SOFTWARE VERIFICATION RESEARCH CENTRE
DEPARTMENT OF COMPUTER SCIENCE

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT
No. 96-17

Formal Methods Pilot Project
Final Report

CSC Australia and SVRC
Pilot Project Team

July 1996

Phone: 4+61 7 3365 1003
Fax: +61 7 3365 1533



Note: Most SVRC technical reports are available
via anonymous ftp, from ftp.cs.uq.edu.au in the
directory /pub/SVRC/techreports.



Formal Methods Pilot Project
Final Report *

Tracey Hart, Fiona Linn, Roberto Morello, Greg Royle
Trusted Systems Group, CSC Australia Pty Ltd,
Module 7, Endeavour House, Technology Park, The Levels, SA 5095

(thart ,flinn,rmo@csaadel .adl.csa.oz. au)

Peter Kearney, Peter Lindsay, Kelvin Ross, Owen Traynor
Software Verification Research Centre, Dept of Computer Science,
The University of Queensland, St Lucia, Queensland 4072

(pk,pal,kjross,owen@cs.uq.edu.au)

1 INTRODUCTION

This paper reports on a collaborative project
between industry, academia and defence to pilot
the use of formal methods in the development
of safety related software. The project was in-
tended primarily as a technology transfer exer-
cise, to the mutual benefit of the collaborating
organizations.

1.1 Background

Formal methods are expected to be useful in
the development of software for highly criti-
cal systems, in which incorrect operation may
lead to significant risk to personnel, the environ-
ment, national security or finance. An increas-
ing number of international standards for crit-
ical systems recommend the use of such meth-
ods [6].

Formal methods are mathematically based, pro-
viding a high degree of precision in the specifica-
tion of requirements for the system, and proof
of correct implementation with respect to the
specifications. These qualities are particularly
desirable in critical systems, to minimise risk
during operation. In Australia, there is little
published experience of formal methods being
applied in industry.

*Appeared in: Industry Fzperience Track Proceed-
ings, The Ninth Australian Software Engineering Con-

ference (ASWEC’96), Melbourne, July 1996.

At the project’s outset, the main difficulties
perceived in using formal methods in industry
were:

e The methods do not scale to industrial-
sized applications.

e 'Tool support is inadequate or non-existent.

o A significant amount of training is required
to be able to read and understand formal
specifications.

e The developers need significant mathemat-

ical skills.
e The process is manually intensive.

The pilot project set out to address some of
these perceptions by applying formal methods
in a safety-critical application.

Specifically, the project aimed to produce a
complete and validated set of formal specifica-
tions for a safety-critical application, and to ex-
ercise all aspects of the SVRC’s evolving Cogito
formal development methodology [4]. This ap-
proach meant that CSC acquired experience
with most aspects of formal development and
the SVRC gained valuable feedback on the us-
ability of its methodology and tools.

1.2 The Application

The application chosen for development was a
safety-related test unit for the Nulka Project’s



anti-missile decoy system, jointly developed by
the US Navy and the Australian Government’s
Department of Defence (DoD). At the project
outset, the test unit was perceived as being
safety-critical, because if it did not function ac-
cording to its specifications it could acciden-
tally activate the equipment, thereby endanger-
ing the test operator and anyone else nearby.
Also, if the test unit incorrectly passed a faulty
piece of equipment, or left the equipment in a
faulty state, then subsequent operation of that
equipment could have disastrous consequences.

For the purposes of the project, the SVRC’s
evolving Cogito methodology and supporting
tools were integrated into CSC’s hazard anal-
ysis and software development life-cycle. The
resulting methodology was designed to conform
to the principles of the Australian Ordnance
Council’s Pillar Proceeding 223.93[1] for the
highest integrity level (S4) software. Software
documentation was designed to conform to the

US’s DoD STD-2167a [2].

The application was chosen because of its inter-
est to the industrial partner and their client (de-
fence). It was recognized from the outset that
the chosen application was far from ideal as a
demonstration of the capabilities of the Cogito
methodology.

1.3 Participants

The Pilot Project was carried out by staff
from CSC Australia’s Trusted Systems Group
in Adelaide. The Brisbane-based SVRC pro-
vided training, tools and consultancy support
in the use of Cogito, and reviewed the outputs
that CSC staff produced. Staff from DSTO’s
Trusted Computer Systems Group acted as In-
dependent Safety Auditors. A Steering Com-
mittee was formed with membership comprising
representatives of the client (the DoD), CSC,
the SVRC and DSTO. Project partners con-
tributed to the project on an own-costs basis.

The project had an elapsed time of 12 months
(not including a 3 month period about half-
way through the project when the project was
suspended in the expectation that requirements
would stabilize. During this period of suspen-
sion, CSC staff were seconded to other activ-

ities and the SVRC undertook additional tool
enhancement and population). It involved ap-
proximately 1.8 person-years of CSC effort (one
full-time technical officer, and two others pro-
viding management and review support). Be-
fore commencing the project, the industrial par-
ticipants’ only training in formal methods was
a one week course in the 7 specification lan-
guage, held two months prior to commence-
ment. The team members had some prior ex-
perience of hazard analysis and software devel-
opment. The technical officer’s familiarity with
mathematics was very limited: basically, first-
year undergraduate applied mathematics.

In order to demonstrate transferability of SVRC
techniques to industry after a suitable period of
training and with minimal support thereafter,
SVRC staff did not undertake any of the soft-

ware analysis or development tasks directly.

1.4 The Development Process

The project was originally intended to start
from a Software Requirements Specification
(SRS) for the test unit, to be supplied by the
client. In the event, production of the SRS
was delayed until well into the project, so we
went ahead — on a tentative basis at first — with
a home-brewed version of the SRS, extracted
from the Operational Requirements Document
and (later) the Operational Concepts Docu-
ment for the test unit. Because of the uncer-
tainty involved, and the corresponding lack of
impetus, 6 months into the project a decision
was made to proceed with development on the
basis of the working SRS.

The software development tasks undertaken
during the project included the following;:

1. Hazard analysis, to determine the safety-
critical functions of the software and the
safety criteria. Fault Tree Analysis [3] was
used for the hazard analysis.

2. Formal specification in Sum (the specifica-
tion mnotation of Cogito) of the required
functionality of the test unit’s software.

3. Formal “validation” of the formal specifi-
cation, to show that it is mathematically
consistent.



‘ Month ‘ ‘ Topic/activity

‘ #days ‘

1

=4

introduction to specification & validation using Sum
top level specification workshopping

ot
H

introduction to formal reasoning
reasoning about formal specifications
specification & formalization of safety properties

tool support for formal reasoning
introduction to data refinement
specification & proof of safety properties

data refinement

validation & use of Ergo theorem prover

10

data refinement & use of Ergo

11

EEEE ===

introduction to algorithm refinement
validation, data refinement

B = O =N = NN W W RS

Table 1: Pilot project training schedule (T=training, W=workshopping)

4. Formalization of the identified safety crite-
ria, where possible.

5. Proof that the formalized safety criteria are
logical consequences of the formal specifi-
cation. The proofs were carried out rigor-
ously by hand initially, and later checked
using the Ergo interactive theorem prover.

6. Detailed design and formal development of
part of the application, using data refine-
ment.

7. Verification using mathematical proof that
the design is correct against the corre-
sponding part of the top-level specification.

Algorithm refinement was covered in the train-
ing but not applied in the project, and as a
result no Ada code was generated.

1.5 Training and Consultancy Sup-
port

Table 1 outlines the project training schedule.
(Training dates are shown in terms of project
elapse time over 12 months.) The training was
supplemented with workshopping of the tools
and techniques on parts of the application. In
addition, project technical meetings were held
approximately every seven weeks at the SVRC

for 1-2 days each. All other SVRC support was
provided by phone, fax or email.

2 ABOUT COGITO

Cogito [4] is an integrated methodology and
toolset supporting formal program develop-
ment. The Cogito methodology addresses spec-
ification, design and development, and con-
struction of implementations and verification.
Verification is seen as a crucial activity, car-
ried out as an integral part of all development
phases.

2.1 The Cogito Methodology

Figure 1 shows an abstract model of the Cogito
development process. The phases of the model
which are addressed by the Cogito develop-
ment methodology are specification, develop-
ment, implementation and (to a certain extent)
evolution.

At the heart of the Cogito methodology is the
specification language Sum [13]. The Cogito
development system revolves around the pro-
cessing and analysis of Sum specifications.

The specifier uses the Sum notation to build
mathematical models of the software to be de-
veloped, at various levels of abstraction. The



Problem Domain
Informal Requirements Analysis
c
S
8
£ Informal Requirements Specification
formalisation of informal
requirementsin a formal,
abstract specification
Formal Requirement Specification (Sum)
validation: checking specification
= for consistency, safety properties
= g 5% y prop
ES
S O
LT validated Specification (Sum)
3
@] data refinement steps: .
refining abstract to design «
concrete data structures §
Design Specification (Sum) w
algorithm refinement; development
of implementations detailed
design
c
c .9
© ® Implementation (Sum)
8%
o}
55 automatic translation
5o to safe Ada subset
O E . .
"_5 Testing/Evolution

Adaimplementation ————=

Figure 1: A model of the Cogito development
process.

models describe the application’s data types,
its “state” and its “functions” (written as in-
put/output operations that change the state of
the system). The Sum language extends tradi-
tional logical notation (predicate calculus) with
constructs for many commonly occuring math-
ematical abstractions such as lists, sets and re-
lations.

Sum extends 7 [10] by adding: a module mech-
anism; explicit preconditions; distinguished
state, initialisation and operation schemas; and
boolean and character (including string) types.

Briefly, the provision of high level structuring
mechanisms as part of the specification lan-
guage allows Cogito to address more effectively
issues of complexity management; separation of
concerns; abstraction; reuse; and increased co-
herency (particularly for tool support).

2.2 The Cogito System

Cogito exploits many existing tools and meth-
ods. Central to Cogito’s architectural design is
the ability to accommodate existing tools and
development subsystems. For this reason, the
central component of the Cogito toolset archi-
tecture is a tool integration harness which al-
lows the integration, coordination and control
of existing tools. The integration harness [12]
(from here on referred to as the repository man-
ager) also provides mechanisms for configura-
tion and version control. It reflects the over-
all state of a development and coordinates (in
accordance with the Cogito methodology) the
user’s activities between the various tools of the
Cogito system. More details on the repository
manager can be found in [11] and [12].

The overall structure of the Cogito develop-
ment environment is shown in Figure 2. The
Cogito tool architecture is described in more
detail in [11].

The reasoning needs of Cogito are serviced by
the Ergo proof tool [14]. Within a Cogito de-
velopment, Ergo is used in the following ways:

e as a theorem prover, providing facilities for
undertaking formal proof in the context of
a Sum specification;

e as a proof obligation generator, generating



Typechecker
Ergo P Sum->Ergo
(Sum Reasoning) <I> Theory Generator
Repository

Sum Parser/ Ergo
o .
Tree Generator Manager (Refinement)
Proof Obligation LaTeX
Generator Generator

Figure 2: The Conceptual Architecture of the
Cogito Development Environment.

@

obligations whose proofs ensure the feasi-
bility and consistency of a Sum specifica-
tion; and

e as a refinement tool, providing an inte-
grated environment for undertaking refine-
ment and demonstrating the correctness of
those refinements.

Ergo provides sophisticated theory construction
and structuring mechanisms [9]. These facil-
ities are used to structure the theories gener-
ated from Sum specifications. The translation
of Sum specification to Ergo theories is sup-
ported by an extensive modelling of the Sum
mathematical toolkit, the type system of the
Sum language and the notion of a Sum schema
and the associated schema calculus operations.

Over 50 theories and upwards of 3000 postulates
and theorems form the basis of the Frgo envi-
ronment in which reasoning about Sum specifi-
cation is carried out. About three person years
of effort have been invested in the development
of the Ergo theory base [5] in support of rea-
soning about Sum specifications.

Ergo also offers comprehensive support for the
definition of strategies and tactics which are in-
dispensable when reasoning. For example, there
are tactics supporting reasoning about integers,
sets, types and schemas.

2.3 Specification Validation

Specification validations required by the Cogito
1 methodology ensure:

1. The existence of an initial state.

2. The adequacy of the stated precondition,
for each operation.

The first of these means that a state with the
required initial characteristics exists as a math-
ematical object.
check on the consistency of the state specifica-
tion, since if an initial state exists, clearly the
state specification is satisfiable. The second val-
idation check requires that the stated precondi-

Note that this subsumes a

tion of an operation, together with the state
invariant, are sufficient to ensure that a final
result is possible as required by the operation
specification.

In addition to the validation conditions that
are predetermined by the Cogito methodology,
safety criteria may also be specified. These
properties can be formulated directly using the
high level schema operations available within
Ergo. They are then embedded in a Sum spec-
ification as formal safety comments. In doing
this they automatically become part of the set
of obligations required to be proved in order for
a specification to be considered validated.

2.4 Refinement

The notion of a Sum module is modelled within
Ergo and is exploited in order to enable Ergo to
perform data refinements. In this sense, refine-
ments are expressed in Ergo as inference rules
over these module structures. Algorithm re-
finement is also be modelled in Ergo in a sim-
ilar way, but is carried out at the schema level
rather than the module level.

Intuitively, a module A is data refined by a
module C' if the externally visible effects of
(’s operations are the same as A’s, although
(’s internal state may be different to A’s. In
Cogito 1, this is formalised by the notion of
data refinement between ‘state machines’ (see
also [7] and [15]). A ‘state machine’ comprises
a state schema, and initialisation and operation
schemas.



A state machine A is data-refined by a state
machine C', with respect to a representation re-
lation R, and a correspondence between the op-
erations of A and C, if R is a schema which re-
lates the state of A to the state of C'. A more
detailed description of the data refinement pro-
cess can be found in [4].

3 PROJECT ACTIVITIES
AND OUTCOMES

This section makes some more detailed obser-
vations on project activities and outcomes.

3.1 Training

In general training in a particular task was re-
ceived just prior to it being applied. We chose
to schedule the training this way because it was
thought that learning about the tools and tech-
niques too far in advance of use would not be
effective — there was a large volume of infor-
mation to be absorbed that included unfamiliar
and relatively complex concepts. However, this
did mean that at any point in time there was
little knowledge about what would be required
in future tasks.

3.2 Safety Analysis

Fault Tree Analysis (FTA) was used to identify
system and design level hazards in two stages.
First, system level fault trees were developed,
in which the test unit was considered as just
one part of the overall system. The fault trees
were refined until the level of detail matched
that contained in the Operational Requirements
Document. In the second stage, the fault trees
were extended to consider the failure modes of
the test unit as identified in the design.

From the leaf hazards identified in each FTA, a
number of Safety Criteria were derived. At For-
mal Requirement Specification level, the main
safety criterion we identified concerned com-
pleteness of coverage of the test unit: namely,
that the software should perform all test as-
signed to it before pronouncing the equipment
‘passed’.

3.3 Formal Specification

The specification of the system was structured
into three levels - Top Level, Design Level, and
Implementation Level. Capturing requirements
in Sum was fairly straightforward.

However, achieving a level of abstraction ap-
propriate to the specification level (top level,
design level, implementation level) was found
to be very difficult. Difficulty in working at an
appropriate level of abstraction has been noted
on a number of formal methods projects (for
example, [8]). The skill of abstraction improves
with experience.

Team members found the ASCII Sum notation
more comfortable to work with than the math-
ematical (Z-style) notation, which involved a
lot of work in translating unfamiliar symbols
to corresponding concepts.

In producing the specification, a number of er-
rors were detected in the requirements docu-
ment. One example of this involved the dis-
covery of incompleteness in the specification of
what the test unit reports to the operator.

3.4 Specification V&V

3.4.1 Proof processes

Two classes of proof activity were carried out to
assist in verification and validation of the spec-
ifications.

The first of these involved carrying out proofs
recommended by the Cogito methodology to
check the internal consistency of the specifica-
tions.

The second involved formalising the safety cri-
teria derived from the Safety Analysis, and car-
rying out proofs to show that the formal spec-
ification entailed the safety criteria. The infor-
mal safety criteria required interpretation and
formalisation before this could be carried out.
In this process an number of different possible
formalisations were considered, each of which
required different proofs.

In this formalisation process, it was decided
that it was better to produce a larger number
of formal safety requirements that were easy to
understand and prove rather than fewer formal



requirements that were difficult to understand
and prove. As a result of this, after a few proof
templates were worked out, relatively unskilled
personnel were seconded to the project and car-
ried out many of the proofs. The alternative
approach (fewer, more complicated proofs) re-
quires personnel with a higher skill level.

3.4.2 Error Discovery

Nine errors in the specification and in the for-
malisation of the safety criteria were detected
during the proof processes.

3.4.3 Reviewability of Formal Proofs

CSC’s quality system requires each project
product to be reviewed. It was found that re-
view of the formal (machine checked) proofs was
difficult. It is felt that this can be addressed by
some extra facilities in the Repository Manager
and in Ergo, to more efficiently check that proof
obligations have been generated and to check
that all postulates on which outstanding proof
obligations depend have been proved.

3.4.4 Difficulty of Proof

Proof was found to be a more difficult process
than specification. However, after training and
some experience, team members were able to
carry out formal proofs using Ergo with little
or no assistance from the SVRC. In fact, once
certain proof styles had been worked out even
personnel who had received no direct training
could carry out simple proofs.

3.5 Refinement

Refinement is the process whereby design de-
cisions are introduced and shown formally to
satisfy previous specifications.

Data refinement on the communications portion
of the specification introduced data design in
two stages, introducing the relation between ab-
stract messages and the communications byte
stream, and detailing how parity and overrun
errors were handled.

In comparison with traditional design, formal
refinement is more restrictive. It was found that
the availability of applicable refinement tech-
niques influenced the way specifications needed
to be structured.

The proofs required for verifying the data re-
finement were more difficult than those done
in the verification and validation work. Team
members found this work significantly increased
their theorem proving skills.

Team members feel they need more experience
with refinement techniques and that they would
like to learn about different refinement meth-
ods so that the refinement effort could be op-
timised by selecting techniques appropriate to
the problem. On the research side, the SVRC
is interested in researching more flexible refine-
ment methods.

3.6 Configuration Management

3.6.1 Version Management Policies

Changes to the specification were managed by
the Repository Manager, which provides ver-
sion control of specifications at the module
level.

However, the user needs to develop a policy
to control when new versions of the specifica-
tions are created and when the current version
is modified. This issue needs to be looked at
further because the simple policy used for this
project would be inadequate for larger projects.
If a general policy for version control had been
available at the start of the project, then this
could have been implemented within the Repos-
itory Manager.

of

3.6.2 Fine-grained Management
Proofs and Theories

The process followed introduces a number of
points of iteration, in which previous stages
need to be revisited. This process would be
assisted by a finer grain of configuration man-
agement of theories and proofs.

For example, in the process of performing the
formal proofs, changes and improvements were
made to the specification. This required new



theories to be generated and existing proofs
to be re-run. A finer grain of configuration
management would cut down on the number of
proofs which need to be re-run.

Again, in the process of developing design level
fault trees, it was thought that changes to the
system level fault trees were appropriate. Un-
fortunately by this time the informal safety cri-
teria had been formalised and a large number
of proofs completed. In this project then com-
pleted proofs were not updated to cater for the
changes to the fault trees. Again, finer grain
management of proofs would alleviate the prob-
lem.

Future work at the SVRC will address the is-
sue of finer-grained configuration management
of proofs and theories.

3.7 General Comments on the Pro-
cess

It was recognized from the outset that the
chosen application was far from ideal as a
demonstration of the capabilities of the Cogito
methodology: in particular, it was process-
oriented and had a number of real-time re-
quirements. (Cogito had hitherto been applied
mainly to data-driven applications and this ver-
sion of Cogito was not specifically designed to
support development of real-time systems.) As
a result, some ‘process-oriented’ safety criteria
were more difficult to express and to prove, and
some safety criteria could not be modelled at all
due to their ‘real-time’ nature. Also, because
the application was a test unit for an exist-
ing system, its communications interfaces were
tightly constrained, and this meant the devel-
oper had very little or no design freedom.

Nevertheless, the process of hazard analysis,
specification, proof and refinement proved to be
a good framework for the development of safety
critical software.

e Performing the hazard analysis, writing the
top-level formal specification and formalis-
ing and proving the safety criteria provided
enormous insight into the application.

o Writing the design level formal specifica-
tion and doing the rigorous consistency and

refinement proofs on this design was also
helpful for giving insights into the applica-
tion.

e Formal proofs were useful in reinforcing
and adding to the understanding of the
data types used in the specification, and
in providing increased assurance.

To address some of the problems mentioned
above, the SVRC is now investigating the addi-
tion of process-oriented and real-time capabili-
ties to the Cogito methodology.

4 CONCLUSIONS

The pilot project has successfully demonstrated
the feasibility of transferring formal methods to
industry. The project threw light on some of the
initial industrial perceptions of formal methods:

Industrial scale: The project showed that the
methods are feasible, but productivity re-
mains an issue. A full formal specifica-
tion of the application was completed. For-
mal proof of consistency was performed to
the point where it was clear it could be
completed with little extra effort. Formal-
ization of the safety criteria resulted in a
large number of proof obligations; each in-
dividual proof obligation presented no sig-
nificant difficulty (in fact, many could be
proven automatically), but the sheer num-
ber was a problem. Only part of the ap-
plication was refined through to detailed
design, due to time pressures not entirely
due to the methodology (see below).

The formal specifications for this applica-
tion are comparable in size to the SRS,
but are more precise. Cogito currently has
no support for real-time aspects, and more
direct support for process-oriented aspects
would have been useful.

Tool support: The Cogito tool-set allows
large specifications to be constructed,
checked and managed, and reports to be
generated. The provision of a modular-
ity mechanism in the specification language



enabled a coherent and manageable specifi-
cation to be constructed. Fine-grained con-
figuration management of proofs and theo-
ries needs addressing, to reduce the amount
of rework required each time changes are
made to the specification or design. To in-
crease efficiency of the proof tools, further
population work is required.

Full tool support for development through
to Ada statement-level code was not avail-
able during the project. Since then, how-
ever, tool support has been completed and
is currently being evaluated in the SVRC
by developing code for part of the test unit.

Training: The pilot project had 18 days of
training and 22 days of workshopping in-
volving SVRC staff. The learning curve
was steep, but notwithstanding the novelty
and complexity of the processes involved,
and the lack of prior training, the develop-
ment team members were able to success-
fully apply the methods with little extra
support from the SVRC. The project expe-
rience underlined the importance of work-
shopping as a follow-up to initial training.

Mathematical skills: The principal CSC de-
veloper had only two weeks prior experi-
ence of formal mathematics. With respect
to formal proof, SVRC staff were some-
times called upon to help with proofs, but
generally once they had demonstrated how
to tackle a certain kind of proof obliga-
tion, CSC staff were able to complete all
other proofs of the same kind without fur-
ther help.

Effort involved: Certainly there is work in-
volved in applying formal methods. The
additional work, beyond that required by
traditional approaches, is involved with
formalizing requirements and designs and
proving properties of them; the result is im-
proved assurance in the correctness of the
final product. Also, the products are fully
traceable and can be re-checked by tools af-
ter changes have been made, thereby sub-
stantially reducing the need for technical
reviews.

A number of factors impacted on progress in
developing the application through to code:

e The project was hampered by the delay
of an SRS for the application being devel-
oped, which compounded the other delays
introduced into the project.

e Substantial effort was invested in the
course of the project in evolving and ma-
turing the Cogito methodology and asso-
ciated support tools (primarily based on
feedback from the project). This had an
adverse affect on overall progress. Sub-
sequent projects would suffer much less
from this impediment and would therefore
progress substantially faster.

e Initial interaction between CSC and the
SVRC was relatively intensive, but ham-
pered by the remote nature of the commu-
nication, which introduced delays in many
parts of the project. It was found that
follow-up intensive workshopping for sev-
eral days at a time was more effective. Note
however that the need for on-the-spot sup-
port in subsequent projects, pursued by the
same CSC staff, would be significantly re-
duced. Again, this would be a significant
factor in improving the productivity of sub-
sequent formal methods projects.

In more general terms, CSC now has a number
of developers experienced in the use of formal
methods who are in a position to offer the kind
of support locally to CSC staff that the SVRC
offered during the project. This encourages us
to believe that subsequent projects, even with
inexperienced staff, would also progress more
smoothly, because of the availability of local
expertise. CSC pilot project staff have subse-
quently made substantial contributions to an-
other CSC project applying formal methods in
V&V of safety-critical software.

The pilot project is one of the few documented,
successful applications of formal methods in
Australian industry. It will serve as a milestone
against which we can judge subsequent indus-
trial efforts in the application of formal meth-

ods.



The pilot project was the first attempt to apply
the Cogito methodology and system to an in-
dustrially relevant application. At the end of
the project, Cogito had evolved significantly
from the initial versions available at the start of
the project. The end result was a system that
was substantially more usable and robust, with
significantly improved coverage and efficiency.
The next generation of the Cogito methodology
is expected to profit greatly from the feedback
received from this project.

Acknowledgments

The authors are indebted to other members of
the pilot project group who have made signif-
icant contributions to the project: in particu-
lar, we thank Anthony Bloesch, Ed Kazmier-
czak and Mark Utting. Thanks also to the other
members of the Pilot Project Steering Commit-
tee (Tony Cant, Chris Edwards and John Sta-
ples) for their encouragement throughout the
project.

References

[1] Assessment of munition related safety crit-
ical computing systems. Australian Ord-
nance Council, August 1993. Pillar Pro-
ceeding 223.93.

Defense system software development. U.S.
Dept of Defense, February 1988. MIL-
STD-2167A.

2]

[3] Fault tree analysis (FTA). International
Electrotechnical Commission, 1990. Inter-

national Standard IEC 1025.
[4]

A. Bloesch, E. Kazmierczak, P. Kearney,
O. and Traynor, Cogito: A Methodology
and System for Formal Software Develop-
ment, [nternational Journal of Software
FEngineering and Knowledge Engineering,

Vol. 5, No. 4, December 1995, 599-617.
[5]

A. Bloesch, E. Kazmierczak, P. Kearney, J.
Staples, Q. Traynor and M. Utting, A For-
mal Reasoning Environment for Sum — A 7

Based Specification Language, Australian

10

[8]

[9]

[14]

Computer Science Communications, 18, 1,
February 1996, 149-158.

J.P. Bowen and M.G. Hinchey, Formal
Methods and Safety-Critical Standards,
IEEE Computer, 27, 8, August 1994, 68-
71.

C.B. Jones, Software Development us-
ing VDM, Second edition, Prentice Hall,
(1990).

P.G. Larsen, J. Fitzgerald, T. Brookes,
Lessons Learned from Applying Formal

Specification in Industry, to appear in
IEEE Software, May 1996.

Ray Nickson, Owen Traynor and Mark Ut-
ting. Cogito Ergo Sum - Providing Struc-
tured Theorem Prover Support for Spec-
ification Formalisms. In Australian Com-
puter Science Communications, Vol. 18:1,
pages 149-158, 1996.

J.M. Spivey, The Z notation, a reference
manual, Prentice Hall, (1992).

O. Traynor and A. Bloesch, The Cogito
Tool Architecture, in Australian Computer
Science Communications, Vol. 18:1, pages

97-106.

O. Traynor and A. Bloesch, The Cogito
Repository Manager. In Proc. Asia Pacific
Software Engineering Conf., Tokyo, IEEE
Press (1994).

O. Traynor, E. Karlsen, E. Kazmierczak,
P. Kearney, 1i Wang, Extending 7 with
Modules, in: Australian Computer Science
Communications, 17, 1, February 1995,
513-522 (1995).

M. Utting and K. Whitwell, The Ergo In-
teractive Theorem Prover V4.0, Techni-
cal Report 94-14, Software Verification Re-
search Centre, The University of Queens-

land (1994).

J.B. Wordsworth, Software Development
with Z, Addison-Wesley (1992).



