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Reuse of verified design templates
through extended pattern matching

David Hemer Peter A. Lindsay

Abstract

CARE provides a framework for construction and verification of pro-
grams, based around the recording of reusable design knowledge in pa-
rameterized templates. This paper shows how pattern-matching can be
used to aid in the selection and application of design templates from a
reusable library. A general framework is presented which is independent
of the particular matching algorithm used at the level of mathematical
expressions. A prototype has been built which supports a large subset of
the Z mathematical language.

Keywords: formal methods, program development, refinement, soft-
ware verification, pattern matching

1 Introduction

1.1 Outline of CARE

Development of formally verified software is often seen as a difficult, time con-
suming task, requiring somewhat esoteric mathematical skills. The CARE ap-
proach [4, 9] attempts to address this problem by providing a library of reusable,
pre-proven design templates, which the software engineer can use to develop for-
mally verified programs.

CARE stands for Computer Assisted Refinement Engineering. CARE
provides a framework within which specification, programming and verification
knowledge can be recorded and reused with minimal need for re-proof. The
CARE project has been exploring the use of a library of design templates for
which most of the difficult parts of modelling and proof have been done once,
off-line, by suitably skilled experts. CARE tools then help the user build appli-
cations by selecting and instantiating pre-proven refinements to fit the problem
at hand, and generating and discharging correctness-of-fit proof obligations.
Other CARE tools synthesize compilable source code programs which can be
integrated with other system components and tested using common integration
testing techniques.



The CaRE method is generic and can be tailored for use with different speci-
fication languages, programming languages and theorem provers. In particular,
it can be used to construct verified software for programming languages which
themselves do not have a full formal semantics, by restricting use of target-
language code to formally specified library routines which have been verified
off-line using techniques appropriate to the target language.

CARE was developed through a collaboration between Telectronics Pacing
Systems and the Software Verification Research Centre. Telectronics develops
and manufactures software-driven medical devices such as implantable defibril-
lators. The company has long been motivated to investigate the use of formal
methods for the economical and timely development of provably correct soft-
ware. Specifically, Telectronics had used formal specifications in the develop-
ment of some of its products, but wanted a method and tools to help verify
code and to enable tracing of requirements from specifications through to code
and construction of product variants [2]. A grant from the Australian Govern-
ment enabled more extensive development of the i1deas and the construction of
a prototype tool-set to support the method.

The prototype tool-set has been populated with a large library of design
templates and primitive components for numbers, sets, lists, arrays and records.
We have used the CARE method on a number of medium-sized applications
including verification of the design of an event logger such as might be used in
an embedded device [8]. The tools themselves have been formally specified [3].

1.2 CARE programs

A CARE program consists of types, fragments and theorems. CARE types cor-
respond to data structures; fragments correspond roughly to functions and pro-
cedures in a procedural programming language; and theorems correspond to
definitions, lemmas and CARE proof obligations (explained below).

Each CARE program component has its own formal specification, which may
include constraints on how the component can be used. Program components
are classified as primitive or higher-level. In essence, primitive components are
those whose proof of correctness is outside the scope of CARE, while higher-level
components have associated proof obligations. More specifically:

Primitive components are supplied as part of the CARE library, and are not
written by the ordinary user. Primitive types and fragments are imple-
mented directly in the target programming language and provide access
to target language data structures and basic functionality. (B uses a sim-
ilar approach [7].) The specification of such a component describes the
component in terms of a mathematical model of the semantics of the tar-
get language and its compiler: a primitive type’s specification describes
the set of mathematical values corresponding to the associated data struc-
ture; a primitive fragment’s specification describes the associated target



code’s functionality. Primitive theorems are axioms; their statement 1is
their “specification”.

Higher-level components are constructed from other components. Higher-
level types and fragments express data refinements and algorithm designs
respectively, and are implemented in a special-purpose language with
a formally-defined mathematical semantics; using this semantics, CARE
tools generate proof obligations which show that the component’s im-
plementation is correct with respect to its specification (see §3.2 below).
Higher-level theorems (lemmas) are “implemented” by proofs.

CARE differs from most other formal software development methods by support-
ing incremental working — top-down, bottom-up or in a mixture of styles. During
development a CARE program may contain components which have specifica-
tions but which do not yet have implementations. A complete CARE program
is one in which all components are implemented.

1.3 This paper

This paper explains the CARE approach and illustrates some of the main con-
cepts. §2 below introduces the CARE integrated specification and implementa-
tion language. §3 outlines how verified programs are developed using CARE. §4
discusses matching at the level of mathematical expressions, §5 extends it to
CARE program components, and §6 extends it to whole design templates. §7
illustrates how matching can be used to develop verified programs from a library
of pre-verified design templates. §8 discusses ways of improving the effectiveness
of library searches by modifying the matching function to take advantage of the
semantics of CARE constructs. The examples all use Z-like naming conventions.

2 The CARE language

This section describes the CARE language in more detail. In the rest of this
paper, CARE values and types are written in typewriter font and mathematical
expressions are written in italics.

2.1 Mathematical definitions

The mathematical theory part of a CARE program consists of: signatures and
axiomatic definitions of constants, functions and predicates; declarations of
“generic” (not-further-defined) sorts and definitions of other sorts; and lem-
mas, with or without their proofs. For example, Fig. 1 shows the definition of
a function append which appends a value onto the head of a list, and a lemma
for calculating the range of an appended list.



Theory definition of function aeppend.
append : Elem x seq Elem — seq FElem;
Vh: Elem; t:seq Elem o append(h,t) = {(h) ",
Vs :seq Elem o #£s # 0 = append(head(s), tail(s)) = s.

Lemma ran_of_append.
Ve:X; s:seqX eran(append(e,s)) = (rans) U {e}

Figure 1: Example theory components.

2.2 Types

A CARE type declaration consists of a name, a specification and an implementa-
tion. The specification is an expression denoting the sort of mathematical values
that objects of the type can take. For example, Fig. 4 contains specifications of
CARE types for natural numbers, elements and sequences of elements.

Primitive types are implemented by some target language data structure. A
higher-level type (the refined type) is implemented in terms of one or more other
types (the corresponding concrete types) by data refinement; the specification
describes the relationship between values of the refined type and their concrete
representations (the refinement relation), an optional condition restricting the
values that the refined type may take (the constraint), and an optional condition
restricting the values the concrete types may take (the invariant). An example
refined type is given in Fig. 5.

2.3 Fragment specifications

There are two kinds of fragments: simple and branching. Simple fragments cor-
respond roughly to functions in a procedural programming language; they take
inputs and return outputs.! Branching fragments differ from simple fragments
by also allowing branching of control during execution. A non-standard feature
of the CARE language is that branching fragments can return different numbers
and kinds of outputs on different branches.

The number and type of inputs taken by a fragment is fixed. The speci-
fication of a simple fragment consists of a name, an optional precondition, a
list of outputs and their types, and the required input/output relationship (or
postcondition). For example, Fig. 3 gives specifications of the simple fragments
nil, car and cdr for manipulating lists, using LISP-like naming conventions.

The specification of a branching fragment consists of its name, an optional
precondition and a sequence of guarded branches. Each branch contains a fest,

L1CARE has been extended to handle state-changing operations (not treated here).



a description of the outputs and their types, an optional postcondition, and
a report, which identifies the branch. (The test in the last branch is true by
default.) Fig. 4 gives examples of specifications of branching fragments search
and decompose. Note that the number and type of outputs on each branch is
fixed but may differ from branch to branch. For example, the search(s,e)
fragment has two cases: when e occurs in s, it reports found and returns an
index i at which e can be found; otherwise it simply reports notfound with no
outputs. The guard of a branch is its test conjoined with the negations of the
tests of the preceding branches. For example the guard of the nonempty branch
of decompose(s) is = (#s = 0).

Note that fragment specifications may be under-determined, in the sense that
more than one output may satisfy the postcondition for any given input: e.g.
iin search(s,e). In practice however, the postcondition is often an equation
defining the output variables directly as a function of the input variables.

2.4 Fragment implementations

Primitive fragments are implemented by giving code segments in the target
language. Higher-level fragments are implemented in terms of calls to other
fragments. The CARE implementation language supports the following simple
design constructs: assignment of values to local variables, fragment calls, se-
quencing, branching of control, and data refinement transformations. An abort
statement is also provided, for use in branches which will never be executed.

Recursive calls and mutual recursion are allowed, provided the recursion
eventually terminates. To establish termination, the CARE user supplies a well-
founded variant function (or variant for short) whose value decreases on recur-
sive calls and is bounded below. Fig. 4 contains example implementations, for
branching fragments search and searchhux.

3 Construction of verified software with CARE

3.1 CARE programs

A CARE program consists of a collection of theories, types and fragments. Com-
ponents may be specified but not yet implemented. A program is said to be
complete if all components in the program have been implemented (and in par-
ticular, all proof obligations and lemmas have been proven); otherwise it is said
to be partial.

3.2 Proof obligations

For each higher-level fragment in the program, a CARE tool generates proof obli-
gations that check that the fragment’s implementation satisfies its specification.
The proof obligations for fragments fall into four categories:



Partial correctness: The result returned at each (non-aborting) leaf of an im-
plementation tree satisfies the appropriate postcondition.

Termination: For recursively-defined fragments, the variant is strictly decreas-
ing on recursive calls.

Well-formedness: For each fragment call, the fragment’s precondition (if any)
is satisfied.

Non-ezecution: Execution cannot reach an ‘abort’ leaf (at least, not for input
values which satisfy the fragment’s precondition).

For refined types, there are proof obligations to check that the refinement
relation defines a function whose domain is given by the invariant and whose
range is given by the constraint.

3.3 Templates

A CARE design template (or template, for short) is a reusable, parameterised
collection of CARE types, fragments and theories, which together encapsulate
a piece of design knowledge.? Templates can make use of formal parameters
as well as textual parameters, ranging over component names. The prototype
CARE library contains templates in each of the following categories:

theories: e.g. the theory for ordered sequences - see Fig. 2;

primitives: e.g. a template containing operations for manipulating linked lists,
using LISP-like naming conventions - see Fig. 3;

families of algorithms: e.g. a search algorithm for lists - see Fig. 4;

data refinements: e.g. sets implemented as non-repeating lists - see Fig. 5.

Some or all of the types and fragments may have specifications but not
implementations: in such cases, the template user is obliged to supply imple-
mentations later in the development. Similarly, some or all of the lemmas in
the theory part may be assumptions (called applicability conditions); the tem-
plate user is obliged to show that these follow as logical consequences from the
definitions already in the CARE program; for example, the template Ordered
Sequences given in Fig. 2 has two applicability conditions, stating that the
ordering relation must be transitive and it must obey the trichotomy law.

Note that in practice, the user may require only part of a template. The
CARE template instantiation tool allows the user to indicate what components
of the template are of interest; it then determines the complete set of compo-
nents on which the nominated components depend (including all applicability
conditions) and extracts them from the template, appropriately instantiated.

2CARE also provides a mechanism for modularisation of templates; space does not permit
details to be presented here.



Template Ordered Sequences is

Formal parameters: X,_ < _: X x X.

Applicability conditions:
Va,be . Xea<bANb<c=a<e,
Va,b: Xea<bVa=bVb<a.

Theory definition of predicate isOrderedSeq.
1sOrderedSeq : seq X ;
Vs :seqX o isOrderedSeq(s) < Vi:1..#s—1es(i)<s(i+1).

Lemma singleton_isOrderedSeq.

Ve:X o isOrderedSeq({e))

Lemma append_isOrderedSeq.
Vh:X;t:seq X oisOrderedSeq(append(h

1) &
t={)V (h < head t A isOrderedSeq(1))

end template.

Figure 2: A template containing theory for ordered sequences




Template Linked Lists is
Formal parameters: X.
Type Elem has specification: X.

Type LList has specification: seq X
implementation: appropriate code for linked list type declarations

Fragment nil() has specification:
output s:LList such that s = ()
implementation: code for the empty list

Fragment car(s:LList) has specification:
precondition #s # 0
output h:Elem such that h = head(s)
implementation: code for finding the head of the list

Fragment cdr(s:LList) has specification:
precondition #s # 0
output t:LList such that ¢ = tail(s)
implementation: code for finding the tail of the list

Fragment cons(e:Elem,s:LList) has specification:
output r:LList such that r = append(e, s)
implementation: code for appending an element onto the front of a linked list

Branching fragment null (s:LList) has specification:
result defined by cases:
if #£s = 0 then report yes else report no
implementation: code for checking for the null list

Branching fragment decompose(s:LList) has specification:
result defined by cases:
if #s5 = 0 then report empty
else report nonempty with outputs h:Elem,t:LList
such that s = append(h,t)
implementation:
case null(s) of
yes: report empty.
no: report nonempty and return car(s),cdr(s).
end template.

Figure 3: Part of a template for linked lists primitives.
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4 Matching on mathematical constructs

In what follows (a dialect of) Z is used to model an abstract syntax for the
CARE language and matching functions over the language.®> To start with, a
mathematical expression can be either a sort, a formula or a term:

MathEzpr == Sort U Fmla U Term

Note that mathematical expressions may contain formal parameters.

4.1 Instantiation

A formal parameter instantiation indicates the sorts, predicates and functions
by which parameters are to be instantiated:

FPInst == FParam —+ seq Var x MathEzpr

We shall write, e.g. f(z,y) ~ body for f — ({z,y), body). In practice, sig-
natures are also supplied for predicate and function parameters as part of the
instantiation, but they will not be modelled here.

The function instantiate takes a mathematical expression (the pattern) and
an instantiation and forms a new mathematical expression (the target) by re-
placing occurences of formal parameters in the pattern in accordance with the
instantiation map. The form of instantiation used in CARE is logically sound:
the result of instantiating all expressions in a proof is again a proof. The func-
tion’s signature only is given here; details are straightforward.

| winstantiate : MathFEzpr x FPInst - MathExpr

When formal parameters remain in the target, the instantiation is referred to as
a partial instantiation.

Example: The result of instantiating the expression
Va,b:SeP(f(a, b)) = P(f(b,a))
with instantiation S ~ FN, P(z)~ #z =0, f(z,y) =z Ny is

Va, b . FNe#(aNb)=0= #(bnNa)=0.

3 As presented here, some of the definitions are not type-correct with respect to standard
Z, but the explanation should be clear enough to satisfy most readers. -+ represents finite
functions, + partial functions, F finite power sets, and P arbitrary power sets.



4.2 Matching

The function match can be specified in terms of the instantiate function:

‘ match : MathExpr x MathEzpr — P FPInst

‘ Vi : match(my, ma) e instantiate(my, i) =4 ma

where =, is a-equivalence: i.e., equality up to renaming of bound variables.
Note that this is an underspecification of matching, in-as-much-as it requires
that only matches be returned, but does not strictly require that all possible
matches are returned. (A fuller specification might require, for example, that
at least one match from each possible equivalence class of matches be returned
[5]). The above specification is sufficient for the purposes of this paper however.

Example: Suppose P is a formal parameter ranging over l-ary predicates,
and a ranges over 0O-ary functions (constants); then P(a) matches the formula
0 = 0 in each of the following ways:

Pz)~|z=2z|2=0{0=2]0=0
a~ 0 0 0 ?

Space does not permit a full description of the matching algorithm used by
CARE. Basically, it works on structural induction on the pattern, and returns a
finite set of instantiations at each step. For example when the pattern is of the

form f(p1,...,pm), and f is a constant (i.e. a non-parametric function), then
the pattern matches only targets of the form f(ay, ..., ay) such that each p;
matches a;. Turning this around, the set of matches against f(p1,..., pm) can

be found by merging (if possible) the sets formed by matching each p; against
a;, using the following function:

mergelnstSets : F(IF FPInst) — F FPInst

mergelnstSels @ = &, mergelnstSets {is} = is

rest £ @ = let isy = mergelnstSets(rest) in
mergelnstSets({isy} U rest) = {iy : is1; 1o : iso @ mergelnsis(iy, iz)}

Two instantiations are mergeable if they agree on their common part:

mergelnsts : FPInst x FPInst — FPlnst

mergelnsts(iy, iz) = if (domiz) < iy =4 (domiy) < iz
then 4 @ s else @

where =, stands for element-wise a-equivalence.

These ideas can be extended to give a complete matching algorithm for
mathematical expressions. (Complete in the sense that all possible matches
are returned, up to a-equivalence and subsetting: see [6] for details for a very
similar syntax).
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5 Extending matching to CARE program com-
ponents

5.1 Modelling CARE program components

To extend matching to CARE program components, we need first to model their
abstract syntax. For the purposes of this paper, CARE type specifications can
be modelled as follows:

TypeSpec
name : TypeName
spec : Sort

Fragment specifications can be modelled as follows:

FragSpec
name : FragName

wmputvars : VarDeclars
precond : Fmla
gsparts : seq; GSPart

Each guarded specification part is modelled as a 4-tuple, consisting of a guard,
report, output variables and a post-condition:

GSPart == Fmla x Report x VarDeclars x Fmla

The input and output variables (together with any local variables in fragment
bodies) are modelled as an ordered sequence of variable/type pairs.

VarDeclars == seq( Var x TypeName)
A theorem specification can be modelled as follows:

TheoremSpec
|7name : TheoremName

statement : Fmla

Space does not permit treatment of component implementation here, but
the details are straightforward.

5.2 Textual parameters, renaming and instantiation

At the CARE component level, as well as being able to instantiate formal param-
eters, we also need to be able to rename textual parameters. Using Renaming
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to stand for such renamings, we can define appropriate functions for performing
renamings: e.g. rename : TypeName x Renaming -~ TypeName. (To preserve
meaning, the renaming function will sometimes need to rename bound vari-
ables within constructs, to avoid capture of free variables). In what follows, we
overload rename and extend it to other CARE constructs.

A (CaRrE-level) instantiation thus consists of an instantiation of formal pa-
rameters together with a renaming of textual parameters:

Inst == F'PInst x Renaming
We can now extend the definition of nstantiate appropriately:

‘ wnstantiate : TypeSpec x Inst - TypeSpec

instantiate( T, (i, r)).name = rename(T.name, r)
instantiate( T, (i, r)).spec = instantiate( T .spec, 1)

5.3 Component-wise matching

This section considers ezact matching of CARE components; i.e. the situation
where, after renaming textual parameters and instantiating formal parameters
in the pattern, the result is a-equivalent to the target. (Here a-equivalence
means equality up to renaming of variables bound anywhere in the component,
including input and output variables.) Tt turns out that this form of matching
is too strict to be much use in practice; in Section 8 we explore useful ways of
relaxing the requirements to take advantage of the semantics of CARE constructs
components and how they are used.

To start with however, we simply extend the specification of pattern-matching
to CARE components in the obvious way: e.g.

‘ match : TypeSpec x TypeSpec — IP Inst

‘ Vi:match(Ty, Ta) o instantiate( Ty, i) = To

It is now a straightforward matter to extend the matching algorithm for
mathematical expressions to CARE constructs. For example to match type
specification 77 against T, where T7.name is a textual parameter, suppose ¢ is a
match for sorts (Ty.spec, Ta.spec) and 1 is the renaming { 71 .name ~ Ta.name};
then (¢, r) is a match for (71, Ta).

Similarly, the algorithm for matching a fragment specification pattern A
with a target B proceeds as follows:

1. try to match the input variables and types of A and B;

2. try to match the output variables and types for each branch of A with
the output variables in the corresponding branch of B (this only succeeds
when there are equal numbers of branches);
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3. try to match the guard and postconditions for each branch of A with the
guard and postconditions in the corresponding branch of B;

4. finally, try to match the preconditions of A and B.

At each stage of the algorithm, zero or more instantiations are found. The
results of these are merged with the instantiations found in the previous stage
using a merge function similar to the one given in §4.2, but extended to include
renaming of textual parameters. If any stage fails, then the algorithm terminates
and returns the empty set of instantiations.

6 Matching and templates

6.1 Instantiation

Templates and programs can be modelled simply as sets of CARE components.
To extend the definition of instantiation to templates, we must also include the
set of (names of) components in which the user is interested:

Templnst == FPlnst x Renaming x F CompName
where
CompName == FragName U TypeName U TheoremName

Space does not permit a full definition of the template instantiation function
here, but its signature is given by:

| wnstantiate : Template x Templnst — ComponentSet

The results returned by the template instantiation tool are then processed
by the worksheet manager which checks that no conflicts will arise. For example,
if A is a fully implemented component whose specification agrees with that of
a specified-only component B on the worksheet, then A can be added to the
worksheet to provide an implementation of B.

6.2 Matching

To search the library for appropriate templates, we supply a search query, con-
sisting of a set of component specifications. The search tool then looks for
templates which contain components which match any or all of the components
in the query. The tool uses the following function:

‘ match : Template x Query — P Templnst

‘ V1 match(t, q) o instantiate(t,7) =, ¢

13



where the relation =; between two component sets holds if for each component
specification in one set there is an a-equivalent component specification in the
other set.

An algorithm for finding the matches between a template with components
{t1, .., 1m} and search query with components {¢1, .., ¢,} is as follows:

1. Form the set F of all partial surjective mappings from {1,..,m} to {1,.. n}
(since m and n are finite, then F is also finite).

2. For each f € F:

(a) form the instantiation sets match(t;, gz(;)) for each j € dom f;
(b) merge the sets to form a single set of instantiations i;

c) from i, form the set of template instantiations 7+, by replacing each
f T g
2-tuple of the form (¢, r), with the 3-tuple

(¢, r,{t;.name | j € dom f})

3. Return the union of all 7¢’s: i.e. U{f € F o 7¢}.

7 Example uses of matching

We illustrate how matching can be applied to a library of design templates to
develop CARE programs.

7.1 Development of an algorithm

To illustrate the use of templates and matching, suppose we are given the fol-
lowing specifications for a search problem:

Branching fragment find(s:WordList,e:Word) has specification:
result defined by cases:
if e € ran s then report found
with output i:Index such that s(i) = e
else report notfound.

Type Index has specification: N.
Type Word has specification: Word.

Type WordList has specification: seq Word.

An implementation could be developed using the following steps:

14



Step 1:  We begin by giving a library search query containing the above spec-
ifications. A match can be found with the template Linear Search given in
Fig. 4, with renaming {List ~» WordList,Element ~+ Word, Index ~+ Index}
and formal parameter instantiation {Z ~ Word}.

Step 2: Next we might look for an implementation of WordList by supplying
a search query containing the specifications of the types WordList, Word and the
fragment decompose. A match with the template Linked List in Fig. 3 can be
found, with renaming {LList ~+ WordList, Element ~+ Word, decomposelList ~+
decompose} and instantiation { Elem ~ Word}.

Step 3: We could then use the specifications of zero, increment and the type
Index as a search query to find a template containing primitives for natural
numbers.

Step 4: Finally, implementations of Word and equal (for checking equality
of list elements) need to be chosen. The choice for Word obviously depends on
the intended application. As a general rule, templates which introduce a new
type would usually define a branching fragment for determining equality; thus,
we could expect to find an appropriate implementation included in the same
template as chosen for Word.

Note that the user has not had to discharge any proof obligations in the above
development.

7.2 A data refinement

Fig. 5 gives a template for representing sets as non-repeating lists. To illus-
trate use of the template, suppose we were given the following specification of
an operation for adding a new element to a set:

Fragment insert(e:Elem,u:Set) has
specification:

precondition e & u

output v:Set such that v = « U {e}.

Upon applying the data refinement, matching insert with abstractOperation
and renaming concreteOperation to insertList, we are left with the problem
of implementing the following fragment:

Fragment insertList(e:Elem,s:List) has specification:
precondition isNonRep(s) A e & rans
output r:List such that isNonRep(r) Aranr = (rans) U {e}.

15



Template Linear Search is
formal parameters: F.
Type Index has specification: N.
Type Element has specification: F.
Type List has specification: seq F.

Branching fragment search(s:List,e:Element) has specification:
result defined by cases:
if ¢ € ran s then report found with output i:Index such that s(i) = e
else report notfound
implementation: searchAux(s,e,zero).

Branching fragment searchAux(s:List,e:Element,i:Index) has
specification:
result defined by cases:
if e € ran s then report found with output j:Index
such that s(j — i) = e
else report notfound

implementation:
case decompose(s) of
empty: report notfound.

nonempty: assign outputs to h:Element,t:List;
case equal(e,h) of
yes:report found and return increment(i).
no: searchAux(t,e,increment(i)).
variant: #s.

Branching fragment decompose(s:List) has specification:
result defined by cases:
if #s5 = 0 then report empty
else report nonempty with outputs h:Element,t:List
such that s = append(h,1).

Branching fragment equal(a,b:Element) has specification:
result defined by cases: if @ = b then report yes else report no.

Fragment zero() has specification:
output n:Index such that n = 0.

Fragment increment (m:Index) has specification:
output n:Index such that n = m + 1.
end template.

Figure 4: Template for implementation of a list searching algorithm.
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Template Sets As Non-repeating Lists is
include Non-repeating Sequences with X ~ X.
Formal parameters: X, P: X xFX, Q: X xFX xFX.

Type Element has specification: X.

Type List has specification: seq X .

Type Set has specification: IF X

implementation:
value u:Set is refined by s:List with invariant isNonRep(s)
with refinement relation u = ran s.

Fragment abstractOperation(e:Element,u:Set) has
specification:

precondition P(e, u)

output v:Set such that Q(e, u, v)
implementation:

decompose u into s:List;

compose concreteOperation(e,s) to v:Set;

return v.

Fragment concreteOperation(e:Element,s:List) has
specification:

precondition isNonRep(s) A P(e,rans)

output r:List such that isNonRep(r) A Q(e,ran s, ranr).

end template.

Figure 5: Template for data refinement of sets into non-repeating lists, with
corresponding refinement of a simple operation on sets.
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Template Non-repeating Sequences is

Formal parameters: X.

Theory definition of predicate isNonRep.
1sNonRep : seq X;
Vs:seqX e isNonRep(s) < (Vi,j:1..#sei#j=s(i)# s())).

Lemma singleton isNonRep.

Ve:X o isNonRep({e)).
Lemma append_isNonRep.
Ve:X; s:seqX o isNonRep(append(e,s)) < isNonRep(s) A e € ran s.
end template.

Figure 6: A template containing theory for non-repeating sequences

But this fragment can be implemented by simply appending e onto list s:

Fragment insertList(e:Elem,s:List) has
implementation: cons(e,s).

From the specification of cons, the output r of insertList(e,s) satisfies
r = append(e, s), and correctness of the implementation follows easily from
the lemmas range_of_append and append_isNonRep in Fig. 1 and Fig. 6 re-
spectively.

8 Improvements

This section considers relaxations of the definition of component matching to
make library searches more effective.

8.1 Reordering fragment arguments

Note that the order in which input and output variables appear in a fragment’s
specification is not of great importance: e.g. whether one defines cons(e:Elem,
s:List) or cons(s:List,e:Elem) is largely a matter of taste. Thus one par-
ticularly effective improvement is to make the matching function insensitive to
the order of inputs and outputs in query fragments and to extend the defini-
tion of instantiation to allow reordering of variables. The instantiation function
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can then make the corresponding changes to arguments throughout the frag-
ments being instantiated. To achieve this, we modified the syntax of variable
declarations in template fragments to remove ordering of arguments:

VarDeclarsy == Var - TypeName

The information about desired variable ordering can be added to instantia-
tions by including data of the following type:

VarOrdering == seq Var
Insty == FPInst x Renaming X VarOrdering

The definition of the instantiation function for variable declarations becomes:

‘ mstantiate; : VarDeclarsy x Inst; — VarDeclars

‘ instantiatey(vs, (i, 7, p))={j: 1..#p e j— (p(j), rename(vs(p(j)), r))}
The specification of the match function for variable declarations is analogous.

Example: Given input variable declaration set vs = {x : X,y : Y,z : Z} renam-
ing r = X~ List, Y ~+ Element, Z ~+ List and permutation p = (z,x,y), then

instantiatey(vs, (i, 7,p)) = (¢ : List,a: List,b: Element)

Remark: A slightly more sophisticated generalisation of this approach would
be to allow template fragments to have optional arguments; the above solution
can be further adapted to cover this case.

8.2 Matching up to other forms of equivalence

Note that, in many cases, the requirement for a-equivalence can be relaxed to
“weaker” forms of equivalence: e.g. for formulae, logical equivalence will usually
suffice, where it is used in matching preconditions, etc:

‘ matchy : Fmla x Fmla — P FPInst
‘ Vi : matcha(g1, P2) @ instantiate(dy, i) < ¢

The CARE semantics can be used to justify the soundness of implementing
one component by another component with an equivalent specification.

8.3 Substitution matching on components

When looking for a fragment which implements a given fragment specification,
it 1s often useful to further relax the requirement for equivalence and look for a
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fragment which might have a weaker precondition and/or a stronger postcondi-
tion than the query fragment. Such a fragment is substitutable for the original
in the CARE program without further change, since the resulting proof obliga-
tions are weaker than for the original. This leads to the following definition, for
example:

matchs : SimpleFragSpec x SimpleFragSpec — P Inst

V1 matchs(Fy, F2) e let F' = instantiate(Fy, 7)in
F.name = Fy.name
Fy.precondition = F .precondilion
Fy.precondition N F.postcondition = Fs.postcondition

For example, this form of matching would yield cons as a possible instantia-
tion of insertList in the example in §7.2; the fragment could be implemented
by direct instantiation, thereby absolving the user from establishing correctness.

If automated reasoning support is available, the matching algorithm in §6.2
can be adapted to meet the above specification. Note that full logical deduc-
tion is not an absolute necessity: even quite weak deductive abilities promise
to increase the effectiveness of library template searching. (Generating proof
obligations is another possibility). We plan to prototype such an adaptation in
the near future by modifying the abstract syntax of formulae.

9 Comparison to other work

The paper by Zaremski and Wing [15] describes how specification matching
can be used to compare two components; the application they consider include
retrieval for reuse and determination of subtyping relationships. The paper
investigates a number of different ways of relaxing the requirement for exact
matching, and compares the effectiveness of the resulting search mechanisms.
(Note however that our “substitution matching” is not one of those consid-
ered.) The framework is extended to matching of modules, which is similar in
its goals to our template matching. Their system requires interactive theorem
proving support to determine whether or not components match. By contrast
our motivation has primarily been to improve browsing of template libraries
and “retrieval for reuse”, so we have been mainly interested in the case where
matching is fully automatable. However, the framework will also support other
paradigms which might be content to use of interactive matching (e.g. correct-
ness by construction).

A number of systems are available that perform specification matching at
the component level. The Inscape system [10] uses the Inquire predicate-based
search mechanism to aid the user in the search for reusable components. The
Inquire search mechanism can look for predicates that are equivalent to the
query predicate, as well as predicates that are weaker or stronger. The VCR
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system [1] uses implicit VDM specifications as queries for retrieval of software
components. The search mechanism used searches for components with weaker
preconditions and stronger postconditions. Rollins and Wing [12] describe a
system, implemented in AProlog similar to our “substitution matching”, which
is used to match Larch specifications. The search mechanism looks for specifi-
cations with weaker preconditions and stronger postconditions.

A restricted form of specification matching is signature matching [11, 13],
where properties of the type system can be used to define various forms of
matches. This however is not as powerful, or as successful in retrieving desired
components, as the above methods using specification matching.

Finally, the reader’s attention is drawn to the AMPHION system [14], which
makes use of a library of formally-specified FORTRAN routines. AMPHION
converts space scientists’ graphical specifications into mathematical theorems
and uses automated deduction to try to construct and verify a program that
satisfies the specification. The success of AMPHION in its particular problem
domain is further evidence that reuse of library routines can be made effective
with appropriate tool support.

10 Conclusions

This paper has outlined the CARE approach to constructing and formally verify-
ing software, and explored the use of pattern-matching as an aid in the selection
and application of design templates from a reusable library. By minimizing the
user’s need for mathematical inventiveness, both in modelling and proof, CARE
is better suited to industrial development of verified software than many meth-
ods.

The method is general and can be used in conjunction with a variety of
other development methods, both formal and informal. It can be used with a
wide variety of specification languages, theorem provers and target languages.
It can even be used with programming languages which do not have a full formal
semantics. A prototype tool-set has been built [4] which supports a large subset
of the Z mathematical language and can synthesize source-code programs in C;
the prototype includes a purpose-built automatic theorem prover together with
a generic interactive theorem prover extended with CARE-specific tactics and
theories.
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