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Abstract

This paper presents an approach to formal specification of task manage-
ment models for interactive systems. The approach is well suited to data-
intensive applications in which the system is being used to manage complex
collections of interrelated objects.

The approach consists of annotating objects with status information, and
relating status back to properties of the underlying collection. Status infor-
mation is used to guide and control the application of activities. The paper
illustrates the approach on an example from interactive theorem proving.

1 Introduction

1.1 Motivation

As software users become more sophisticated, they increasingly rely on the software
system to manage the more routine aspects of their tasks, so they can devote more
energy to being creative. They expect the system to provide guidance towards
performing their tasks, but they also expect the system to be flexible in how it
allows them to go about their tasks.

As tasks become more complex, users rely more and more on the task-management
information provided by the software. In some cases — such as in safety protection
systems — the required user-response time may be so short, for example, that it is
infeasible to check by hand that all tasks have been carried out consistently and
completely. In other cases, manual checks may be altogether infeasible, because
of the complexity or tedium involved. In all such cases, it becomes necessary to
place high degrees of trust in the system’s task-management capabilities and in the
accuracy of the task status information provided by the system. In particular, it
is vital that users have a clear idea of what can be inferred from the information
presented to them by the system.



The design of task management aspects of the User Interface (UI) is critical in such
situations. For critical applications where high levels of integrity are required, Stan-
dards increasingly recommend the use of formal methods [1] but give little guidance
on how the methods should be applied to User Interfaces. This paper attempts
to remedy this to some extent, by describing a formal approach to modelling and
reasoning about task management for interactive systems, focussing on the meaning
and accuracy of task status information.

There are many important aspects of task management which do not come within
the scope of our approach however, such as the problem of analysing and modelling
tasks (see e.g. chapters 11-14 of [2]), designing for tolerance of human errors [3], and
design with respect to human limitations [4], to name just three.

1.2 The approach

The approach to task model specification taken here is to first model the underlying
“state” of the interactive system as a collection of objects and relationships between
objects. A number of key objects are then chosen and assigned a set of possible
“statuses”, to indicate their status with respect to achievement of task goals. User
activities are then specified by defining how they change the state of the system and
how the status of key objects are affected. Task goals are defined in terms of desired
(target) statuses of key objects. Finally, task control can be imposed, if desired, by
restricting users’ access to functionality in certain states, using status information
as a guide.

We claim that this is a natural approach to specifying task management for interac-
tive systems. It concentrates very much on what is to be implemented, and leaves
it to the system designer to determine how best to implement it. This claim is
illustrated on a case study below.

The approach, which is described in more detail below, is primarily applicable to
“data-driven” applications in which the system is used to construct and maintain
large or complex “object stores” (consisting of objects and relationships between
objects) and task goals are expressed in terms of consistency and completeness of
the object store. Programming environments, Software Engineering Environments
(SEEs), hypermedia networks, interactive theorem provers, and airline reservation
systems are just a few examples of such systems. In a SEE with fine-grained trace-
ability capabilities, for example, the objects could include individual program units,
consistency conditions could include checks that correct syntax has been used, and
completeness conditions could include checks that all variables have been initialized
and all paths have been tested. The user would expect the SEE to report the status
of individual units accurately, and to provide guidance for bringing a program suite
into a consistent and complete state.

An important aspect of Ul design for such systems is the provision of controlled
— but flexible — access to functionality. By controlling how objects are accessed
and changed, the Ul can play an important role in maintaining consistency of the
object store. On the other hand, systems which enforce consistency, such as syntax-
directed editors, can be annoyingly inflexible to use. Our approach aims to support



the design of flexible Uls, with accurately specified and verified behaviour.

1.3 Relationship to other work

The approach to task management described here is inspired in part by the “state-
based” approach to process modelling [5, 6]. State-based process models are ones
in which certain objects are assigned a state (or status as we prefer to call it here,
so we can use the term state in a more general sense). The status of an object
is a representation of what the system “believes” about the object, based on what
process steps have taken place. Guided by status information, a process engine
invokes tools and changes objects and their statuses accordingly. Process modelling
languages such as Merlin and Marvel provide notations in which designers express
their process models, and interpreters which construct the corresponding process
engines.

The approach to specification described here is to use a state-based (sometimes
called model-based [7]) notation. As such, the overall approach can be used in
conjunction with more general methods for modelling interactive systems, such as
interactors [8] for example. This work is however significantly different to other
work on formally modelling aspects of Ul design [9] in that it uses two levels of
specification and considers verification of one level against the other.

It has been argued elsewhere [8, 10] that a state-based description on its own is
generally inadequate or overly awkward for modelling interactive systems, and there
are times when a trace-based description (in a language such as CSP or LOTOS)
is more appropriate. While this is undoubtedly true in many cases, we shall argue
that the state-based approach is ideal for data-driven applications such as the ones
described above. We contend that it would be difficult — if not impossible — to
achieve the same aims using simple process-algebraic notations.

1.4 This paper

The approach is described in detail on an example application below, concerning the
design of a Task Manager for a (hypothetical) interactive theorem prover. The case
study described here grew out of an attempt to show that the mural proof support
environment [11] is logically sound, but the amount of detail has been reduced
substantially, to highlight the core issues. An earlier version of the approach was

described in [12].

Section 2 describes the case study and its task management requirements. Section 3
gives formal definitions of the underlying concepts, and defines the consistency and
completeness conditions that are of interest. VDM-SL notation [13, 14] is used for
formal definitions here, although other state-based formal specification notations
could be used equally as well.

The Task Manager is defined in two layers:

1. Section 4 gives a formal specification of the Task Manager in terms of the
task status information which it will make available, and what can be inferred



from such information. Task goals are defined in terms of what statuses are
desirable (positive goals) and which are undesirable (negative goals).

2. Section 5 gives a formal specification of the design of the Task Manager in
terms of individual user actions and how they affect task status.

From the user’s viewpoint, the first specification (the “goal model”) defines the goals
of the task and the second specification (the “action model”) defines the rules of
the task. We have thus separated the what from the how of the Task Manager.
The layered approach is a useful way of separating concerns. For example, people
interested only in the state of the object store (such as managers) need only study
the goal model to understand what statuses mean; people who want to use the
system to develop or maintain the object store need to understand both models.

Section 6 presents a proof technique for verifying that the action model preserves
the semantics of the goal model. Finally, Section 7 summarizes the approach in a
more general setting, and the paper concludes with a discussion of what has been
achieved.

2 Example: a task manager for an interactive
theorem prover

We illustrate the method on the specification of a (hypothetical) interactive theorem
prover, which is being used to develop a theory: that is, a collection of mathematical
theorems and their proofs. Theorem proving is a relatively small, but important,
part of formal software development [15, 16]. It is increasingly being recommended
— in conjunction with formal specification and design — by standards for critical
software, such as used in safety- or security-critical applications [17, 18]. Interactive
theorem proving has been chosen to illustrate the main ideas of this paper because
it 1s relatively easy to explain.

2.1 Background

A proof of a theorem can make use of many other theorems, and the entire network
of dependencies between theorems can become large and complex. For example, the
mural support system for VDM [11], and the Ergo proof assistant for the Cogito
methodology [19], each contain many thousands of theorems and proofs. Machine
assistance is required to manage the consistency and completeness of the collection
of theorems and proofs.

The traditional approach to maintaining soundness of mathematical theories — as
exemplified by formal logic textbooks — is to linearly order the theorems and allow
proofs to use only theorems which are proven earlier in the ordering (i.e., to prohibit
forward references). Automath [20] is an example of a proof assistant which enforces
this style, and the highly influential LCF [21] uses a variant of this approach. In
practice, however, such an approach is annoyingly inflexible, requiring that proofs
be planned in detail on paper before taking them to the machine. More recent



Theorem A: 1+1=3 Theorem B: 1 =0

proof: proof:

1. 1+141=3 definition 1. 14+14+1=3 definition

2. 1=0 Theorem B 2. 14+1=3 Theorem A

3. 14+14+0=3 substitution(1,2) 3. 1+1+41=141 substitution(1,2)
4. 14+140=14+1 Theorem C 4. 1+1=1 Theorem D (3)
5. 141=3 substitution(3,4) 5. 1=0 Theorem E (4)

Theorem C: Vn-n+0=n
Theorem D: Vm,n-m+1=n+4+1 = m=n
Theorem E: Vn-n+1=1 = n=0

Figure 1: An example of circular reasoning. Note that each proof is complete and
correct when considered in isolation, but that Theorems A and B are mutually
dependent.

generations of theorem provers support more flexible styles of working, whereby
theories can be developed on-line in a piecemeal fashion, for example allowing the
user to interrupt a proof in order to conjecture and prove useful lemmas, or to work
on another proof in parallel [15]. For the present case study, we shall thus suppose
that the system supports the storage and use of incomplete proofs.

The next question is whether to allow circularities. It is eritical to logical sound-
ness of the theory being developed that circular reasoning be eliminated: see Fig. 1.
However, while it is possible to design a task manager which prevents circularities
from arising, such a system would probably be unpopular with users, since such
systems usually force the user into highly convoluted and potentially confusing pat-
terns of use. Syntax-directed editors are an example: to experienced users they can
be tedious or even prohibitively complicated.

The ability to support and recover from “inconsistent” states, such as presence of
circular reasoning in this case, is vital to the useability of a system. For example,
the user may be content to introduce a temporary circularity and then return the
system to a consistent state by breaking the circularity at a different point. (In
the language editor example, this would correspond to being allowed to temporarily
break the syntactical or grammatical rules, and then to reparse the expression at a
later point [22].) Thus, for flexibility, our system will allow circular reasoning; the
Task Manager will be designed to help users avoid and recover from such situations
when they arise.

2.2 Task management requirements

The user’s overall task is to develop the theory by using the theorem prover to
construct theorems and their proofs. The user’s ultimate goal is to create a complete
theory — one in which all theorems have complete proofs, with no circularities. In
practice, however, the user might not be expected to complete every proof in a
theory, and some intermediate goal might be sufficient, whereby for example full
proofs are given only for certain selected critical theorems — such as important safety
properties, in a safety-critical specification — and for all the theorems on which they



depend. (We say such a theorem is “fully established”.)

We shall not consider how the user might go about planning and carrying out these
tasks: the interested reader is referred instead to e.g. [23]. Rather, we assume the
system’s task management role is to track dependencies and watch for circularities,
and to present useful information to the user to help them manage their task.

The approach to task management advocated here is to associate task status values
with individual theorems and with the overall theory, to indicate progress towards
meeting task goals. Some goals are negative (such as ‘try to avoid introducing
circularites’) and others are positive (such as ‘try to fully establish theorem X’).

Note however that it is generally not feasible to specify that task status values have
exact interpretations in terms of properties of the underlying object model. To do
so would for example force the introduction of potentially expensive consistency
and completeness checks before and after each user action, which would result in
unacceptable performance characteristics. Instead, task status values simply in-
dicate what properties can be inferred from status values, without attempting to
characterise them fully. (This point is explained in more detail in Section 4 below.)

Returning to the case study, the Task Manager will be required to provide the
following task management information:

1. Indicate if the theory contlains circularities. This is important, since it threat-
ens to compromise the soundness of future work. It is thus critical that there
be no ‘false negatives’: i.e., the user will want to know if there is any possibility
at all that a circularity is present. A ‘false positive’ would be annoying, but
acceptable: it might just mean the user has to do a bit more work to establish
that all circularities have been removed.

2. Indicate if the theory is complete. This shows that the overall task has been
finished, so in this case the user will want to have assurance that the theory
really is complete (i.e., no false positives).

3. Indicate if a given theorem is fully established. Such theorems are generally
safe to use in proofs, since they are guaranteed to be true (provided the axioms
are true, of course). Thus again, it is critical that there be no false positives.

4. Indicate which theorems have incomplete proofs. This will help the user imme-
diately identify theorems whose proofs need more work. False negatives are
unacceptable (i.e., where the system indicates that the proof is finished, when
it is not).

5. If a circularily s present, give the user some idea of where il can be found.

Such a system might be used for example to track the completeness of the formal
verification of a user application — for example, to check that proof obligations
have been completely and correctly discharged in a 7Z or VDM development. The
correctness of the tools (and of task management information in particular) can be
critical to the soundness of the verification, and thus the tools themselves require a
high degree of assurance [1].



3 Modelling the conceptual domain

In this section we describe and formally model the main concepts underlying the
system described in Section 2.

3.1 The objects to be managed

We shall be concerned with three kinds of object: theorems, proofs and theories.
Each of these is described in more detail below.

Theorems are (named) mathematical statements expressing properties which are
believed to be true. For simplicity of modelling we shall not distinguish between
axioms, lemmas, conjectures, postulates, proof obligations and so on — they will all
simply be called theorems.

Theorems will be modelled here using the not-further-defined type Thm.

Formal, machine-checkable proofs, or proofs for short, are structures which — if
correct and complete — establish the truth of theorems (at least, relative to the
truth of the other theorems referenced from the proof). Different proof assistants
use widely differing forms of proof structures, but we shall not concern ourselves here
with the differences: instead, we shall simply assume there is a tool which extracts
from a proof the set of theorems used in the proof. Note also that, as explained
above, we wish to support the storage and use of partial and incomplete proofs; for
simplicity of modelling we shall thus use the term ‘proof’ to cover both complete
and incomplete proofs.

Proofs will be modelled here using the not-further-defined type Proof.

A theory is a collection of theorems and their proofs. Theories will be modelled
here as a mapping (i.e., a finite partial function) type from theorems to their proofs:

Theory = Thm = Proof

3.2 The basic relationships

As explained above, we have chosen to model the application at the level of granu-
larity of theorems and proofs, without going into details of their internal structure.
We simply assume instead that there are tools available for checking whether a
given proof is finished (i.e., is correct and complete) and for extracting the set
of theorems used in a given proof. These two tools will be modelled formally as
not-further-defined functions with signatures as follows:

is-finished : Proof — B

uses : Proof — Thm-set

While the model we present below makes no assumptions about the efficiency of
these tools, it implicitly assumes that it is time-consuming to check that a proof is
finished, but relatively quick to check what theorems are used in a proof.



3.3 The derived relationships

In this section we introduce some terminology and describe the properties of the
theory that are to be tracked by the Task Manager.

First, we shall say a theorem s depends directly on a theorem ¢ in theory T if s
has a proof in T and the proof uses ¢; formally: s € dom T At € uses(T(s)).

A reference chain is a sequence of theorems, each of which depends directly on
the next theorem in the chain:

is-reference-chain : Thm™ x Theory — B
is-reference-chain (ts, T) &
Vie{l,...,lents — 1} - ts(i) € dom T Ats(i+1) € uses(T(ts(i)))

We say theorem s depends on ¢ in theory T if there is a reference chain from s
leading back to ¢:

depends-on : Thm x Thm x Theory — B

depends-on (s, t, T) &
ts: Thm™ -len ts > 2 A is-reference-chain(ts, T')
Ats(l) =s Ats(len ts) =1

A reference loop is a reference chain which starts and ends at the same theorem:

is-reference-loop : Thm™ x Theory — B

is-reference-loop (s, T) &
is-reference-chain(ts, T) A ts(1) = ts(len 1s)

We say a theorem t has a circular proof if it depends — directly or indirectly —
on itself. A theory is said to have a circularity if it contains any theorems with
circular proofs:

has-circularity : Theory — B

has-circularity (T) &
3t € dom T - depends-on(t,t, T)

A theorem is said to be fully established in a given theory if it and every theorem
on which it depends (directly and indirectly) has a complete proof:

is-fully-established : Thm x Theory — B

is-fully-established (¢, T) &
t € dom T'Ais-finished(T(t))AV s € uses(T(t)) - is-fully-established(s, T)

A theory is said to be complete if it has no circularities, all of its proofs are correct
and complete, and the theory is self-contained (i.e., all theorems used in its proofs
are themselves proven in the theory):



is-complete : Theory — B

is-complete (T) &
= has-circularity(T) AV p € rg T - is-finished(p) A uses(p) C dom T

3.4 Some useful lemmas

The following lemmas are logical consequences of the definitions above which are
useful in the verification of the Action Model in Section 6.
Lemma 1. A theory is complete if and only if it has no circularities and all of its
theorems are fully established.
V' T: Theory - is-complete(T) &
= has-circularity( T)AY t € dom T - is-fully-established(t, T')
Lemma 2. A theorem g has a circular proof if and only if some reference loop
involves .
Yig: Thm, T : Theory -
depends-on(ty, ty, T) <
ts: Thm™ - is-reference-loop(ts, T') A ly € elems ts
Lemma 3. If, when a theory T is extended with a proof pg of a theorem t, the
new theory has a circularity, then either (a) the circularity must have already been
present in 7', or (b) po uses theorems that depend on ¢, in 7.
Vi : Thm, po : Proof, T : Theory - has-circularity(T 1 {lo — po}) =
has-circularity(T) V 3t € uses(po) - depends-on(t, ly, T')

4 Specification of task status and goals

This section gives a high-level specification (called the goal model) of the Task
Manager. The specification is given in terms of the status information that is to be
made available, and what can be inferred from this information.

4.1 Task status information

The Task Manager will track the status of individual theorems in the theory, as well
as the overall status of the theory. (The status of individual proofs does not need to
be tracked, since it can be deduced from that of the corresponding theorem.) There
will be three possible status values for the overall theory, and four for individual
theorems, as follows:

TheoryStatus = {HAS-CIRCULARITY, INCOMPLETE, COMPLETE}

ThmStatus = {CIRCULAR, UNPROVEN, PROVEN, ESTABLISHED }

The meaning of the different values is explained below.



4.2 The state of the Task Manager

The (abstract) state of the Task Manager will consist of

e the current value of the theory,
e an assignment of statuses to theorems which have proofs in the theory, and

o the theory’s current overall status.

We shall suppose that the theory is initially empty, and thus has status COMPLETE.
The formal specification of the state and initialisation condition is given in Fig. 2.
The state invariant expresses the structural constraint that all theorems in the theory
have an associated status.

state TaskManager of
theory : Theory,
status : Thm = ThmStatus
overall : TheoryStatus

b

inv T,m,o0 2 dom m =dom T

init mk-TaskManager(T,m,c) & T = {—} A 0 = COMPLETE
end

Figure 2: Formal specification of the abstract state of the Task Manager.

4.3 The meaning of task status information

Next we specify what can be inferred about the state of the theory from task sta-
tus information. Each of the task management requirements from Section 2.2 will
be treated in turn, and their critical requirements will be formalized as assertions
which are required to be satisfied in all states mk-TaskManager( T, m, o) of the Task
Manager.

1. The first requirement was to indicate if the theory contains circularities. The
theory status HAS-CIRCULARITY will indicate that a circularity may be present.
The critical requirement was that there be no false negatives: i.e., if there is a
circularity then the theory status must be HAS-CIRCULARITY. This is formal-
ized as the following assertion:

has-circularity(T) = ¢ = HAS-CIRCULARITY
2. The next requirement was to indicate when the theory is complete. We use
theory status COMPLETE for this purpose. In this case the critical requirement

was that there be no false positives: i.e., the status is COMPLETE only if the
theory is complete:

0 = COMPLETE = is-complete(T)

10



3. The thrid requirement was to indicate if a theorem is fully established, with
no false positives:

Vit e dom T - m(t) = ESTABLISHED = is-fully-established(t, T)

4. The fourth requirement was to indicate if a theorem’s proof is not finished,
with no false negatives:

Vi€ dom T - —is-finished(T(t)) = m(l) = UNPROVEN

5. The last requirement was to indicate where to look for a circularity, if one 1s
present. In this case, we shall require that at least one of the theorems in the
reference loop has status CIRCULAR:

Vis: Thm™ - is-reference-loop(ts, T) = 3t € elems ts - m(1) = CIRCULAR

We decided to require simply that at least one theorem in the loop is given
status CIRCULAR, rather than every theorem in the loop, after considering
possible designs for the Task Manager. (This is an example of how design and
requirement analysis tend to be iterative, intertwined activities.) It became
apparent that to insist on the stronger requirement would ultimately result in
a lot more work for the user, since they would need to recheck the proofs of
every theorem in the loop.

This completes the specification of the Goal Model for the Task Manager.

5 Design of the Task Manager

This section formally specifies the design of a Task Manager which is consistent
with the Goal Model given above. (The proof of consistency is outlined in Section 6
below.) The specification describes the meaning of individual user actions, and how
they affect task status — the so-called Action Model.

The Action Model shares the state space from the Goal Model, and consists of four
core state-changing operations as follows:

1. EditProof(ty, po) — adds theorem #, with proof py to the theory store, after
deleting the previously stored proof (if any).

2. DeleteProof (1y) — deletes the proof of theorem fy from the theory.
3. CheckProof(lg) — checks the proof of theorem # and updates its status.

4. CheckTheory — updates the theory’s overall status.

The operations are explained in more detail below.

Later stages in the design — which are outside the scope of the present paper — would
need to address questions such as how the task status information will be displayed,
and what other information will be made available to help the user (for example) to

¢ find the unproven theorems on which a given theorem depends;



e find the theorems which depend (or don’t depend) on a given theorem.

For the purposes of this paper, however, we shall assume that the above four oper-
ations are the only operations that can directly change the Task Manager’s state.

5.1 Changing the proof of a theorem

The operation FEditProof(ly, po) changes the proof of theorem #y to po, or adds it
to the theory if t; currently does not have a proof. If any theorem in py already
depends on {, then a circularity will result (see Lemma 3 in Section 3.4); in this
case the status sy of #; will be set to CIRCULAR and the overall theory status to
HAS-CIRCULARITY. Otherwise, the theorem’s status will be set to the default value
UNPROVEN and the theory’s overall status to INCOMPLETE, pending checks. The
specification is given formally in Fig. 3.

EditProof (ty : Thm, py : Proof)
ext wr theory : Theory, status: Thm = ThmStatus, overall : TheoryStatus

post let so = if 3¢ € uses(py) - depends-on(L, &y, theory)
then CIRCULAR

else UNPROVEN
in

theory = theory 1 {ty — po}

A status = status 7 {ty — s}

A overall = if overall = HAS-CIRCULARITY V s; = CIRCULAR
then HAS-CIRCULARITY
else INCOMPLETE

Figure 3: Operation for changing the proof of a theorem.

Note that this operation is conservative in the way it assigns statuses: for example,
the proof py may actually be complete, in which case PROVEN might be a more
appropriate status. Given that proof checking can be time-consuming, the decision
as to when to run the check should be under user control, and so thus the check
has been allocated to the CheckProof operation instead. Note that EditProof errs
on the side of caution, by assigning statuses in a way which is consistent with the
requirements specified in Section 4.3.

5.2 Deleting the proof of a theorem

When the proof of theorem {; is deleted, the statuses of theorems which depend on ¢
may need to be changed: in particular, a theorem which was previously established
may now no longer be established. Similarly, if the theory was previously complete,
and the theorem was used elsewhere in the theory, then the theory will no longer be
complete.

1 Yy



The specification of the DeleteProof (1y) operation is given formally in Fig. 4. Again,
the operation is conservative in the way it assigns statuses. Note that the operation
has a precondition: it can only be applied to a theorem with an existing proof. This
is a (simple) example of how the Action Model can specify the conditions under
which an operation is enabled.

DeleteProof (ty: Thm)
ext wr theory : Theory, status: Thm = ThmStatus, overall : TheoryStatus

pre 1o € dom theory

post theory = {1y} < theory
AVt € dom theory -
if M(t) = ESTABLISHED A depends-on(t, lo, theory)
then status(l) = PROVEN

else st(ztus(t) = status(t)

P —

A if overall = COMPLETE A 3 p € rng theory - ty € uses(p)
then overall = INCOMPLETE

else overall = overall

Figure 4: Operation for deleting the proof of a theorem.

5.3 Checking the status of a theorem

Recall that the status of a theorem is merely indicative and does not necessarily
represent the “best” status the theorem could have. For example, a theorem
may have received status CIRCULAR because it caused a circularity when it was first
added, but since that time the circularity may have been broken, say by deleting
the proof of one of the other theorems in the dependency loop. Similarly, a theorem
may have received status PROVEN rather than ESTABLISHED because one or more
of the theorems on which it depends did not have a proof, but the missing proofs
may have subsequently been supplied.

The operation CheckProof (o) will be provided to update the status of theorem {f, if
appropriate. The specification is given formally in Fig. 5, where check-if-estab(t, T', m)
looks recursively through the statuses of theorems on which ¢ depends to see whether

their proofs are complete:

check-if-estab : Thm x Theory x (Thm = ThmStatus) — B

check-if-estab (1, T, m) &
Vs € uses(T(1)) -
s € dom T Ndom m A
(m(s) = ESTABLISHED V (m(s) = PROVENAcheck-if-estab(s, T, m)))

pre t € dom T

1 )



CheckProof (1o : Thm)
ext rd theory : Theory,wr status : Thm - ThmStatus

pre 1o € dom theory

post let checkl = if depends-on(ly, ly, theory)
then CIRCULAR
else check?2,
check2 = if is-finished(theory(iy))
then check3
else UNPROVEN,

check3 = if check-if-estab(ty, theory, status)
then ESTABLISHED
else PROVEN,

So = cases M(to):
CIRCULAR — checkl
UNPROVEN — check?2
PROVEN — check3
ESTABLISHED — ESTABLISHED

in status = status 1 {ty — so}

Figure 5: Operation for updating the status of a theorem.

It will follow from the properties given in Section 4.3 that, if check-if-estab(t, T, m)
evaluates to true, then ¢ is fully established in 7. Note that the specification of
check-if-estab includes a precondition, which expresses the prerequisite that the tool
should only ever be applied to theorems ¢t in 7. (The prerequisite is included here
mainly for illustrative purposes and is perhaps a little artificial.) Note also that
the definition of check-if-estab given here is a specification only; an implementation
would need to ensure termination even in the presence of circularities.

Note that the CheckProof(ly) operation applies the proof checker to just the proof
of theorem #y. It may thus be necessary for the user to apply the operation a number

of times, on theorems on which ¢, depends, before the system will recognise that ¢,
is fully established.

5.4 Checking the overall status of the theory

Finally, the operation CheckTheory updates the theory’s overall status by checking
the statuses of the theorems in the theory. The specification is given in Fig. 6.
The fact that the theory is complete is all of its theorems have status ESTABLISHED
follows from the properties asserted in Section 4.3 and Lemma 1 of Section 3.4.



CheckTheory ()

ext rd status : Thm = ThmStatus,wr overall : TheoryStatus

post if overall = HAS-CIRCULARITY A CIRCULAR € rng status
then overall = HAS-CIRCULARITY

—

elseif overall = COMPLETE V rng status = {ESTABLISHED}
then overall = COMPLETE
else overall = INCOMPLETE

Figure 6: Operation for checking a theory.

6 Verification of the Task Manager design

This section illustrates the steps involved in the verification of the Goal Model and
Action Model given above. The proofs are too lengthy to give here in full.

6.1 Well formedness and satisfiability of the models

To show that the models are mathematically meaningful it is necessary to check
that all expressions are well formed [16]: i.e.,

e partial functions are applied only to arguments within their domains;

e recursive definitions are well founded.

It is also necessary to check that the operations are mathematically feasible, in the
sense that their postconditions are satisfiable (can be achieved).

As an example of a well formedness proof, consider the term stalus(t) in the
postcondition of DeleteProof (Fig. 4). The term is well formed in context since
t € dom theory and

e

theory = {1y} < theory

According to the semantics of VDM, the state invariant is implicitly part of the pre-
and post-conditions of all operations, thus

dom theory = dom theory — {ly} = dom status — {{y}

—

and ¢ € dom status as required. The proofs of the other cases are straightforward.
Regarding satisfiability, there is little to prove in this case since the operation defi-
nitions are given constructively. We need only check that the postconditions of the
four operations are consistent with the state invariant, which is easy to check.

6.2 Verification of the Action Model against the Goal Model

To show that the Action Model is consistent with the Goal Model, it is necessary to
show that the task management requirements defined in Section 4.3 are preserved



by the Action Model. This can be done by showing that they are true in the initial
state of the Task Manager and are preserved by all enabled operations.

From the initialization condition we know that T = {+—} initially, and hence that
= has-circularity(T), is-complete(T) and dom T = { }. It is easy to check that the
five required properties are true in this case.

We show below that Requirement 1 is preserved by the Fdit Proof operation specified
in Fig. 3 above. The proofs for the other operations — and the proofs of the other
properties — are similar.

Let 7 = mk-TaskManager(T,m, o) be the state in which the operation is invoked
and 7" = mk-TaskManager(T', m',o") the state immediately after. It follows that =
and 7' are related by the postcondition of EditProof(ly, po): thuse.g. T = T{{ty —
po}). Suppose also that the requirements hold in 7 (the “Induction Hypothesis”).
We are required to prove that 7' satisfies Requirement 1: i.e. that

has-circularity(T') = o' = HAS-CIRCULARITY

The proof is by contraposition: i.e., we suppose that ¢’ # HAS-CIRCULARITY and
show that — has-circularity(T"). From the postcondition of EditProof(ly, po) it fol-
lows that o # HAS-CIRCULARITY and sy # CIRCULAR, where sy is the assigned
status of fy. It also follows from the postcondition that

P A—

— 3t € uses(po) - depends-on(t, ly, theory)

From the fact that o # HAS-CIRCULARITY and the Induction Hypothesis, it follows
that = has-circularity(T). Finally, it follows from Lemma 3 in Section 3.4 that

= has-circularity(T t {to — po})

and hence that — has-circularity(T'), as desired.

7 Summary of the approach

This section summarizes the key elements of the approach in a general setting.

7.1 Formalizing the conceptual domain

The first step is to build a formal model of main concepts:

1. Define the object store: i.e., the kinds of object in the system and the possible
relationships between them.

2. Specify the functionality of the tools which are available for manipulating the
object store. Specifications should include the tools” input and output types,
the input/output relationships they establish, and any prerequisites they may
have. The tool descriptions should be “functionalized” (i.e., not use internal
states).

1



3. Define the task goals, including intermediate goals and negative goals, such
as situations to be avoided. Define the goals in terms of consistency and
completeness conditions on the object store.

7.2 Determining task statuses

The next stage is to determine what task status information is to be communicated
to the user:

1. Define requirements for the kind of task management information which is to
be made available.

2. Determine which objects are to be tracked and their possible statuses. Status
values should be chosen to correspond to important stages in the development
of individual objects, and how they relate to task goals. Note that it may not
be practical — or even desirable — to track the status of every object in the
systern.

7.3 Defining a Goal Model

The Goal Model indicates what properties of the underlying object store can be
inferred from task status information. It consists of two parts:

1. A definition of the state of the Task Manager as consisting of the state of the
object store itself, together with the status information.

2. A set of task management requirements, expressed as assertions which relate
task statuses to object-store properties. The assertions typically take one or
both of the following forms:

(a) “if objects z1,...,z, have statuses si,...,s, then property P holds”
(sufficient conditions)

(b) “if property @ holds then object z has status s” (necessary conditions).

In the example above we used a state-based modelling language (VDM-SL) to define
the state of the task manager. Status information was modelled using mappings
(finite partial functions) from objects to their status. A state invariant was used to
record constraints on the object store, such as structural relationships that should
always hold. Task management requirements were given as constraints on the state.

7.4 Defining an Action Model

The Action Model is a formal specification of the design of the Task Manager. Its
purpose is to define the key user actions and say how they affect the object store
and the status of objects in the store.

VDM-SL operations were used to formalize actions in the example above. Precondi-
tions were used to specify constraints on inputs and the states from which operations
can be invoked.

1 ™



7.5 Verifying the models

Verification of the models has two parts:

1. Checking that the models are mathematically meaningful. Standard VDM
proof obligations can be used for this [16].

2. Checking that the Action Model is consistent with the Goal Model — in other
words, that the design of the Task Manager respects the meaning of the task
status information as defined in the Goal Model.

Performing such verification leads to a high degree of assurance in the meaning and
accuracy of task management in the resulting system. (Of course there is still a
need to verify that the implementation satisfies the Action Model.)

8 Conclusions

This paper has been concerned with two aspects of useability of interactive systems:
support for flexible, non-proscriptive work patterns, and provision of useful, accurate
task management information. We presented a method for formally specifying and
reasoning about task management, focussing on the meaning and accuracy of task
status information. The method separates modelling of task status information from
modelling of interactions. A proof method is described for checking that the two
models are consistent.

The method is well suited to data-intensive applications in which the system is
being used interactively to develop complex collections of interrelated objects, where
the user takes primary responsibility for planning and carrying out the tasks while
relying on the system to track the consistency and completeness of the object store.
The method could be used in conjunction with process modelling techniques, such
as the use of state-charts as an intermediate design notation and the use of process
engines provided by a variety of process modelling languages. Similarly, it could be
used in conjunction with more general methods for UI design such as interactors [8].

The paper illustrated the method on a case study concerning interactive theorem
proving. The application is a small but succinct example of how to apply the general
method described in the paper, and illustrates a number of interesting aspects of
formal modelling and verification of interactive systems. It is also an interesting
application in itself, being to this author’s knowledge one of the first documented
designs of a theory management system that ensures logical soundness of the un-
derlying theory store while allowing incomplete proofs and the possibility of circular
reasoning. A broadly similar approach has been applied to a process model for a
formal development support environment, to track the co-development of a formal
specification and its verification [24].
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