SOFTWARE VERIFICATION RESEARCH CENTRE
SCHOOL OF INFORMATION TECHNOLOGY

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT
No. 98-10

Supporting Fine-grained Traceability
in Software Development
Environments

Peter Lindsay and Owen Traynor

July 1998

Phone: 461 7 3365 1003
Fax: 461 7 3365 1533
http://svrc.it.uq.edu.au

This report is an expanded version of the paper which appeared in B. Mag-
nusson (ed), Proceedings 8th International Symposium on System Configuration

Management, Brussels, Springer Verlag LNCS 1439, July 1998, pages 133-139.

Note: Most SVRC technical reports are available via
anonymous ftp, from svrc.it.uq.edu.auin the directory
/pub/techreports. Abstracts and compressed postscript
files are available via http://svrc.it.uq.edu.au

Supporting Fine-grained Traceability in Software
Development Environments

Peter Lindsay and Owen Traynor

Abstract

This paper describes the facilities currently available to support au-
diting and traceability within a system which provides fine-grained con-
figuration and version management. We contend that the relationship
between the configuration management system and the underlying ver-
sion control system is a critical factor which governs many aspects of the
facilities supporting traceability. The model of traceability is formally
specified relative to our configuration and versioning models.

1 Introduction

Managing and controlling change is a critical part of software engineering. Soft-
ware components typically pass through many different versions during both
the initial development of a system and the ongoing maintenance of the system
once deployed. The facilities that are available in such systems for tracing the
evolution of requirements through the design, coding, validation and verification
stages are especially critical. Such facilities are particularly important in the
maintenance phase and, where conformance to standards is required, in demon-
strating that such standards have been met. Conformance to such standards is
not only a requirement of the initial system development, but also an ongoing
requirement throughout the lifetime and evolution of a software system.

The history that documents the evolution of a software system is, in essence,
the embodiment of that system. We believe that an accurate account of that
history is critical in assessing the worth of the deployed system and in ensur-
ing that subsequent developments of that system are made in a coherent and
consistent fashion [2]. The history of a system also provides a wealth of informa-
tion regarding design decisions and implementation choices [10, 15]. Access to a
clear and consise account of such information may go a long way to reducing the
effort required to rework or redevelop systems in the context of changes to re-
quirements. As a mangement tool, this information provides valuable feedback
regarding the design choices made, and processes followed, in the construction
of a system.

We believe that traceability facilities that allow the documentation of a
system at a finer level of granularity than the tradition build, or baseline models,
provide access to essential information that is often lost in these traditional
approaches. Such facilities also provide the information needed to reduce the
effort required to rework or redevelop systems in the context of changes to
requirements.

1.1 Software Configuration Management (SCM)

As well as providing the framework within which developers work to construct
consistent system “builds”, SCM provides the mechanisms needed to demon-
strate traceability between the built system, the design, the requirements docu-
ments, and other tools and artifacts of a development (such as compilers and test
reports). SCM provides the means for recording and controlling the “configura-
tion” of versions of documents associated with software development, including
inter- and intra-document dependencies. Regulatory and standards authorities
have long recognised the importance of reliable SCM mechanisms, especially in
the development of high integrity software systems [3, 8, 9].

An important supporting technology for SCM is version control, which con-
cerns storage and retrieval of different versions of development components.
Most version control systems attempt to maintain a record of the changes
(“deltas”) between different versions of components. This provides the basis
for tracing the evolution of a system through its lifetime. The majority of
software development companies currently use version control facilities such as
RCS [16] or SCCS [11] to manage their documents and software, but such fa-
cilities operate at an inadequately coarse level of granularity (typically, whole
documents or whole modules) and fall far short of users’ desires.

In defining a coherent framework within which we can provide useful trace-
ability functions, we will see that the core support for SCM (including version
control) has substantial impact of the amount of effort needed to implement
traceability support. We will focus on a simple example to illustrate these is-
sues (a document conformance system) and illustrate the benefits accrued from
our configuration management models from the traceability viewpoint.

1.2 Configuration Management (CM) for Formal Meth-
ods

Formal Methods of software development have particular needs in relation to
CM. Formal Methods are based on the use of mathematically precise definitions
of development components and their relationships, together with the use of
mathematical analysis techniques — including theorem proving — for establishing
correctness. The fact that individual development components have mathemat-
ical meaning makes it possible to formally verify that desired relationships hold

within and between development components. In contrast to traditional devel-
opment methods, cross-development configuration consistency can be defined
precisely and at fine levels of granularity [13].

Consistent with this observation is our view of traceability. Our traceability
model allows us to track, at fine levels of granularity, the changes that a system
has undergone that moves the system through its evolving, consistent, versions.
Since we are working in a context where relationship and dependencies are
formally modelled, we can use this as a basis for defining formal models of
traceability. Such an approach offers a great deal in the context of high integrity
system development. As well as being able to trace the development of systems,
we would like to be able to trace (in isolation as far as possible) the development
history of individual fine-grained artifacts. In critical system development it is
important to be able to trace the evolution of individual safety requirements
right through the design to final implementation [9].

A very substantial side effect of our model is that of the traceability frame-
work we propose, is that, as well as providing facilities to trace the evolution of
the development of a system in terms of the individual paragraphs of a require-
ments document, or the declarations of a formal specification, it may be used to
assess the impact of a change to a given requirement. Having a detailed history
of the development of an individual requirement, for example, also provides a
basis for assessing the impact of changing that requirement.

The ARC-funded Fine-Grained Configuration Management (FGCM) project
at the SVRC is establishing a framework for fine-grained configuration manage-
ment. The framework builds on a programme of work carried out by PhD
student Kelvin Ross under the supervision of the first author, investigating the
application of SCM techniques to formal development [12, 13, 14]. The aim of
the framework is to allow developers to support their correctness claims with
evidence that, not only have the individual components of a system been devel-
oped correctly, but that the combination and integration of these components
has been done in a consistent manner and that the final result is derived from
consistent, complete and up-to-date development components. The framework
is intended to apply not only to specifications, designs and programs, but also
to fine-grained development components such as the specification components,
reviews, change requests, refinements, design decisions, test sets, theories and
proofs that are generated as part of the development process [6].

1.3 High integrity software engineering

We consider the definition of a coherent framework, within which configuration
and version management can be carried out, as an important prerequisite in the
development of trusted and cost-effective environments for the development of
critical software. The processes that define the development activities in such
trusted environments must be based on sound underlying technology and models
that allow the impact of any development step (in terms of the consistency of

the relationships between the underlying artifacts) to be accurately assessed.
Existing Software Engineering Environments (SEEs) use relatively untrusted
standard version-management technology in the development of critical systems;
this is clearly a weak link since these technologies have no coherent formal basis
for consistency checking.

The need for careful control of the development process must be balanced
against the need for flexibility. Users will not accept a development process that
is overly constraining. Similarly, it is vitally important for encouraging indus-
trial uptake that Formal Methods be adaptable to different situations, project
structures and so on, without sacrificing the trustworthiness of the environ-
ments.

Our approach has been to define configuration consistency models (or config-
uration models, for short) which define the key configuration items, the relation-
ships between them, and the consistency and completeness conditions desired
for the configuration. In our approach, configuration models would form the
core part of SEEs; with development processes defined relative to the core mod-
els. This means that the consistency and completeness of a development could
be established largely independently of the development process applied, giving
flexibility and trustworthiness in the one framework [4, 5, 7].

In the spirit of these configuration models, we take a similar approach when
defining the notions of traceability. Out trace models are defined relative to
the core configuration models. Again, the form of this definition allows us to
establish consistency criteria for our framework. Ensuring that such consistency
criteria are met, is an important issue, especially in the context of high-integrity
development.

1.4 This report

This report gives preliminary conclusions from a case study in adding fine-
grained versioning, configuration control and traceability to a simple document
conformance system. We concentrate here of presenting our results from the
traceability viewpoint. Section 2 describes the general framework within which
we are working and introduces the example that is used in the rest of the paper.
Sections 3—-7 formally specify the data model on which the framework is based.
Conclusions and future work are presented in section 8.

2 The case study

2.1 Documents

We start by felling some trees to better see the forest. We shall consider part
of a development consisting simply of two documents — called A and B here,
for short — which consist of sets of requirements and which are expected to

conform with one another in some way. For example, A might be a Software

Requirements Specification (SRS) and B an Architectural Requirements Speci-

fication, describing a module structure and how the requirements from the SRS

are allocated to modules: see Fig. 1.

Document A

Fly-By-Wire System - SRS
date: 12/8/96

reviewer: JAW

version: 1.3
status: frozen

2.1.1 Aileron settings shall be deter-
mined from the position of the

joystick. <~ _-__
9.3.1 Aileron settings shall not be such
as to cause the aircraft to stall. L _
N - =
\

Document B

FBWS — Architecture
version: (.1
status: under development

date: 15/8/96

5.1 Aileron settings shall be calculated in mod-
ule Aileron using inputs from module
JoyStick.

5.2.1 Output values from Aileron must be
compared with the safe limits calculated
by module AileronSafetyLimits.

5.2.2 Values outside the safe limit must be re-
placed by safe default values and a warn-
ing sent to the pilot.

Figure 1: An example of conforming documents, illustrating how requirements
in one are addressed by requirements in the other.

2.2 The dependency relation

The dependency relation to be managed is the relationship which describes how
requirements in B address requirements in A. In general, such a relationship
is many-to-many: e.g. a single SRS requirement may be addressed in different
places in the architecture document, and a single architectural requirement may

address multiple SRS requirements. The addresses relation is analogous in some

ways to the ‘is up to date with respect to’ notion for traditional SCM systems, as

used by the Unix MAKE facility for example. Note however that for informal
objects such as requirements, the relation is user-determined and cannot be
automated.

A conformance matriz (or traceability table) is a common means of indicat-
ing the relationship between two development documents. For each item in one
of the development documents, the matrix lists the corresponding items in the
other document, typically by paragraph or section number. In our case, the
conformance matrix will record where each individual requirement in the SRS
is addressed in the architecture document: see Fig. 2.

SRS (v1.3) | Architecture (v0.1)
201 | ..., 5.1,

931 ...,5.21,522,. ..

Figure 2: Part of the conformance matrix for the example above.

2.3 Version and configuration management

For simplicity, we use a simple “version tree” model as the basis for version
control, for objects of all granularities: paragraphs, documents, matrics, etc.
This part of the model 1s reasonably generic, but could easily be replaced by
something more appropriate if desired.

The configuration management problem for the case study is to manage the
“configuration” consisting of the two documents and their conformance matrix.
We say the conformance matrix is complete if each of A’s requirements are
addressed somewhere in B. As part of the case study, we shall assume that at any
time the conformance matrix may be incomplete, but it 1s always correct: i.e.,
that if the matrix says that r addresses ¢, then this relationship was determined
by a user and the requirements have not changed in the interim.

It is not reasonable to expect to be able to develop generic version and con-
figuration management functionality — especially at fine levels of granularity —
because of the widely varying requirements of different applications, develop-
ment methodologies, company policies, etc. However, as we shall show, it is
possible to develop a reasonably generic framework in which generic definitions
and functionality are supplemented and instantiated by application-specific ver-
sion and configuration management (VECM) policies.

Let us suppose, for the purposes of the case study, that the following V&CM
policy is in operation for coarse-grained configuration items:

e all (and only) frozen versions of documents will be stored in the project
archive;

e document A can be frozen at any time;

e document B can be frozen only after a review confirms that the appropriate
version of A has been frozen and the conformance matrix is complete.

As the case study progresses, we shall introduce V&CM policies appropriate to
the finer-grained objects involved.

2.4 Change tracking

In our model we require that modifications to (evolution of) individual require-
ments are carried out within a pre-defined framework. Experience suggests that
the following set of change types is a useful factoring of concerns:

add: create a new paragraph with no prior history

split: create a number of new paragraphs by splitting an existing paragraph
combine: create a new paragraph by combing existing paragraphs

delete: delete a paragraph

replace: replace existing paragraphs by a new paragraph

modify: modify the paragraph without changing its meaning

We shall extend our base model for documents with information relevant to how
the current version of the document has changed since its last major version.
The major versions of documents define baselines relative to which these delia
lists (or change logs) are constructed. Note that in principle the modelling of
the documents themselves need not be changed: rather the versioning models
that are inherited are extended with the enriched concept of change.

Fig. 3 illustrates one kind of traceability (“forwards tracing”) that will be
possible as a result of our approach: given a specific version (p2,v0) of a re-
quirement, report how the requirement changed subsequently. Fig. 4 illustrates
backwards tracing: given a specific version (p13,v0) of a requirement, report
the evolution that resulted in the requirement.

2.5 Requirements tracing

The second major form of traceability we provide is concerned with tracking
dependencies — an important part of high integrity development and one of
the main mechanisms required in development audit and evaluation. There are
many ways in which one might want to trace the evolution of an individual
requirement through a development. For our case study, the kinds of checks one
might want to apply include the following:

(pLv1)

, ‘ ~ (A0 . . .
(#290) Modify (pzm\o Modfy P4V Spit ®7v0 Modity (7D Modiy (p7"’V2;gep|ace"(p13N0)
: : 8,v0)
\EV)MOd" / :
o—Moaly 0 e, :
: (p8.v1) :
Delete

(p9,v0)
" Modiy (103D

o
(p10,v0) (p10,v2)
(P6,v2) © Modif (p12.‘vl)
(p12v0) .
Key: V1.1 Version number of Document A

(P3v0) PVersion, i.e. (paragraph 1d, version number)

Figure 3: Forwards tracing of the evolution of a given paragraph version

(P];VO) Modif (p1,v1)
‘ ~ (A0 . . .
(#240) Modify (pzm\o Modfy P4¥D Spit ®7v0 Modity (7D Modify (p7"’V2;gep|ace"(p13N0)
: : 8,v0)
\EV)MOd" / :
04—>0 .
: (p8.v1) :
(p9.v0)
5
($1030)
V1.0 V1.1 V2.0 v2.1 V3.0

Figure 4: Backwards tracing of the evolution of a given paragraph version

e given a requirement in A, find which requirements in B address it;
e given a B requirement, find which A requirements it addresses;
e find which A requirements have not yet been addressed;

¢ find which B requirements are extraneous (i.e., do not address an A re-
quirement);

e report the evolution of a given requirement (i.e., the version of the in which
it originated, and how it changed in subsequent versions of the document).

3 Version control

Our simple model for version control is based on forests of version trees and
parameterised over the type Type of objects being placed under version control.
The attributes of version forests are defined as follows:

e Each node in a version tree is labelled with a unique version label, from

the set VLabel.

e The mapping deref ‘dereferences’ version labels, yielding the content of a
particular version.

e The mapping parent returns the (unique) parent of a non-root node. The
mapping is acyclic.

e The set frozen contains the labels of the frozen nodes.

— VForest| Type]
nodes : P V@0abel
deref : VLabel - Type
parent : VLabel -~ VLabel
frozen : P VLabel
roots : P VLabel

nodes = dom deref

dom parent U ran parent U frozen C nodes
roots = nodes \ dom parent

Vv : VLabel @ (v,v) & parent™

As a V&CM policy decision, parents will be required to be frozen:

ran parent C frozen

4 Paragraphs

4.1 Paragraph version management

Paragraphs will be identified by a label from the type PId. A specific paragraph
verston consists of the paragraph’s identifier and a specific version label:

PVersion == PId x VLabel
The collection of paragraph changes is modelled as follows:

PChange = add{{PVersion))
| delete((PVersion))
| split((PVersion x PVersion™))
| combine({(PVersion™ x PVersion))
| derive((PVersiont x PVersion))
| replace({(PVersion™ x PVersion))
| modify((PId x VLabel x VLabel))

The following defines a predicate for checking whether a change affects a
given paragraph version:

1sChangedBy : PVersion — PChange

= isChangedBy(opv, add(pv))

isChangedBy(opv, delete(pv)) < opv = pv
isChangedBy(opv, split(pv, pvs)) < opv = pv
isChangedBy(opv, combine(pvs, pv)) < opv € ran puvs
= isChanged By (opv, derive(pus, pv))
isChangedBy(opv, replace(pus, pv)) < opv € ran pus
isChanged By(opv, modify(a,u, v)) < opv = (a, u)

The following predicate checks whether a change creates a given paragraph:

1sCreatedBy : PVersion — PChange

isCreated By(npv, add(pv)) & npv = pv

- isCreated By(npv, delete(pv))

isCreated By(npv, split(pv, pvs)) < npv € ran pus
isCreated By(npv, combine(pus, pv)) < npv = pv
isCreated By(npv, derive(pvs, pv)) & npv = pv
isCreated By(npv, replace(pvs, pv)) < npv = pv
isCreated By(npv, modify(a, u,v)) < npv = (a, v)

A check that two changes don’t create — or try to change — the same thing;:

10

noninterfering : PChange « PChange

noninterfering(ci, c2) &
Y pv : PVersion e
= (isCreatedBy(pv, c1) A isCreated By(pv, c2)) A
= (isChangedBy(pv, c1) A isChanged By(pv, c3))

A change set is a set of noninterfering changes:
PChangeSet == {cs : P PChange | Y ¢1 # ¢o € cs o noninterfering(cy, c2)}
Two change sets are disjoint if their elements are pairwise noninterfering;:

‘ disjoint : PChangeSet — PChangeSet

‘ disjoint(cs1, cs2) < ¥V ¢1 € ¢s1, ca € cso @ noninterfering(cy, co)

4.2 Paragraph collections

A collection of specific paragraph versions, in which each paragraph is repre-
sented at most once, is modelled as follows:

PCollection == PId + VILabel

The following function applies a change to a paragraph collection, if it makes
sense to do so:

applyChange : PCollection x PChange - PCollection

a ¢ dom pc = applyChange(pc, add(a,v)) = pc U {a — v}
pv € pc = applyChange(pc, delete(pv)) = pc \ {pv}
pr€pc AVi:1. . nea;¢gdompcAVj:1..i—1ea;#a;
= applyChange(pc, split(pv, ((a1,v1), ..., (an, v5))))
=(pe\{pr}HU{i:1..n ea;— v}
ran pvs C pc A a ¢ dom pe
= applyChange(pc, combine(pvs, (a,v))) = (pc \ ran pvs) U {a — v}
ran pvs C pc A a ¢ dom pe
= applyChange(pc, derive(pvs, (a,v))) = pcU {a — v}
ran pvs C pc A a € dom pe
= applyChange(pc, replace(pvs,(a,v))) = (pc \ ran pvs) U {a — v}
pe(a) = u = applyChange(pe, modify(a, u,v)) = pc® {a — v}

The clauses in the above definition are intended to be exhaustive: i.e., applyChange(pc, c)
is not defined if it is not covered by one of the clauses above.

The above function extends in the obvious way to a function for applying a
set of changes, if it is possible to do this in an unambiguous manner:

11

applyChanges : PCollection x PChangeSet - PCollection

applyChanges(before, cs) = after <
dcseq : seq PChange; pcseq : seq PCollection o
Hpcseq = Fcseq + 1
ran cseq = cs
head peseq = before A last pcseq = after
Vi:l..4tcseq o applyChange(pcseq(i), cseq(i)) = peseq(i + 1)

Note that the order in which the changes are applied is not necessarilly uniquely
determined; however, the result s required to be uniquely determined. It is dif-
ficult to define the precondition explicitly, but the requirement that the change
set be noninterfering is easy to check and takes care of most problems.

4.3 The complete paragraph-history data model

The following data type specification models a complete collection of paragraph
version trees and their derivation (via a set of changes). For genericity, the
paragraph contents are taken to be of a given generic type Type. For conve-
nience, we include an auxiliary predicate okPVersion for checking whether a
given paragraph version is present in the collection.

— ParaHistory[Type]

piree : PId + VForest| Type]
pchanges : PChangeSet
okPVersion : P PVersion

okPVersion = (U{a € dom piree ® {v € piree(a).nodes o (a,v)}}
V pv € okPVersion & 3, ¢ € pchanges o isCreated By(pv, c)

The invariant says that the changes are required to be pairwise noninterfer-
ing and that each paragraph version has a unique point of creation. Further
properties can be added to the invariant to reflect the fact that the paragraph
history has been derived in a well-defined manner.

The following V&CM policy will be applied to paragraphs:

e When paragraphs are first created, their initial versions are assigned to
root nodes.

e If a change is ever applied to a paragraph, the changed version must be
frozen.

e When paragraphs are modified, the new version becomes a child of the
old version.

12

Y(a,v) € okPVersion; ¢ € pchanges o
isCreatedBy((a, v), ¢) = v € ptree(a).roots

Y(a,v) € okPVersion; ¢ € pchanges o
isChangedBy((a,v), c) = v € piree(a).frozen

Va: Pld; u,v: VLabel @ modify(a,u,v) € pchanges =
okPVersion(a,u) A okPVersion(a,v) A piree.parent(v) = u

5 Documents

5.1 Document versions

For the purposes of this paper, each version of an evolving document is modelled
as a collection of specific paragraph versions and a delta set of the paragraph
changes that have been made since the document was last frozen. For conve-
nience, we include an auxiliary variable pids representing the set of identifiers
of paragraphs in the document.

— Document
peoll : PCollection
delta : PChangeSet
pids : P PId

pids = dom pcoll

5.2 The complete document-history data model

The complete history of a document consists of a complete paragraph history
together with a collection of document versions: see Fig. 5.

—DocHistory
ParaHistory| Text]
docs : VForest[Document)

YV Vi # Va € docs.nodes o disjoint(docs.deref(V1).delta, docs.deref(Vy).delta)
pchanges = U{V € docs.nodes o docs.deref(V').delta}
vV V € dom docs.roots e D.pcoll = applyChanges(a, D.delia)
where D = docs.deref (V)
V V € dom docs.parent o
newdoc.pcoll = applyChanges(olddoc.pcoll, newdoc.delia)
where newdoc = docs.deref(V'), olddoc = docs.deref (docs.parent(V'))

The invariant says:

13

Document version tree

(),
\

A particular document version

~
N
N
N

N

Paragraph version trees

ﬁ pl
. %\;ﬁ
/\ p3

N

Figure 5: Each version of a document contains a specific set of paragraphs.

14

e The individual delta sets are all disjoint.

e The paragraph history is in step with the document history, in the sense
that it has been derived from the changes recorded in the delta sets of the
various document versions.

e For any root version of the document, the delta set records that version’s
evolution from the null (empty) document.

e For any non-root version of the document, the delta set records that ver-
sion’s evolution from its parent version.

The following V&CM policy will be applied to documents: when a document
version is frozen, all its corresponding paragraph versions should also be frozen.

YV V € docs.frozen o ¥(a,v) € docs.deref(V).pcoll @ v € piree(a).frozen

6 Tracing evolution of paragraphs

This section shows that the above model is rich enough to allow the evolu-
tion of individual paragraphs to be traced (backwards and forwards) through a
document’s history.

6.1 Forwards tracing

The following function defines the set of paragraphs which result from a change
to a given paragraph:

gwesRiseTo : PVersion x PChange - P PVersion

dom givesRiseTo = isChanged By

givesRiseTo(pv, delete(pv)) = @

givesRiseTo(pv, split(pv, pvs)) = ran pus

i€1l..n= giwvesRiseTo(pvs(i), combine(puvs, pv)) = {pv}
i€1l..n= givesRiseTo(pvs(i), replace(pvs, pv)) = {pv}
givesRiseTo((a, u), modify(a, u,v)) = {(a,v)}

(Note that the above function does not include paragraphs that are “derived”
from the given paragraph, since the latter are not strictly changes to the given
paragraph.)

The following function extracts each change (and corresponding document
version) which occurs “downstream” in a given paragraph’s evolution:

15

forwardsTrace : PVersion x DocHistory - P(PChange x VLabel)

(pv, D) € dom forwardsTrace < pv € D.okPVersion

forwardsTrace(pv, D) =
if 3V € D.docs.nodes; ¢ € D.docs.deref(V).delta o isChangedBy(pv, c)
then {(¢, V)} U U{npv : givesRiseTo(pv, c) o forwardsTrace(npv, D)}
else @

(Note that the fact that this definition is well formed depends on an un-
recorded assumption about the “well foundedness” of the set of paragraph
changes (pchanges). We should really add an appropriate property to the con-
figuration invariant on ParaHistory to cover this.)

6.2 Backwards tracing

The next function defines the set of paragraphs which a given change “uses”:

usesPVs : PChange + P PVersion

dom usesPVs = ran isCreated By
usesPVs(add(pv)) = @
usesPVs(split(pv, pvs)) = {pv}
usesPVs(combine(pvs, pv)) = ran pus
usesPVs(derive(pvs, pv)) = ran puvs
usesPVs(replace(pvs, pv)) = ran pus
usesPVs(modify(a,u,v)) = {(a,u)}

The next function finds the change (and corresponding document version)
which created a given paragraph version:

‘ creationPoint : PVersion x DocHistory - PChange x VLabel

(pv, D) € dom creationPoint < pv € D.okPVersion
creationPoint(pv, D) = (¢, V) &
isCreatedBy(pv, ¢c) ANV € D.docs.nodes A ¢ € D.docs.deref(V).delta

The following function extracts the important “creation” steps along the
way to arriving at a given paragraph:

‘ backwardsTrace : PVersion x DocHistory + P(PChange x VLabel)

(pv, D) € dom backwardsTrace < pv € D.okPVersion
backwardsTrace(pv, D) = {(¢, V)} U U{opv : usesPVs(c) o backwardsTrace(opv, D)}

where(c, V') = creationPoint(pv, D)

(A similar remark about well formedness of the forwardsTrace definition
applies here.)

16

7 Document conformance

The case study 1s completed by demonstrating how conformance between pairs
of documents can be modelled.

A conformance matrix is modelled as a relation between individual para-
graphs in the two documents:

CMatriz == PId «— PId

The whole configuration is modelled as a pair of document histories, a forest
of conformance matrix versions, and a relation which records which versions of
the three objects make up “legitimate” configurations:

__DocPair
A, B : DocHistory

cmatriz : VForest[CMatriz)

corres : P(VELabel x VLabel x VLabel)

Y(Va, Ve, Vo) € corres o
Va € A.docs.nodes N Vg € B.docs.nodes A\ Vo € cmatriz.nodes
V(a, b) € cmatriz.deref(Ve) o
a € A.docs.deref(V4).pids A b € B.docs.deref(Vg).pids

The corres relation records which versions of the three objects make up
recognised configurations. The invariant says that

e there are no dangling references in the corres relation

e there are no dangling references to paragraph identifiers in the confor-
mance matrices.

The V&CM policy from Section 2 will be strengthened as follows:

e The conformance matrix and B-document should be managed as a single
configuration: i.e., there is a one-one correspondence between versions of
the two objects.

e Moreover, each version of said configuration should refer to a single version
of the A-document.

e If B is frozen then the corresponding A should also be frozen and the con-
formance matrix should be frozen and complete (i.e., every A-paragraph
should be addressed by at least one B-paragraph).

(Note that in multidocument situations there may be a possibility of dead-

lock here.)

17

Y(Va, Ve, Vo), (Vh, Vi, Vi) € correse Ve = Vi & Ve = VI
corres™ € VEabel x VLabel — VEabel
Y(Va, Ve, Vc) € corres o Vg € B.docs.frozen =

Va € A.docs.frozen A Vo € cmatriz.frozen A

dom ematriz.deref(Ve) = A.docs.deref(V4).pids

This policy could usefully be strengthened, say in COMPUSEC applications,
to say that every B-paragraph should address at least one A-paragraph (e.g. to
ensure that no unauthorised functionality has been added).

8 Conclusions

8.1 Summary

This paper described a case study in fine-grained version and configuration man-
agement from the perspective of providing integrated functionality to support
auditing and traceability. We demonstrated that fine-grained versioning of ver-
sioned objects provides substantially more flexibility than traditional approaches
that manage only high-level coarse-grained objects.

There are two dimensions to the benefits accrued by the use of fine-grained
versioning models in our case study. The first is due to the fact that we consider
the individual components of our systems as first class citizens in the context of
configurations. This allows substantial flexibility in the way in which consistency
of an overall system is determined, as well as focusing attention on the specific
objects undergoing change.

The second benefit comes from the actual versioning of the system com-
ponents themselves. It allows us to define consistency criteria in terms of the
conditions that must be satisfied by the individual components. We can then
show that the chosen versioning model actually meets the criteria.

8.2 Further Work

During our work a number of other issues arose, particularly with respect to
possible extensions to our framework which would allow developers to reduce the
impact of change (as opposed to accurately assessing the actual work required
to react to a change).

It’s clear that, by supporting more sophisticated structuring mechanisms the
impact of change could be localised better. We intend to test our hypothesis
that the versioning model outlined here will scale to more complex structures, to
provide a basis for the flexible construction and maintenance facilities suitable
for large-scale development.

18

The model we have presented is a core model. In addition to this, one would
typically define high (user)-level processes based on these models. Whereas
consistency constraints for objects within a system are defined by the model,
the process which evolves and uses these underlying concepts need not be fixed.
Our framework can be used as a basis upon which more sophisticated process
models can be developed. Such models can offer context-sensitive guidance to
the users of systems, as well as the opportunity to further constrain the way in
which a system is used. It is possible to define and reason about intermediate
states of configuration consistency, and to offer guidance on how to bring the
system back into a consistent state, for example. We have illustrated these ideas
on theory management [4, 7].

Finally, we have an ongoing effort in prototyping tools to support our fine-
grained configuration management framework using object-oriented database
technology [1].

8.3 Acknowledgements

The authors gratefully acknowledge the useful contributions of Yaowei Liu and
Sabine Sachweh to the work presented here.

References

[1] F. Bancilhon, C. Delobel, and G. Harrus. Building an Object-Oriented
Database System: the Story of O2. Morgan Kaufman, 1992.

[2] S.C. Choi and W. Scacchi. Assuring the correctness of configured software
descriptions. ACM SIGSOFT Software Engineering Notes, 14:66-75, 1989.
Proc 2nd Intl Workshop on Software Configuration Management.

[3] TEC. Functional Safety: Safety-Related Systems. Draft International Stan-
dard TEC 1508, June 1995.

[4] P.A. Lindsay. A formal approach to specification and verification of task
management in interactive systems. [IFEFE Proceedings of Software FEng,
144(4):206-214, August 1997. (Formerly Sw Eng Journal.) Also appears as
SVRC TR 97-23.

[5] P.A. Lindsay, Y. Liu, and O. Traynor. A generic model for fine-grained
configuration management including version control and traceability. In
Proc. Australian Software Engineering Conference (ASWEC’97), pages 27—
36. IEEE Computer Society Press, 1997. SVRC TR 97-45.

[6] P.A. Lindsay, Y. Liu, and O. Traynor. Managing document conformance:
a case study in fine-grained configuration management. Aust Comp Sci

Communications, 19(1):373-382, 1997. Also appears as SVRC TR 96-20.

19

[7]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

P.A. Lindsay and O. Traynor. Version and configuration management of
formal theories. In Proc. Formal Methods Pacific (FMP’97), pages 165-185.
Springer Verlag, 1997. Also appears as SVRC TR 97-13.

U.K. Ministry of Defence. The Procurement of Safety Critical Soft-
ware in Defence Equipment. Defence Standard 00-55, August 1995.
http://www.dstan.mod.uk/ or http://www.seasys.demon.co.uk/.

U.K. Ministry of Defence. Safety Management Requirements for De-
fence Systems Containing Programmable Electronics. Second Draft
Defence Standard 00-56, August 1996. http://www.dstan.mod.uk/ or
http://www.seasys.demon.co.uk/.

F.A.C. Pinheiro and J.G. Goguen. An object-oriented tool for tracing
requirements. IEFFFE Software, pages 52—-64, 1996.

M. J. Rochkind. The source code control system. IEFEF Transactions on
Software Engineering, 1:24-36, 1975.

K.J. Ross. Models for configuration management of refinement calculus
developments. In Proceedings 7th Refinement Workshop, pages 1-26. BCS-
FACS, July 1996. also appears as SVRC TR 95-8.

K.J. Ross and P.A. Lindsay. Maintaining consistency under changes to
formal specifications. In Proc. Ist Int. Symp. of Formal Methods Furope
(FME’93), LNCS 670, pages 558-577. Springer Verlag, 1993. Also appears
as SVRC TR 93-3.

K.J. Ross and P.A. Lindsay. Applying software configuration management
techniques to formal development. Technical Report 95-12, Software Veri-
fication Research Centre, The University of Queensland, 1995.

S. Sachweh and W. Schafer. Version management for tightly integrated
software engineering environments. In Proc. 7th Int. Conf. on Software
FEng Environments, pages 21-31, The Netherlands, 1995. IEEE Computer
Society Press.

W. Tichy. RCS - a system for version control. Software - Practice and
Fzperience, 15, 1985.

20

