of the commonly used programming languages.

Program documentation: The CARE toolset includes pretty-printers and IATRX macros
which allow CARE programs to be formatted for inclusion directly into IATpX docu-
ments.

The CARE toolset comes supplied with a library of pre-proven, parameterised design “tem-
plates” which the user can instantiate to suit the problem at hand. The knowledge base of
CARE can be extended by users in a soundness-preserving manner to include reusable domain
theories, design strategies, primitive components, proof tactics, and so on.

The prototype toolset has been populated with a large number of design templates and prim-
itive components for numbers, lists, arrays and records. We have used the CARE method on
a number of medium-sized applications including verification of the design of an event logger
such as might be used in an embedded device [24]. Work is proceeding on populating the
tools with further general purpose design templates and primitive components and develop-
ing larger case studies. Section 4 illustrates the use of the CARE method on the ‘spellchecker’
problem.

1.3 The CARE project

The CARE project is a collaboration between Telectronics Pacing Systems and the Software
Verification Research Centre. Telectronics develops and manufactures software-driven med-
ical devices such as implantable defibrillators. T'he company has long been motivated to
investigate the use of formal methods for the economical and timely development of prov-

ably correct software. A grant from the Australian Government has enabled more extensive
development of the ideas and the construction of a prototype toolset to support the method.

The CarRE method has been trialled at Telectronics in a five-day intensive training course
attended by senior software engineers not directly involved in the CARE project. It is testi-
mony to the effectiveness of the method and toolset that it can be used after so little training
(albeit for fairly small examples). Telectronics have now decided to try the approach to
develop part of the software for their next product range.

1.4 This paper

Section 2 describes the CARE language for the development and verification of programs.
Section 3 outlines the functionality of the tools in the CARE toolset. Section 4 illustrates the
use of CARE to develop a small application. Section 5 compares the CARE approach with
other systems for formal verification.

2 Brief description of CARE

This section briefly describes the CARE notation: the interested reader is referred to one of
the CARE overview documents for more details [23, 25].

2.1 Theories

Theories allow the software engineer to define a mathematical representation of the “domain
theory” of the application: that is, the concepts, objects and relationships which characterize
the desired application program. (The CARE toolset accepts Z-like ascii notation for mathe-
matical expressions and pretty-prints them in their more familar form.) Each new constant,
function and relation is defined via a signature and a set of axioms. For example, here are
theory components that define functions append for appending an element onto a sequence
and elements for finding the set of elements of a sequence:

Theory Definition of append.
append : E X seq F — seq F;

~

Vae:E,s:seqE o append(z,s) = (z) " s.

Theory Definition of elements
elements : seq B — F E,
elements(({)) = @,

Vz:E eelements((z)) = {z},

Vs,t:seq E o elements(s 7~ 1) = elements(s) U elements(t).

The library supplied with the CARE prototype toolset contains definitions of many of the
constructs from the Z mathematical toolkit.

2.2 Program components

CARE programs have two different kinds of components: types for expressing data structures
and fragments for expressing algorithms. In a complete CARE program every component
has a specification (mathematical characterization) and an implementation (from which code
will eventually be synthesized). The implementation can be either directly in code or it can
be defined in terms of other components; the former are called primitive components and
the latter higher-level components. The implementation of primitive components, and the

proof that the associated target language code satisfies the corresponding specification, are
considered to be outside the scope of CARE.

For clarity, the names of CARE components and variables are written in typewriter font,
and mathematical expressions are written in italics. In what follows we use Pascal as our
target language, for didactic purposes.

2.3 Types

Each object within a CARE program has an associated type, which describes the kind of
values that the object may take. Types are specified by giving a mathematical expression
representing the set of values that an object of this type may take. For example, here are
specifications of types for lists and sets:

Type List has specification: seq X
Type Set has specification: F X

Higher-level types are implemented in terms of other types by defining a data refinement.
(See e.g. [17] for an explanation of data refinement.) For example, sets can be implemented
as non-repeating sequences:

Type Set has implementation:
value s:Set is refined by x:List
with invariant Vi,5:1.. #z e i #j = z(i) # z(j)
with refinement relation s = elements(z).

Under such a refinement, a set can be represented by any non-repeating list which has the
same elements. The invariant says that only non-repeating lists will be used to represent
sets; the refinement relation describes how to view a non-repeating list as a set. When a data
refinement has been chosen, the software engineer can then proceed to implement operations
on object of the abstract type in terms of operations on the corresponding objects of the
more concrete type(s): e.g. finding the cardinality of a set simply becomes finding the length
of a corresponding list. The refinement relation and invariant play a role in the associated
verification: see [24] for examples.

2.4 Fragments

There are two kinds of fragments: simple and branching.

Simple fragments are roughly analogous to functions in a procedural programming language.
The specification of a simple fragment defines the types of its inputs and outputs, the frag-
ment’s precondition, and the relationship between the inputs and outputs. The precondi-
tion is a constraint on the possible inputs to the fragment; it is specified as a predicate of
the input values. In many cases the precondition is simply ‘true’, in which case it will be
omitted. There are proof obligations to check that the precondition is satisfied each time the
fragment is called.

As an example, here is the specification of a simple fragment named first which takes a
single input x of type List such that x is non-empty; it returns a single output e of type
Element such that e is the first element of x.

Fragment first(x:List) has
specification:

precondition z # ()

output e:Element such that e = head z

The main difference between simple and branching fragments is that the latter are used for
branching of control. Each branch is identified by a label called its report. The flow of
control is determined by tests called guards, which are specified as predicates of the input
values. Conceptually, each of the guards is evaluated in turn until one is found that is true;
by default no guard is given for the last branch, so it is taken if all the preceding guards are
false. The number and type of outputs returned by a branching fragment may be different
for different branches, and some branches may return no result at all.

For example, here is the specification of a branching fragment decomposelist which takes
a single argument x of type List and tries to decompose it. If x is the empty list, then
decomposeList(x) simply reports empty with no outputs. Otherwise, it reports nonempty

and returns two values h and t such that x is equal to the list formed by appending h onto
the front of t (in other words, h is the head of x and t is the tail).

Branching fragment decomposeList(x:List) has
specification:
if 2 = () then report empty
else report nonempty
with output h:Element,t:List such that z = append(h,t)

2.5 Fragment implementations

Primitive fragments are implemented directly as target language code: simple fragments are
defined as target language functions; branching fragments are defined by giving Boolean-
valued tests for the guards and function definitions for each branch. See Section 4.6 for
examples.

The implementation of a higher-level fragment is tree-structured, with fragment calls at the
nodes. Non-branching nodes of the tree correspond to bindings of values to local variables; the
values of the bindings are either variables or the result of a simple fragment call. Branching
nodes correspond to calls to branching fragments, and in the case where a branch returns
values, these are bound to local variables on the appropriate branch. Each leaf node of the
tree contains the result returned (if any), together with a report in the case of branching
fragments.

To illustrate, let us suppose that first and rest are simple fragments that return the head
and tail of an non-empty list. (first was specified above.) Suppose also that isEmpty is a
branching fragment which takes a list and simply reports yes or no, depending on whether
or not the list is empty. Using these fragments, here is an implementation for the fragment
decomposeList which was specified earlier:

Branching fragment decomposeList(x:List) has
implementation:
cases isEmpty(x) of:
yes: report empty
no: assign first(x) to h:Element;
assign rest(x) to t:List;
report nonempty and return h,t

In this case, the root of the implementation tree contains a call to isEmpty. If the list
x is empty, control passes to the branch labelled yes, and empty is reported with no value
returned. Otherwise, control passes to the branch labelled no, where the result of the fragment
call first(x) is bound to local variable h, then the result of fragment call rest is bound to
local variable t, and the values of h and t are returned, with report nonempty.

Fragment implementations may involve recursive calls, including mutual recursion. In order
to establish termination of fragment evaluation, the user should supply a variant function
(that is, an N-valued function of the input variables) whose value decreases on recursive calls:
see [15] for full details.

2.6 The library and templates

The CARE library is a repository for a number of pre-proven, reusable packages called tem-
plates. In its most general form, a template consists of a collection of fragments, types and
theories, which together implement some algorithm or data structure.

Templates may be parameterises, and a given template can be instantiated in a number of
different ways to suit different problems. There may be constraints on the formal parameters,
called applicability conditions, which express the properties which enable the template to
be verified in its most general form. When the template is instantiated, the corresponding
instances of the applicability conditions become proof obligations for the implementations
introduced by that template. This means that many of the difficult modelling and verifica-
tion steps can be done “off-line” by verification experts and then packaged for use by the
software engineer, who is left with the considerably simpler task of verifying the applicability
conditions. Section 4 below gives some examples.

2.7 Proof obligations

Proof obligations are the conditions which ensure that implementations of higher-level com-
ponents satisfy their specifications. For example, assuming that first is as specified as
above, that rest(x) has specification fail z, and that the guard of isEmpty(x) is z = (),
then here is the proof obligation which checks the appropriateness of the report and outputs
at the second leaf in the implementation of decomposeList above:

Proof obligation decomposeList_pc_path2
==Vz:seqX e (z={())=>
Vh:X oh=head(z)=
Vi:seq X ot =tail(z) =
= (z=()) Az = append(h,1)

In words, the proof obligation says that, if z is non-empty, h is the head of z and ¢ is
the tail of z, then nonempty is the appropriate report and output pair (h,t) satisfies the
corresponding input/output relationship.

In brief, the different kinds of proof obligation are:

Partial correctness: Fach leaf node in an implementation tree satisfies the required in-
put/output relationship.

Well-formedness: The precondition of each fragment call is satisfied.

Applicability conditions: Templates’ parameters have been instantiated in a valid man-
ner.

Termination: Variant functions are supplied for all recursive fragments, and the value of
the variant decreases for each recursive call.

The interested reader is referred to [15] for full details of the proof obligation generation
process.

3 The CARE toolset

This section describes in more detail the functionality of the individual tools in the CARE
toolset. Most of the tools, with the exception of the theorem provers and the code synthe-
sizer, were themselves formally specified in 7Z (see e.g. [15]) and implemented by an almost
mechanical translation to Prolog. The overall architecture of the toolset is shown in Fig. 1.

Library
. Script
Script Interpreter
Template
Instantiator
Ergo Q
Worksheet
M
anager Proof
A Obligation
Generator
Worksheet
Automatic
Theorem
Prover
User Interface
Code
Synthesizer Code
Pretty .
Printer Documentation

Figure 1: Architecture of the CARE toolset

Script: The development and verification of a CARE program is driven from a script sup-
plied by the software engineer. A script may include declarations of fragments, types
and theories, as well as commands for retrieving and instantiating templates from the
library, generating proof obligations, and invoking one of the theorem provers on a
given proof obligation.

Worksheet: The current state of the CARE program under development is stored and dis-
played on a “worksheet”. Each component of the worksheet has an associated status
which indicates the component’s standing in the overall development. For fragments
and types, the status is one of the following: specified only; pre-proven (the compo-
nent’s implementation comes from a library template); implemented but proof obliga-
tions not yet generated; proof obligations generated but awaiting proof; proven. For
proof obligations, the status is either proven or unproven. Finally, the worksheet it-
self is considered complete and correct if and only if all its fragments and types are
implemented (i.e., have status ‘pre-proven’ or ‘proof obligations generated’) and all as-
sociated proof obligations have been generated and discharged. Note that worksheets

are not directly editable by the software engineer: information can be added to the
worksheet or modified only via the script.

Library: The library consists of a collection of pre-proven design templates. Each template
contains any number of the following: formal parameters and applicability conditions;
theory declarations, including constant, function and relation signatures, theorems and
lemmas; fragment and type specifications, with or without implementations; proof
tactics; documentation. There is a tool to help the user search the library.

Script interpreter: The script interpreter parses the individual script commands and passes
annotated fragments, types and theories to the worksheet manager as abstract syntax
trees. It incorporates a parser for declarations in Acsii, together with tools for retrieving
and instantiating templates from the library (see below).

Template instantiator: This tool is given a template name and an instantiation of its
formal parameters. It then retrieves and instantiates the template appropriately, and
passes the results to the worksheet manager. There are directives for renaming or
omitting nominated components of the template. The template instantiator calculates
a “minimal closure” of the components that will be needed to make a self-contained
component set.

Proof obligation generator: Proof obligations are generated purely mechanically from
the CARE components and simplified using basic properties of equality, propositional
calculus and quantifiers.

Theorem provers: The CARE toolset includes two theorem provers, one fully automatic
and the other interactive. Both theorem provers are more or less stand-alone tools.
Keith Harwood and his team at Telectronics have developed a purpose-built automatic
theorem prover for CARE based on order-sorted resolution under equality [32]. The
SVRC team has adapted the Ergo interactive proof assistant [31] by making use of its
store of theorems about many-sorted set theory and developing special-purpose simpli-
fication procedures and appropriate tactics and heuristics for CARE proof obligations.

Worksheet manager: The worksheet manager controls what goes on the worksheet, where
it is placed on the worksheet and with what status. It takes its input from the script
interpreter and from the theorem provers, and updates the worksheet accordingly. (For
example, the status of a proof obligation is determined directly from the output of the
automatic theorem prover, or by polling the status of the corresponding conjecture in
the interactive theorem prover upon request via a script command.) The worksheet
manager is responsible for reporting various errors back to the user via the script
interpreter, for example if the user tries to overwrite an already existing implementation.

Pretty printers: A number of pretty printers are available to convert the worksheet from
its abstract syntax tree form into human readable forms, for example in Ascii (suitable
for reparsing) or IATRX form (for inclusion in printed documents). There is also a pretty
printer to display the syntax trees as Prolog terms, for debugging purposes.

Code synthesiser: The code synthesiser tool takes a complete collection of fragments and
types and constructs a C source-code program. In the initial phase of code synthe-
sis, a code graph is constructed for each higher-level fragment in the collection. In
the second phase, a series of transformations expands the graph for a user-nominated
“main” fragment until a single code graph is obtained in which all the (non-recursive)
fragments have been fully expanded. The final step produces the synthesised program

by translating the code graph into appropriate code in the target language, drawing
in the code fragments associated with primitive components and performing various
optimizations along the way. The reader is referred to [26] for further details on the
code synthesis process. The current prototype supports tail recursion but we plan to
extend this to more general forms of recursion in the near future.

4 Example development of a spellchecker program

This section outlines the development of a simple application using the CARE toolset.

4.1 A top-level design for a spellchecker

The problem we shall consider is the design of a system which reports misspelt words in a
file. This problem can be split into the following subproblems:

1. parse the file to get a list of words;
2. sort the list of words into a lexicographically ordered list;

3. compare the sorted list with a dictionary, stepping through the two lists in parallel and
storing the misspelt words;

4. output the remaining words to the user who may then have the opportunity to either
correct the misspelt word, or add it as a new word to the dictionary.

Assuming the number of different words in a file is generally much smaller than the total
number of words in the dictionary, this design will be fairly efficient since it makes a single
pass (only) through the dictionary. We shall concentrate here on the second and third stages
of the design.

4.2 Domain theory

This section outlines a domain theory for the above design. First, we introduce a new type
Word to represent the set of all possible words. Let before be a binary relation representing
the lexicographic ordering on words. Rather than giving a full definition at this stage we
simply state some useful properties of before: namely that any two words can be compared,
and that the relationship is transitive.

Theory Definition of before

before : Word x Word;

Va,y: Word e before(z,y) V z =y V before(y, z),
Va,y,z: Word e before(z,y) A before(y, z) = before(z, z).

The predicate ordered represents lexicographically ordered word sequences.
Theory Definition of ordered

ordered : seq Word,;
ordered(()),

Vh: Word,t:seq Word e ordered(append(h,t)) <t = () V (before(h, head t) A ordered(t))

The dictionary is modelled as an ordered sequence of words:

10

Theory Definition of dictionary
dictionary : () — seq Word;
ordered(dictionary).

The function remove takes two lists and returns the set of words which are in the first list
but not in the second:

Theory Definition of remove
remove : seq Word x seq Word — IF Word,;
Vs, t:seq Word @ remove(s,t) = elements(s) \ elements(?).

(elements is defined in Section 2.1 above, and _\ _is the usual set difference operator.)

4.3 Initial specification

Having defined an initial domain theory, we are now ready to specify the main program
fragment spellcheck, together with the two main data structures Word and WordList:

Type Word has specification: Word.
Type WordList has specification: seq Word .

Fragment spellcheck(s:WordList) has
specification:
output r:WordList such that elements(r) = remove(s, dictionary).

Note that spellcheck is loosely specified: we do not mind in what order the misspelt words
appear. (Leaving the operation loosely specified in this way gives the software engineer more
freedom in program design, and can significantly ease the subsequent verification task.)

4.4 1st development step - implementing spellcheck

The first step in implementing spellcheck involves sorting the list and removing any cor-
rectly spelt words. We could do this in steps by first retrieving a general template for list
sorting from the library (Fig. 2), which in turn includes a template which gives specifications
of a number of useful list processing fragments (Fig. 3). Note that these general templates
contain specifications of useful components together with their associated theory, but do
not make any commitment to particular data structures or particular algorithms for sorting:
there are other, more specific templates for such things.

To apply the template to our problem we would issue the following script command:
instantiate General Sort with

formal parameters: £ — Word, z < y — before(z,y)
textual parameters: Element — Word, List — WordList, increasing — ordered

(Textual parameters refer to the names of components of the template, which can be changed

to suit the problem at hand.) The effect of such an instantiation would be to bring specifica-
tions of fragments sort, emptylist, etc onto our worksheet, together with the instantiated
applicability condition for the template:

Va,b: Word e before(a,b)V a = bV before(b, a);
Va,b,c: Word e before(a,b) A before(b, ¢) = before(a, c)

(These proof obligations can be discharged by direct appeal to the definition of before above.)

The next step would be to declare new fragments dictionary and removeOKWords corre-
sponding to the dictionary and the operation for removing words from a list:

11

Template General Sort is

include template Basic Lists
formal parameters: _ < _: F' x FE

applicability conditions:
Va,b: Fea<bVa=bVb<a
Va,bc: Fea<bAb<c=a<c
Va:Fe-(a<a)

Theory Definition of increasing

mcreasing : seq F;

increasing(()),

Vh:FE t:seqF e increasing(append(h,t)) <t = () V (h < head t A increasing(1))

Theory Definition of sort

sort :seq F — seq F;

Vs :seq F o elements(sort(s)) = elements(s),
Vs :seq E e increasing(sort(s))

Fragment sort(s:List) has
specification:
output r:List such that r = sori(s).

Branching fragment compare(x,y:Element) has
specification:

if 2 <y then report before

elseif y < 2 then report after

else report same.

Figure 2: General template for sorting lists

12

Template Basic Lists is

formal parameters: F

Type Element has specification: E'.
Type List has specification: seq E.

Fragment emptylist() has
specification:
output s:List such that s = ().

Fragment append(h:Element,t:List) has
specification:
output s:List such that s = append(h,t)

Fragment concat(s,t:List) has
specification:

output r:List such that r = s 1.

Branching fragment decomposeList(x:List) has
specification:
if 2 = () then report empty
else report nonempty
with output h:Element,t:List such that z = append(h,1t)

Figure 3: A basic template for lists

Fragment dictionary() has
specification:
output r:WordList such that r = dictionary.

Fragment removeOKWords(s,t:WordList) has
specification:
precondition ordered(s) A ordered(t)
output r:WordList such that elements(r) = remove(s,1).

Note that the design assumption that the two lists to be compared are ordered has been
recorded as a precondition on removeOKWords: this assumption will be important for devel-
oping an efficient implementation.

Once the specifications of dictionary and remove0OKWords have been brought onto the work-

sheet, we can implement spellcheck by issuing the following script command:

Fragment spellcheck(s:WordList) has
implementation:
return removeOKWords(sort(s),dictionary).

The proof obligations that check the correctness of this implementation are as follows:

Vs :seq Word e ordered(sort(s));

ordered(dictionary);

Vs, u,v,r:seq Word e u = sort(s) A v = dictionary A elements(r) = remove(u, v)
= elements(r) = remove(s, dictionary)

They are straightforward to discharge from definitions and simple properties of sequences.

13

4.5 2nd development step - implementing sort

Suppose we decide to implement the sorting fragment by retrieving a template for the Quick-
sort algorithm from the library (Fig. 4):

instantiate Quicksort with
formal parameters: £ — Word, z < y — before(z, y)
textual parameters: gsort — sort, Element — Word, List — WordList.

This has the effect of bringing theory and fragments from the template onto the worksheet.

4.6 3rd development step - implementing WordList

Suppose we next decide to implement word-lists using primitive components from the library
which give access to target-language data structures for linked lists (details omitted for
reasons of space). Issuing the appropriate instantiation command would bring the following
primitive components onto the worksheet:

Type WordList has
specification: seq Word
associated code:
"type WordList = [Cell;
Cell = record current:Word; next:WordList; end".

Fragment emptylist() has
specification:

output s:WordList such that s = ()
associated code:

"nil".

Fragment append(h:Word,t:WordList) has
specification:

output s:WordList such that s = append(h,t)
associated code:

"new s; s].current:=h; s].next:=t".

together with primitive fragments for concat and decomposelist.

4.7 4th development step - implementing removeOKWords

Turning our attention to the removeOKWords fragment, we could use an “accumulator” strat-
egy (see [23] for more explanation) to write an implementation which steps through the two
lists in parallel, accumulating the words which are in the first but not in the second. This
would be achieved by issuing script commands to implement remove0KWords as follows:

Fragment removeOKWords(s,t:WordList) has
implementation:
return shuffleProcess(s,t,emptylist).

14

Template Quicksort with duplicates removed is
include template General Sort

Theory Definition of lessThanElems and girThanElems

lessThanElems, gtrThanElems : E X seq E — seq E;

lessThanElems(e, () = () = gtrThanElems(e, ()),

Vhye:E t:seqE o h < e = lessThanElems(e, append(h,t)) = append(h, lessThanElems(e, 1)),
Vhe:E,t:seqE ¢ = h < e= lessThanElems(e, append(h,t)) = lessThanElems(e, 1),

Vhe:E t:seqE o e<h = girThanElems(e, append(h,t)) = append(h, girThanElems(e, 1)),
Vhe:E t:seqE o e<h= girThanElems(e, append(h,t)) = gtrThanElems(e,t).

Fragment gsort(s:List) has

specification:
output r:List such that r = sort(s)
implementation:
cases decomposeList(s) of:
empty: return emptylist

nonempty: assign output to h:Element,t:List ;
assign splitList(h,t) to 1t:List,gt:List;
return concat(qgsort(1lt),append(h,qgsort(gt))).

Fragment splitList(e:Element,s:List) has
specification:
output 11,r1:List
such that Il = lessThanElems(e,s) A rl = gtrThanElems(e, s)
implementation:
return splitListAcc(e,s,emptylist,emptylist).

Fragment splitListAcc(e:Element,s:List,lt:List,gt:List) has
specification:
output 11,rl:List
such that Il = lessThanElems(e,s) ™ it A rl = gtrThanElems(e,s) ™ gt
implementation:
cases decomposeList(s) of:
empty: return 1t,gt
nonempty: assign output to h:Element, t:List;
cases compare(h,e) of:
before: return splitListAcc(e,t,append(h,lt),gt)
after: return splitListAcc(e,t,1lt,append(h,gt))
same: return splitListAcc(e,t,1lt,gt)

variant #s.

Figure 4: Template for the Quicksort algorithm

15

shuffleProcess is specified and implemented by hand by issuing the following script com-
mand:

Fragment shuffleProcess(s,t,w:WordList) has
specification:
precondition ordered(s) A ordered(t)
output r:WordList such that elements(r) = elements(w) U remove(s, 1)
implementation:
cases decomposeList(s) of:
empty: return w
nonempty: assign output to a:Word,u:WordList;
cases decomposeList(t) of:
empty: return concat(s,w)
nonempty: assign output to b:Word,v:WordList;
cases compare(a,b) of:
before: assign append(a,w) to q:WordList;
return shuffleProcess(u,t,q)
after: return shuffleProcess(s,v,w)
same: return shuffleProcess(u,v,w)

variant #s + 1.
The proof obligation to show that the implementation of remove0KWords is correct is:

Vs, t,w:seq Word @ w= () A elements(r) = elements(w) U remove(s, t)
= elements(r) = remove(s, 1)

which is straightforward. The verification of shuffleProcess is outlined in the following
section.

4.8 Verification of shuffleProcess

The partial correctness condition for the first path through the implementation of shuffleProcess
is

Proof obligation shuffleProcess_pc_pathi
==Vs,t,w,r:seq Word e ordered(s) A ordered(i) ANs={()Ar=w
= elements(r) = elements(w) U remove(s, t)

This checks that, when s is empty (s = ()) and the output is w (r = w) then the desired
input/output relationship is achieved. This proof obligation can be discharged by arguing
that remove(s,t) = @ and elements(w) U remove(s,t) = elements(w), as required.

The other partial correctness proof obligations are similar and not much more difficult to
prove.

As an example of a well-formedness condition, here is the proof obligation which checks the
precondition for the recursive call to shuffleProcess in the third path:

Proof obligation shuffleProcess wff path3
==Vs,t,u,v,q:seq Word,a,b: Word
ordered(s) A ordered(t) A's # () Ns = append(a,u) AT # ()
At = append(b,v) A before(a,b) A ¢ = append(a, w)
= ordered(u) A ordered(t)

The result follows by simple reasoning from the fact that the tail of an ordered list is itself
an ordered list. (Such a fact could be proved using one of the theorem provers and added to
the theory of ordered sequences as a lemma.)

16

type Word = { code for Word }; function shuffleProcess(s,t,w:WordList): WordList;

WordList = 1Cell; var a,b:Word,r,q:WordList;
Cell = record begin
current:Word; if s=nil then r:=w
next:WordList; else
end; begin
a:= s[.current; u:= s{.next;
function spellcheck(s:WordList):WordList; if t=nil then r:= concat(w,s)
var r:WordList; else
begin begin
r:= shuffleProcess(sort(s),dictionary(),nil); b:=t7.current; v:= t{.next;
spellcheck := r; if {code to test before(a,b)}
end; then
begin

new q; q].current:=a;
ql-next:=w;
r:= shuffleProcess(u,t,q)
end
else if {code to test before(b,a)}
then {...}
else {...}
end
end
shuffleProcess:=r;
end

Figure 5: Synthesized code for the spellchecker system

4.9 Synthesized code

Fig. 5 gives a (partially elided) listing of the Pascal code that would be synthesized from
the development as given so far. To complete the development it would be necessary give
implementations of the CARE type Word and the fragments compare and dictionary.

5 Comparison with other approaches

The CARE approach to formal software development is based on the model-oriented, hierar-
chical development approach epitomized by VDM [17]. Abstract high-level specifications are
progressively transformed into low-level executable specifications through a stepwise process
adding algorithmic detail and refining data representations.

To the best of our knowledge, no comparable toolset is available for VDM or 7. The mural
environment [16] supports data refinement in VDM and reasoning about specifications, but
it does not support algorithm refinement or translation to code. The TFAD VDM-SL Tool-
box [19] can be used for prototyping and executing VDM specifications but it does not
support formal verification. KIDS/VDM [20] supports prototyping of VDM specifications
through soundness-preserving transformations but falls short of general support for refine-
ment. There are various tools for reasoning about 7 specifications (e.g. ProofPower [3])
but none support general refinement, with the notable exception of Cogito [9], which uses

17

a VDM-like approach to refinement; however, Cogito makes little attempt to hide its full
mathematical machinery from the user and has not yet explored reuse of designs.

B is a model-oriented development method broadly similar to VDM. Experience with B [7]
seems to indicate that, like CARE, it uses a simpler approach to refinement than VDM, but
that it would still be considerably more difficult to learn to apply than CARE.

KIDS [28] is a semi-automated system for transforming executable specifications into efficient
programs in a soundness-preserving manner, with user selection from high-level options.
KIDS is being incorporated into a development support system at the Kestrel Institute [18]
which is broadly similar to CARE in its aims: the main differences seem to be that CARE
gives the user more control over development and verification through the use of interactive
(as opposed to semi-automatic) tools, and CARE has a broader framework; however, the (as
yet unnamed) Kestrel system has more advanced CASE features.

Another related system is AMPHION [30] which makes use of a library of formally-specified
FORTRAN routines. AMPHION converts space scientists’ graphical specifications into math-
ematical theorems and uses automated deduction to try to construct and verify a program
that satisfies the specification. The success of AMPHION in its particular problem domain
gives us further reason to believe that our approach to using library routines is feasible.

We believe that CaRrE offers better chance of scaling up than the Refinement Calculus [27]
or the more traditional VCG-like approach to program development of systems such as
EVES [12], since it supports hierarchical development and reusable design templates. We
have shown that CARE is “expressively equivalent” to the Refinement Calculus in that rules
from the latter can easily be expressed as CARE templates and vice-versa [21].

Finally, we note that CARE programs have a strong “functional programming” flavour. Note
however that CARE delivers compilable code for procedural programming languages, which
makes it more widely usable for application software than a functional programming language.

6 Conclusions

In summary, the CARE toolset helps software engineers develop formally verified programs
from abstract formal specifications. The tools have been developed in response to identified
industrial needs for a formal software development method which does not require the user to
be an expert in formal proof. Our experience training novice users has shown that CARE can
be used on small examples after only a basic course in formal specification. The tools help
the user build applications by selecting and instantiating pre-proven refinements to fit the
problem at hand, and generating and discharging correctness-of-fit proof obligations. The
correctness of each design step can be checked immediately, thereby significantly shortening
the feedback loop. Provision of reusable design templates means that most of the difficult
parts of a proof can be done once, off-line by suitably skilled experts, leaving only proof of
the applicability conditions to the software engineer.

Another major innovation of the CARE approach is that it gives a means for developing
verified software for target languages which themselves do not have a formal semantics. It
achieves this by restricting the user’s use of target-language code to formally specified library
routines which are verified “off-line”. The CARE code synthesis process relies on the target
language for little more than simple sequencing, assignment to local variables, alternation
(if-then-else) and recursion — all of which are well understood for most commonly used
programming languages.

18

Acknowledgements: The authors would like to thank their colleagues on the CaRE

project, past and present, especially Keith Harwood at Telectronics who has been devel-
oping many of the ideas underlying CARE over many years. We would also like to thank our
other colleagues at Telectronics and the SVRC for many fruitful discussions.

References

[1]
[2]
[3]
[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

HOL home page. http://lal.cs.byu.edu/lal/hol-documentation.html.
Isabelle home page. http://www.cl.cam.ac.uk/Research/HVG /Isabelle/index.html.
ProofPower home page. http://www.to.icl.fi/ICLE/ProofPower/index.html.

Information Technology Security Evaluation Criteria (ITSEC). Commission of the Eu-
ropean Communities, June 1991. Provisional Harmonised Criteria.

The Procurement of Safety Critical Software in Defence Equipment. U.K. Ministry of
Defence, April 1991. Interim Defence Standard 00-55.

J. C. Bicarregui, J. S. Fitzgerald, P. A. Lindsay, R. Moore, and B. Ritchie. Proof in
VDM: A Practitioner’s Guide. FACIT Series. Springer-Verlag, 1994. ISBN no. 3-540-
19813-X.

J. C. Bicarregui and B. Ritchie. Invariants, frames and postconditions: a comparison of
the VDM and B notations. In FMFE’93: Industrial Strength Formal Methods. Springer
Verlag, 1993. Proc. First Internat. Symp. of Formal Methods Europe, Odense, Denmark,
April 1993.

D. Bjorner and C.B. Jones. Formal Specification and Software Development. Prentice-
Hall International, 1982.

A. Bloesch, E. Kazmierczak, P. Kearney, and O. Traynor. The Cogito Methodology and
System. Asia-Pacific Software Engineering Conference, pages 345-355. IEEE Computer
Society Press, December 1994.

5.M. Brien and J.E. Nicholls. 7 Base Standard, Version 1.0. Technical Report SRC
D-132, Oxford University Programming Research Group, November 1992.

J. Dawes. The VDM-SI Reference Guide. Pitman, 1991.

D. Craigen et al. Eves: an overview. In S. Prehn and W.J. Toetenel, editors, Proceedings
of VDM’91. Springer-Verlag, 1991.

S. Gerhart, D. Craigen, and T. Ralston. Experience with formal methods in critical
systems. [EEF Software, pages 21-28, January 1994.

I. J. Hayes and C. B. Jones. Specifications are not (necessarily) executable. IEE/BCS
Software Engineering Journal, 4(6):330-338, November 1989.

D. Hemer and P.A. Lindsay. Formal specification of proof obligation generation in
CARE. Technical Report 95-13, Software Verification Research Centre, The University
of Queensland, 1995.

C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A Formal Development
Support System. Springer-Verlag, 1991.

19

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]
[28]

[29]

[30]

31]

32]

C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall International,
second edition, 1990.

R. K. Jullig. Applying formal software synthesis. [FKEF Software, pages 11-22, May
1993.

P. B. Lassen. IFAD VDM-SL toolbox report. In FME’93: Industrial Strength Formal
Methods, page 681. Springer Verlag, 1993. Proc. First Internat. Symp. of Formal Methods
Europe, Odense, Denmark, April 1993.

Y. Ledru. Proof-based development of specifications with KIDS/VDM. In FME’94: In-
dustrial Benefits of Formal Methods, pages 214-232,1994. 2nd International Symposium
of Formal Methods Europe, Barcelona, October 1994.

P. A. Lindsay. Expressing program developments from the refinement calculus in care.
Technical Report 94-6, Software Verification Research Centre, University of Queensland,
1994.

P.A. Lindsay. A survey of mechanical support for formal reasoning. Software Fngineering
Journal, 3(1):3-27, January 1988.

P.A. Lindsay. The CARE method of verified software development. Technical Report
95-9, Software Verification Research Centre, University of Queensland, 1995.

P.A. Lindsay. The data logger case study in CARE. Technical Report 95-10, Software
Verification Research Centre, University of Queensland, 1995.

P.A. Lindsay, R. Matthews, D. Hemer, K. Harwood, F. Collis, T. Arens, and T. Weibel.
Using CARE to construct verified software. Technical Report 95-31, Software Verification
Research Centre, The University of Queensland, 1995.

Rex Matthews and Trudy Weibel. Code synthesis in CARE. Technical Report 95-24,
Software Verification Research Centre, The University of Queensland, October 1995.

C. Morgan. Programming from Specifications. Prentice-Hall International, 1990.

D. Smith. KIDS: a semi-automatic program development system. [EFF Transactions
on Software Engineering, 16(9):1024-1043, 1990.

J.M. Spivey. The Z Notation: a Reference Manual. Prentice-Hall, New York, 1989.

M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood. Deductive
composition of astronomical software from subroutine libraries. In Proceedings 12th
International Conference on Automated Deduction, pages 341-355, June 1994.

M. Utting and K. Whitwell. Ergo user manual. Technical Report 93-19, Software
Verification Research Centre, revised March 1994.

T. Weibel. Sorted resolution made available for applications. In C.Barry Jay, editor,
CATS, Proceedings of Computing: the Australian Theory Seminar, pages 189-200, Uni-
versity of Technology, Sydney, 17-19 Dec. 1994.

20

