SOFTWARE VERIFICATION RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT
No. 96-13

An industrial-strength method
for the construction of
formally verified software

Peter A. Lindsay and David Hemer

June 1996

Phone: 4+61 7 3365 1003
Fax: +61 7 3365 1533

Note: Most SVRC technical reports are available
via anonymous ftp, from ftp.cs.uq.edu.au in the
directory /pub/SVRC/techreports.

An industrial-strength method for the
construction of formally verified software *

Peter Lindsay and David Hemer
email: pal,hemer@cs.uq.edu.au

To appear: Proceedings 9th Australian Software Engineering Conference (ASWEC’96),
Melbourne, July 1996, IEEE Computer Society Press.

Abstract

The CARE method is a new approach to constructing and formally verifying
programs. CARE has been developed in response to identified industrial needs
for a formal software development method which does not require the user to be
an expert in formal proof. Software engineers use CARE to develop compilable
code from formal program specifications using a library of pre-proven, formally
specified refinements. Tools help users build products by selecting and instan-
tiating refinements to fit the problem at hand, and generating and discharging
correctness-of-fit proof obligations.

This paper introduces CARE’s integrated notation for algorithm specifica-
tion and development, and explains how correctness is checked. The method is
illustrated on a small development.

Keywords: formal methods, program development, software verification, re-
finement

1 Introduction

1.1 Motivation

There is a growing demand for industrial-strength formal methods for software devel-
opment. Many companies now see the benefits of formal specification techniques and
are using them to specify parts of their systems or to document their code [11]. Formal
specification offers improved understanding of systems under development and formal
validation techniques allow cross-checks to be performed on specifications, thereby
discovering and fixing mistakes early in the development life-cycle [5, 6].

Government regulatory and standards authorities are increasingly mandating the use
of formal methods in the development of critical software: examples are the Depart-
ment of Defense and the National Computer Security Center in the USA, the Ministry

*The CARE project is a collaboration between the SVRC and Telectronics Pacing Systems Pty
Ltd, supported by Generic Technology Grant No. 16038 from the Industry Research and Development
Board of the Australian Government’s Department of Industry, Science and Technology.

of Defence [3] and the Communications Electronics Security Group in the UK, the In-
ternational Electrotechnical Commission of the European Union [4], and the Defence
Signals Directorate and the Ordnance Council in Australia. In fact, the Australian Ord-
nance Council’s Pillar Proceeding 223.93 [2] even mandates the use of formal methods
for safety-critical software.

Formal refinement techniques extend the benefits of formal specification further into
the development process by enabling designs and implementations to be expressed for-
mally. In theory at least, formal verification can then be used to check that implemen-
tations satisfy their specifications. As currently practised, however, formal verification
is labour intensive and requires highly specialised skills. Experience has shown that
industrial software engineers are often proficient in the area of product development
but not as good at formal specification and proof.

1.2 The CARE method

The CARE method [14, 16, 24] was designed to enable industrial software engineers to
develop formally verified software from formal specifications. The method was devel-
oped through a collaboration between Telectronics Pacing Systems and the Software
Verification Research Centre. Telectronics develops and manufactures software-driven
medical devices such as implantable defibrillators. The company has long been moti-
vated to investigate the use of formal methods for the economical and timely devel-
opment of provably correct software. A grant from the Australian Government has
enabled more extensive development of Keith Harwood’s original ideas [13] and the
construction of a prototype toolset to support the method.

CARE stands for Computer Assisted Refinement Engineering. In the software
development life-cycle, CARE is used after system requirements have been defined and
analysed for criticality, and system requirements have been mathematically modelled
by writing a formal specification. Starting with the formal specification, software
engineers use CARE to develop compilable code, with integrated checking that the
code 1s provably correct. The CARE method can be adapted to deliver source code in
most common programming languages.

The process of developing software using CARE involves selection of refinements from
a library of pre-proven parameterized templates, and instantiating them to suit the
problem at hand. The end-result is a CARE program, from which a target-language-
specific source-code program can be mechanically synthesized.

1.3 Verification in CARE

The CARE verification and synthesis process is illustrated in Fig. 1 and explained in
more detail in Sections 2-3; here we simply give a brief overview.

Each component of a CARE program has a formal specification which characterizes
the component mathematically, together with an implementation. Primitive compo-
nents are implemented directly in the target language and are supplied with the CARE
library; CARE users do not write target code directly. Higher-level components are im-
plemented by combining calls to other components in a special-purpose language with

e CARE component set
program specification /

normalize component implementations

components &
specification

Synthesize
codein target
language

Generate proof
obligations

target language
proof obligations source code
Discharge proof
obligations
\ certificate of
correctness

Figure 1: The checking and synthesis process for CARE-generated programs.

a simple, formally defined mathematical semantics; the implementations are either
written directly by the user or are selected from library templates.

Proof obligations can be generated mechanically from the CARE program, to check that
templates’ applicability conditions are satisfied and that implementations of higher-
level components satisfy their specifications. The engineer’s proof obligations can be
kept to a minimum by making use of templates which have been proven off-line by
verification experts and which are supplied with the CARE library.

When a CARE program is complete (i.e., all components have been implemented), a
target-language-specific CARE tool can be used to mechanically synthesize a complete
source-code program. If all of the proof obligations have been discharged, the synthe-
sized program is guaranteed to satisly its specification — assuming of course that the
primitives have been modelled appropriately and that the compiler is correct.

A prototype tool-set has been developed to support the CARE method (see Fig. 2). The
tool-set includes parsers, syntax- and type-checkers, pretty-printers, documentation
preparation tools, proof obligation generators, mathematical simplifiers, an automatic
theorem prover, automated support for formal reasoning in an interactive theorem
prover, and a code synthesizer with C as the target language. A large library of
pre-proven templates has been produced, together with a tool which assists software
engineers in selecting and instantiating templates.

Library
. Script
Script Interpreter
Template
Instantiator
Ergo Q
Worksheet
Manager
0 Proof
[Obligation
Generator
Worksheet i
Automatic
Theorem
Prover
User Interface
Code
Synthesizer Code
Pretty .
Printer Documentation

Figure 2: The CARE prototype tool-set.

1.4 Using CARE in system development

The CARE method is largely independent of the particular specification notation, tar-
get language, compiler and platform used. The current prototype uses 7 [28] as its
mathematical specification notation since it is widely familiar, but the method could
be tailored to fit with other formal specification notations, such as VDM-SL [10] or
the Larch Shared Language [12]. The CARE language currently supports applicative
programming techniques only, but there are plans to extend this to cover fragments
which can change the value of a hidden state.

For software system development, we imagine that CARE would be used in conjunc-
tion with a method or methods for requirements capture, system specification and
system design, where such a method results in program module specifications. Be-
cause they are target-language source-code programs, CARE-synthesized programs can
be integrated with other system components and tested using traditional integration
techniques. Also, CARE can be used to produce programs in target languages which do
not have fully formally defined semantics, by restricting primitive fragments to pieces
of target language code which have a mathematically definable meaning.

CARE can also be used in conjunction with formal development techniques such as
VDM [18] or Morgan’s Refinement Calculus [26]. In part, CARE can be seen as a way
of giving further structure to VDM or Refinement Calculus developments — structure
which is useful for raising the level at which one reasons about designs and design
choices, while hiding lower-level verification aspects.

In 1995 the CARE method was trialled at Telectronics in a five-day intensive training
course attended by senior software engineers not directly involved in the CARE project.
Telectronics have now decided to use the approach to develop part of the software for
its next product range.

1.5 Comparison with related projects

The CARE approach to formal software development is based on the model-oriented,
hierarchical development approach epitomized by VDM [18] and B [20], in which ab-
stract high-level specifications are progressively transformed into low-level executable
specifications through a stepwise process adding algorithmic detail and refining data
representations.

To the best of our knowledge, no comparable tool-set is available for VDM or Z.
The mural environment [17] supports data refinement in VDM and reasoning about
specifications, but it does not support algorithm refinement or translation to code.
The TFAD VDM-SL Toolbox [21] can be used for prototyping and executing VDM
specifications but it does not support formal verification. KIDS/VDM [22] supports
prototyping of VDM specifications through soundness-preserving transformations but
falls short of general support for refinement. There are various tools for reasoning
about 7 specifications (e.g. ProofPower [1]) but none support general refinement, with
the notable exception of Cogito [8], which uses a VDM-like approach to refinement;
however, Cogito makes little attempt to hide its full mathematical machinery from
the user and has not yet explored reuse of designs.

B is a model-oriented development method broadly similar to VDM, but with better
support for modularity in specification and implementation. Experience with B [7]
seems to indicate that, like CARE, it uses a simpler approach to refinement than
VDM, but that it would still be considerably more difficult to learn to apply than
CARE, and its support for verification seems to be not as effective. The SVRC has
recently purchased the B-Toolkit and we shall evaluate its effectiveness during 1996.

KIDS [27] is a semi-automated system for transforming executable specifications into
efficient programs in a soundness-preserving manner, with user selection from high-
level options. KIDS is being incorporated into a development support system at the
Kestrel Institute [19] which is broadly similar to CARE in its aims: the main difference
is that CARE gives the user more control over development and verification through
the use of interactive (as opposed to semi-automatic) tools, and CARE has a broader
framework; however, the Kestrel system has more advanced CASE features.

Another related system is AMPHION [29], which makes use of a library of formally-
specified FORTRAN routines. AMPHION converts space scientists’ graphical specifi-
cations into mathematical theorems and uses automated deduction to try to construct
and verify a program that satisfies the specification. The success of AMPHION in
its particular problem domain is further evidence that the CARE approach to using
library routines is effective. The CARE problem domain is however far wider than that

of AMPHION, and domain theories are far less developed.

We have shown that CARE is “expressively equivalent” to the Refinement Calculus
— in that rules from the latter can easily be expressed as CARE templates and vice-

versa [23]. However, CARE has constructs (such as design templates and recursive
fragments) which make it better able to support reuse and component-wise verification,
and for which better user support can be provided.

Finally, we note that CARE can deliver compilable code for most programming lan-
guages, which makes it more widely usable in software engineering than many other
methods.

1.6 This paper

The rest of this paper introduces CARE’s integrated notation for algorithm specification
and development (Section 2), explains the proof obligations which check correctness
(Section 3), and illustrates the method on a small application (Section 4).

2 The CARE notation and semantics

2.1 Overview

A CARE program consists of mathematical definitions and lemmas, together with a set
of CARE components known as types and fragments. Types are used for defining data
structures and fragments are used for defining algorithms.

Each CARE component has a formal specification and an implementation. The spec-
ification of components is expressed using an extended form of the 7 mathematical

toolkit presented in [28, 9.

Components of a CARE program can be categorised as either primitive or higher-level
components. Primitive components provide access to target language data structures
and basic functionality, and are provided to the CARE user as a library. Primitive
components are implemented directly in the target language. The specification of a
primitive component describes the component in terms of (a mathematical model of)
the semantics of the target language and its compiler. A primitive type’s specifica-
tion describes the set of mathematical values corresponding to the associated data
structure. A primitive fragment’s specification describes the associated target code’s
functionality. Higher-level components express data refinements and algorithm designs,
and are written in a special purpose language. The CARE language supports the fol-
lowing simple design constructs: assignment of values to local variables, fragment calls,
sequencing, branching of control, recursion, and data refinement transformations.

Sections 2.2-2.4 below describe aspects of the CARE language in more detail. (The
notation described here is a verbose form used for didactic purposes; the prototype tools
use a terse form better suited to mechanical manipulation.) In the rest of this paper,
CARE values and types are written in typewriter font and mathematical expressions
are written in étalics using the 7 notation.

2.2 Types

CARE types consists of an identifier, a specification and an implementation. The

specification of a CARE type defines the set of values that objects of this type may take.
The implementation of a CARE type may be either primitive (i.e. implemented directly
as a target language data structure) or higher-level (used to express data refinements).
Space limitations do not permit a full treatment of type implementations here.

Below are examples of unimplemented (specified only) types:

Type Element has specification: FLEMENTS
Type List has specification: seq ELEMENTS
Type Natnum has specification: N

Element corresponds mathematically to a set of elements (not specified any further
here), the type List corresponds to the collection of sequences of elements, while
Natnum corresponds to the set of natural numbers.

2.3 Fragment specifications

In describing the specifications of fragments we shall consider the two classes of frag-
ments - simple and branching - separately.

The specification of a simple fragment defines the fragment’s inputs and their types,
the precondition, the number and types of outputs, and the required input/output
(I/0) relationship (or postcondition). The precondition expresses constraints on which
inputs can be supplied to a fragment. If a fragment is called outside its precondition,
no guarantee can be placed on its actions. (Proof obligations will check that fragments
are only ever called on arguments which satisfy the fragments’ preconditions).

The fragments cons, car and cdr used for list manipulation are given below. The
fragment cons takes an element, e, and a list, s, and forms a new list by appending e
onto the left end of s. The fragments car and cdr, which both take a list, s, as input
return the head of s (the left-most element of s) and the tail of s (the remainder of
the list s after the left-most element is removed) respectively. Both fragments have
a precondition, which constrains the input to those lists which contain at least one
element:

Fragment cons(e:Element,s:List) has
specification:

N

output r:List such that r = (e) 7 s.

Fragment car(s:List) has
specification:
precondition #s # 0
output h:Element such that h = head s.

Fragment cdr(s:List) has
specification:

precondition #s # 0

output t:List such that ¢ = tail s.

The specification of a branching fragment consists of a description of the inputs and
their types, an optional precondition and a sequence of guarded branches. Each branch

contains a description of the outputs and their types, an 1/O relationship and a report.
The report uniquely identifies each branch of the specification and can be used in
fragment implementations to refer to a particular branch. For each guarded branch
the guard defines the set of input values for which the following branch can be used to
define the result.

For example, the fragment decomposeList given below has two different cases: one
when the list is empty (in which case it reports empty with no outputs), and the other
when it is non-empty (in which case it returns the head and the tail of the list and
reports non-empty):

Branching fragment decomposeList(s:List) has
specification:
result defined by cases
if #s =0 then report empty
else report nonempty
with output h:Element, t:List such that s = (h) ™ ¢.

2.4 Fragment implementations

A primitive fragment is implemented in terms of target language code (not treated fur-
ther here). A higher-level fragment is implemented in terms of calls to other fragments.
The body of a higher-level fragment is tree-structured. Non-branching nodes of the
tree correspond to bindings to local variables of the values returned by simple fragment
calls and/or variables. Branching nodes correspond to calls to branching fragments;
where branches return values, these values are bound to local variables. The leaves of
the tree define the fragment’s output values. For branching fragments, the leaves also
contain a report, referring to one of the branches of the specification. A variant may
also be given for higher-level fragments, which is a natural-number-valued function of
the input values, used to establish termination of recursive calls. An abort statement
is provided for use in branches which will never be executed.

For example, consider the branching fragment null, which tests whether or not a list
is empty:

Branching fragment null(s:List) has
specification:

if #s =10 then report yes

else report no.

The fragment decomposeList, specified earlier, can be implemented by testing whether
the list is empty via a call to the branching fragment null, and if it is not, then calling
the fragments car and cdr to return the head and tail of the list:

Branching fragment decomposeList(s:List) has
implementation:
cases null(s) of:
yes: report empty
no: report non-empty and return car(s),cdr(s).

3 Verification

The purpose of fragment verification is to check that a fragment’s implementation
satisfies its specification. This section outlines an informal semantics for fragments
and describes how to reason about their correctness.

Using the CARE method, verification of a fragment set involves establishing a number
of proof obligations, which fall into four categories:

Well-formedness: For each fragment call in an implementation tree, the called frag-
ment’s precondition (if any) must be satisfied at that point.

Partial correctness: The result returned at each (non-aborting) leaf of an imple-
mentation tree must satisfy the appropriate 1/0 relationship.

Termination: For recursively defined fragments, the variant must be a N-valued func-
tion and must be strictly decreasing on recursive calls. (Since the variant is
bounded below by zero, it cannot decrease indefinitely, so the recursion will
therefore terminate in a finite number of steps.)

Non-execution: Execution must not be able to reach an ‘abort’ leaf (at least, not
for input values which satisfy the fragment’s precondition).

If all of the proof obligations can be discharged (i.e., shown to be logical consequences
of the theory of the problem domain), the fragment set is guaranteed to be correct in
the following sense: execution of one of the fragments on input values which satisfy its
precondition will terminate and return a result which satisfies the fragment’s specified
I/0 relationship.

In practice, proof obligations are generated by considering the different possible exe-
cution paths through the fragment (or through the fragment set, for the termination
proof obligation when mutual recursion is present). The proof obligation involves show-
ing that the desired conclusion follows from assumptions about the execution path to
the point in question. For each fragment call along the path, the appropriate 1/0O
relationship is assumed to hold. For paths which pass through branch points, the ap-
propriate guards are also assumed to hold. Finally, the calling fragment’s precondition
is assumed to hold.

For example, we shall consider the partial correctness proof obligation for the leaf of
the second path through decomposeList given by:

case no of null(s);
report non-empty and return car(s),cdr(s)

Since the report (non-empty) of this path means that the second branch of the spec-
ification describes the desired result, we want to show that the guard (#s # 0) and

the I/O relationship (s = (h) 7 t) for the second branch of the specification holds. To
prove this we can assume the precondition and 1/0 relationships of the fragments car
and cdr, as well as the guard of the second branch of the fragment null. This leads
to the following proof obligation:

Vs :seq ELEMENTS o
- (#s=0) =
Vh: ELEMENTS o h = head(s) =
Vit :seq ELEMENTS o t = tail(s) =

~(#s=0)As=(h)"1

For a more detailed description of proof obligations and how they are generated, the
reader is referred to [15].

4 An example development

This section illustrates the use of the CARE method by giving a stepwise development
of an algorithm for finding the integer part of the square root of a natural number [26].
The algorithm is developed through a series of design choices and each stage in the
design is verified before passing to the next stage.

4.1 Program specification

The program has fragment specification

Fragment sqroot (s:Natnum) has
specification:
output r:Natnum such that r? < s < (1“ + 1)2.

4.2 First design step

The first step in a development of a program to satisfy this specification might be to
introduce new local variables 1o and hi initialized to 0 and s+ 1 respectively, and then
— keeping lo®> < s < hi® invariant — to bring 1o and hi progressively closer together
until ht = lo +1. Such a design would be expressed in CARE notation as follows:

Fragment sqroot (s:Natnum) has
implementation:
assign zero to lo:Natnum;
assign increment(s) to hi:Natnum;
return iterate(s,lo,hi).

where

10

Fragment zero has
specification:
output n:Natnum such that n = 0.

Fragment increment (m:Natnum) has
specification:
output n:Natnum such that n = m + 1.

are fragments one could expect to find as primitives in the library, and

Fragment iterate(s,lo,hi:Natnum) has
specification:
precondition: lo < hi A lo® < s < hi’
output r:Natnum such that r? < s < (7‘ + 1)2.
implementation:
case lessthan(increment(lo) ,hi) of
yes: assign closeGap(s,lo,hi) to lo,hi:Natnum;
return iterate(s,lo,hi).
no: return lo.
variant: hi — lo.

is a user-defined fragment which performs the necessary iteration using an auxiliary
fragment closeGap (specified below), together with

Branching fragment lessthan(x,y:Natnum) has
specification:
result defined by cases:
if < y then report yes
else report no.

which again one could expect to find as a primitive in the library. closeGap is used to
close the gap between lo and hi, and has the following specification:

Fragment closeGap(s,lo,hi:Natnum) has
specification:
precondition lo +1 < hi A lo* <s< hi®
output u,v:Natnum such that v* < s < v* A0 < v —u < hi — lo.

As well as preserving the invariant, closeGap ensures that the variant of iterate
decreases on recursive calls. As we shall see, the form of the specification of closeGap
is largely dictated by the proof obligations for iterate.

4.3 Verification of first design step

Having expressed the design, let us now verify it. There are two proof obligations
associated with the sqroot fragment. Using the specifications of zero and increment,
well-formedness of the call to iterate from sqroot involves showing

VSZN.0<S+1/\02§8<(8+1>2

11

Note that an error in the initialization of 1o or hi (e.g. hi = s) would be revealed here.
The partial correctness proof obligation for sqroot is to show that the result r returned
by iterate(s,lo,hi) satisfies r? < s < (7" + 1)2, but this follows immediately from
the specification of iterate. This completes the verification of the implementation of
the sqroot fragment.

Turning next to iterate, partial correctness of the first leaf follows easily from the
specifications of closeGap and iterate (used inductively). The partial correctness
proof obligation for the second leaf amounts to showing

(lo < hi Alo* < s < hi® No+1 ¢ hi) = lo* < s < (lo+1)*

precondition no case output condition

which follows from the fact that lo < hi A lo+1 £ hi = hi = lo +1. The termination
proof obligation for iterate follows immediately from the specification of closeGap.
The other proof obligations for iterate are straightforward.

Verifying the proof obligations for iterate gives us confidence that all of the salient
information for closeGap has been captured in its specification.

4.4 Second design step

The next step in the development might be to refine closeGap by choosing a point
mid somewhere between lo and hi and — by comparing the value of mid®> with s —
adjusting the value of lo or hi to equal mid appropriately. This could be expressed by
implementing closeGap as follows:

Fragment closeGap(s,lo,hi:Natnum) has
implementation:
assign chooseIntermed(lo,hi) to mid:Natnum;
return adjustBnds(s,lo,mid,hi).

where

Fragment chooseIntermed(lo,hi:Natnum) has
specification:

precondition: lo +1 < hi

output mid:Natnum such that lo < mid < hi.

and

Fragment adjustBnds(s,lo,mid,hi:Natnum) has
specification:
precondition: lo < mid < hi A lo® < s < hi*
output u,v:Natnum such that u? < s <v? A0 <v—u < hi—lo.
implementation:
cases lessthan(s,square(mid)) of
yes:return lo,mid.
no: return mid,hi.

12

are user-defined fragments and

Fragment square(m:Natnum) has
specification:
output n:Natnum such that n = m?.

would be another library fragment.

The two partial correctness proof obligations for adjustBnds are

(lo < mid < hi Alo” <s < hi® A s < mid®)

= (102 <s < mid* A0 < mid—lo < hi—lo)
(lo < mid < hi A lo*> < s < hi® A s £ mid”)

= (mid* < s < hi® A0 < hi —mid < hi—lo)

The other proof obligations are easy to check.

4.5 Third design step

The final step in the development is to choose a value for mid such that lo < mid < hi.
Let us simply take the “midpoint” of lo and hi:

Fragment chooseIntermed(lo,hi:Natnum) has
implementation:
return div2(add(lo,hi)).

where

Fragment add (x,y:Natnum) has
specification:
output z:Natnum such that z = » + y.

Fragment div2(m:Natnum) has
specification:
output n:Natnum such that n = m div 2.

4.6 Summary

This completes the development of sqroot. Fig. 3 shows the Pascal program that
would be synthesized from this design; the actual code synthesized by CARE tools
would obviously depend on what target language was used.

The example has illustrated the CARE notation for algorithm design and the use of
proof obligations to verify algorithms. For an example of program design involving
more complicated data structures (including the use of data refinement) see [25]. For
an example of the use of design templates in program construction, see [16].

13

Program sqroot(s:Nat)
var lo,hi:Nat;
label 1;

procedure iterate(in s:Nat, var lo,hi:Nat) is
var mid:Nat;
begin mid := diVZ(lo-I—hi);
if s < mid*mid then hi := mid else lo := mid
end iterate;

begin lo := 0;
hi ;= s+1;
1:if lo+1 < hi then
begin iterate(s,lo,hi); goto 1
end
else return lo
end sqroot

Figure 3: The sqroot algorithm “synthesized” from the design.

5 Conclusions

This paper has outlined the CARE approach to constructing and verifying software,
concentrating on the development of algorithms from formal program specifications.
Using the CARE approach, the software engineer assembles a collection of CARE com-
ponents and applies mechanized analysis tools to check the correctness of the combina-
tion against specified requirements. The tools check that the components fit together
properly and achieve the desired overall effect. Automated theorem provers are used
to discharge the proof obligations that arise. When a component set is complete and
the proof obligations have been discharged, a target-language-specific CARE tool syn-
thesizes a complete source-code program from the set.

The CARE notation allows the software development process to be structured in such
a way that engineering aspects (such as requirements specification, algorithm design,
and choice of data structures) are separated from formal mathematical aspects (such
as proof obligation generation and proof of correctness). As far as possible, formal
verification aspects of the method are consigned to automated tools, allowing the
software engineer to concentrate on the design and development of useable, efficient
pieces of software. CARE has been applied, for example, to check the logic of an event
logger similar to the kind found in certain medical embedded devices [25].

The method is general and can be used in conjunction with a variety of other de-
velopment methods, both formal and informal. It can be used with a wide variety of
specification languages, theorem provers and target languages. Finally, CARE has been
shown to be industrially useable by trialling it with software engineers in Telectronics
who were not directly involved in its development.

14

Acknowledgements:

The authors would like to thank their colleagues on the CARE project, including Keith
Harwood, Thies Arens, Frances Collis, Rex Matthews and Trudy Weibel. Thanks also

for the constructive comments made by many of our colleagues at Telectronics and the

SVRC, including in particular John Staples and Tan Hayes.

SVRC technical reports are available by anonymous ftp from ftp.cs.uq.edu.au in the

directory /pub/SVRC/techreports.

References

[1]
2]

3]

[4]

[5]

[6]

[7]

[8]

ProofPower home page. http://www.to.icl.fi/ICLE/ProofPower/index.html.

Assessment of munition related safety critical computing systems. Australian

Ordnance Council, August 1993. Pillar Proceeding 223.93.

The Procurement of Safety Critical Software in Defence Equipment. U. K. Ministry
of Defence, (draft) May 1995. Defence Standard 00-55.

Functional safety: safety-related systems. International Electrotechnical Commis-

sion, June 1995 (draft). International Standard TEC 1508.

S. Austin and G. Parkin. Formal methods: A survey. Technical report, National
Physical Laboratory, Dept of Trade and Industry, Middlesex, United Kindgom,
March 1993.

J. C. Bicarregui, J. S. Fitzgerald, P. A. Lindsay, R. Moore, and B. Ritchie. Proof
in VDM: A Practitioner’s Guide. FACIT Series. Springer-Verlag, 1994. ISBN no.
3-540-19813-X.

J. C. Bicarregui and B. Ritchie. Invariants, frames and postconditions: a com-
parison of the VDM and B notations. In FME’93: Industrial Strength Formal
Methods. Springer Verlag, 1993. Proc. First Internat. Symp. of Formal Methods
Europe, Odense, Denmark, April 1993.

A. Bloesch, E. Kazmierczak, P. Kearney, and O. Traynor. Cogito: A Methodology
and System for Formal Software Development. International Journal of Software
Engineering and Knowledge Engineering, 5(4), December 1995.

S.M. Brien and J.E. Nicholls. 7 Base Standard, Version 1.0. Technical Report
SRC D-132, Oxford University Programming Research Group, November 1992.

J. Dawes. The VDM-SL. Reference Guide. Pitman, 1991.

S. Gerhart, D. Craigen, and T. Ralston. Experience with formal methods in
critical systems. IFEE Software, pages 21-28, January 1994.

J.V. Guttag and J.J. Horning. Report on the Larch shared language. Science of
Computer Programming, 6:103—-134, 1986.

15

[13] K. Harwood. Towards tools for formal correctness. In The Fifth Australian Soft-
ware Engineering Conference, pages 153-158. The Institution of Radio and Elec-
tronics Engineers Australia, May 1990.

[14] K. Harwood, P. Lindsay, and R. Matthews. An Approach to Constructing Verified
Software. In Seventeenth Australian Computer Science Conference, pages T77-786,
University of Canterbury, Christchurch, January 1994.

[15] D. Hemer and P.A. Lindsay. Formal specification of proof obligation generation
in CARE. Technical Report 95-13, Software Verification Research Centre, The
University of Queensland, 1995.

[16] D. Hemer and P.A. Lindsay. The CARE toolset for developing verified programs
from formal specifications. In Proc. jth [EEE Int. Symp. on Assessment of Soft-
ware Tools, 1996. Available by ftp as SVRC TR 95-52.

[17] C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore. mural: A Formal Devel-
opment Support System. Springer-Verlag, 1991.

[18] C.B. Jones. Systematic Software Development Using VDM. Prentice-Hall Inter-
national, second edition, 1990.

[19] R. K. Jullig. Applying formal software synthesis. TEEE Software, pages 11-22,
May 1993.

[20] K. Lano. The B Language and Method. FACIT Series. Springer-Verlag, 1996.

[21] P. B. Lassen. IFAD VDM-SL toolbox report. In FMFE’93: Industrial Strength
Formal Methods, page 681. Springer Verlag, 1993. Proc. First Internat. Symp. of
Formal Methods Europe, Odense, Denmark, April 1993.

[22] Y. Ledru. Proof-based development of specifications with KIDS/VDM. 1In
FME’9): Industrial Benefits of Formal Methods, pages 214-232, 1994. 2nd Inter-
national Symposium of Formal Methods Furope, Barcelona, October 1994.

[23] P. A. Lindsay. Expressing program developments from the refinement calculus in
care. Technical Report 94-6, Software Verification Research Centre, University of
Queensland, 1994.

[24] P.A. Lindsay. The CARE method of verified software development. Technical
Report 95-9, Software Verification Research Centre, The University of Queensland,
1995.

[25] P.A. Lindsay. The data logger case study in CARE. Technical Report 95-10,
Software Verification Research Centre, University of Queensland, 1995.

[26] C. Morgan. Programming from Specifications. Prentice-Hall International, 1990.

[27] D. Smith. KIDS: a semi-automatic program development system. IEEE Transac-
tions on Software Engineering, 16(9):1024-1043, 1990.

16

(28] J.M. Spivey. The 7 Notation: a Reference Manual. Prentice-Hall, New York,
1989.

[29] M. Stickel, R. Waldinger, M. Lowry, T. Pressburger, and I. Underwood. Deduc-
tive composition of astronomical software from subroutine libraries. In Proceed-

ings 12th International Conference on Automated Deduction, pages 341-355, June
1994.

17

