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A Tutorial Introduction to Formal Methods

Peter A. Lindsay

Abstract

This paper gives details of a small example to illustrate
the use of Formal Methods of system and software devel-
opment, including modelling, specification, validation and
design verification. The example concerns part of a simple
hypothetical Air Traffic Control system. Z notation and the
Cogito methodology are used.

A Suggested Reading List is included for readers wishing to
know more about the use of formal methods.

1 Introduction

Formal Methods are methods with a sound mathematical
foundation and which support reasoning about properties of
systems. There is a large diversity of formal methods for sys-
tem, software and hardware development – more than could
possibly be covered in a short introduction. The Suggested
Reading List at the end of the paper gives some pointers
to the relevant literature, including web sites, tool support,
experience reports and comparative studies.

This short paper focusses on one particular family of formal
methods – the so-called model-based specification methods
– which have achieved widespread usage for system and
software development, and which include the well-known
Z [33] and VDM [21] notations. A small example is used
to illustrate the approach. The example is adapted from a
more complete example originally developed by the author
in VDM [3] and fully verified using the mural support
environment [22]. The current example is given here in the
Sum dialect of Z, as supported by the Cogitomethodology
and tool-set [5]. 1

The example concerns a simple (hypothetical) systems man-
agement tool such as might be used to oversee communica-
tions between aircraft pilots and air-traffic controllers in an
Air Traffic Control region. Note however that the purpose
of the example is to illustrate the use of formal methods;
hence the example is kept simple and context information
is included only sufficiently to understand the methods. No
particular assumptions are made about how the different

1The Sum front-end tools and type-checker are ftp-able from
//svrc.it.uq.edu.au/pub/software/SumTypechecker.tar

parts of the system would be implemented, nor about what
other systems and procedures would be involved. In prac-
tice of course, the system’s development would take place in
the larger context of requirements analysis, hazard and risk
analysis, integrity allocation, testing and so on, as required
by the appropriate standards: formal methods are intended
to supplement and improve these techniques, not to replace
them.

The paper illustrates the use of a particular Formal Method
on the following aspects of critical system development:

• modelling of “static” features of high-level system de-
sign

• modelling of system functionality and safety require-
ments

• validation of design by verifying logical consistency

• modelling of (part of) the system architecture, and ver-
ification that the architecture meets high-level design
requirements

To show how the method can be used to identify errors and
oversights early in the development life-cycle, the exam-
ple purposefully includes a number of false starts, including
some subtle errors which are brought to light by Verifica-
tion and Validation (V&V) techniques associated with the
method.

The paper is organised as follows: Section 2 introduces the
mathematical notation used in the paper. Section 3 defines a
high-level “data model” for the system, including the main
types of entities involved, the different possible states of the
system, and formalisation of some system terminology and
safety requirements; use of formal validation is illustrated
on the model. Section 4 illustrates formal specification of
system functionality and validation of the functional model.
Section 5 illustrates a possible design step in which part of
the system architecture is modelled and shown (in part) to
satisfy the requirements of the high-level system specifica-
tion. The paper concludes with a list of Suggested Reading
for readers wishing to know more about the use of formal
methods.
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2 Z notation

This section introduces the Z mathematical notation [33]
which will be used in the examples below; in what follows,
underscores are used as placeholders for arguments to func-
tions.

N natural numbers (0,1,2,. . . )
P sets of
∈ is an element of
# size of
⊆ is a subset of
\ set subtract

seq sequences (ordered lists) of
a sequence concatenation
7→ mapping (partial function)
7� one-one mapping
7→ maplet

(single argument-result component of a mapping)
dom ‘domain’ of a mapping

(the set of all its possible inputs)
ran ‘range’ of a mapping

(the set of all its outputs)
⊕ function overwrite
∀ for all

More complex expressions can be built from these: e.g.
{n : N | n2 ≤ 9} = {0, 1, 2, 3}.

3 Data model for the system

This section defines a mathematical model of the main static
concepts for the system. This is done by

1. defining the “basic” types of entities with which the
system is concerned

2. defining the variables (“states”) of the system and what
possible values they can take

3. formalising concepts relevant to system requirements
and defining terminology

4. formalising system properties (including safety re-
quirements) which can be stated as relationships be-
tween state variables.

The logical consistency of the model is checked as a valida-
tion step.

3.1 Basic types

The following types of entities will be used without further
analysis or definition in the model:

Controller – the set of all possible air-traffic controllers

Space – the set of all possible airspaces

Aircraft – the set of all possible aircraft

The entities are treated abstractly in this high-level model,
and need not represent particular physical entities: e.g.
airspaces are regarded here as logical entities only, and no
assumption are made about what 3-dimensional volumes of
air they represent, nor whether they can overlap or co-exist,
etc. (Such attributes could of course be formalised if desired
– but here we abstract away from detail so as to better focus
on the important logical relationships between the above
entities.)

3.2 State variables

The state of the system is modelled here by declaring four
variables (the “state variables”) whose values determine the
main relationships between the basic entities:

1. the controllers who are currently on duty, although not
necessarily in control of an airspace

on duty : P Controller

2. which controller is assigned to which airspace

control : Space 7� Controller

3. how many aircraft an airspace can accommodate safely

capacity : Space 7→ N

4. which airspace an aircraft currently occupies

location : Aircraft 7→ Space

Note that certain constraints on the state are already implicit
in the type declarations above. For example, at most one
controller is assigned to any airspace at any time, since
control is a one-one mapping. Note also that control is a
partial function, which means that some airspaces may not
have a controller assigned to them at all times (e.g. when the
airspace is closed down for the night).

3.3 Defined concepts

Other state-dependent concepts can now be defined in terms
of the values of the state variables: e.g.

• The “active controllers”: ran control
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• The “activated airspaces”: dom control

• The “utilized airspaces” (i.e., those in which aircraft are
currently subject to air-traffic control): ran location

We can also define functions to extract information which is
implicit in the model: e.g. the number of aircraft assigned
to airspace s is given by

num aircraft(s , location) =
#{a : Aircraft | location(a) = s}

Note that this function’s dependence on the value of the
location state variable is noted explicitly.

3.4 Some safety requirements

In this section we formalize some of the system safety re-
quirements as “state invariants” – relationships between the
state variables which should be preserved by all system
functions:

1. An airspace can be activated only if its capacity has
been set:

dom control ⊆ dom capacity

2. Only on-duty controllers can control airspaces:

ran control ⊆ on duty

3. All utilized airspaces have controllers:

ran location ⊆ dom control

4. The capacity of each utilized airspace is not exceeded

∀ s : ran location •
num aircraft(s , location) ≤ capacity(s)

We assume such properties have been derived from a system
hazard analysis or similiar. Use of formal notation then adds
value by making requirements precise and mathematically
verifiable.

3.5 Validation of the data model

Having formalised the data model, automated support is
available for checking (“validating”) the model, including:

• Type-checking – to check that definitions are being
used type-consistently throughout the model. This
check is fully automated for Sum specifications.

• Semantic checking – to check full mathematical con-
sistency: e.g. that partial functions are applied only
to values within their domain, no division by zero, etc.
This check is partially automated in Cogito using
theorem provers.

For example, in this case the semantic check on invari-
ant 4 involves checking that capacity(s) is defined for all
airspaces s in ran location – or in other words, that capacities
have been set for all utilized airspaces. This check would
have revealed the necessity for something like invariants 1
and 3 above, had they been missing.

4 Modelling system functionality

We next turn to modelling dynamic aspects of the system:
i.e., system functions and how they affect the state of the
system.

4.1 Notation

In state-based specification languages such as Z and VDM,
system functions are expressed as “operations” which
change the state of the system; they may also take inputs
and/or return outputs. By Z convention, operation inputs
have suffix ?, outputs have suffix !, and the new value of
a changed state variable has suffix ′. The Sum dialect also
supports “preconditions” – statements which define the con-
ditions under which the operation can be invoked – written
as a clause pre( ). Also in Sum, a changes only{ } clause
can be used to indicate which state variables may be affected
by the operation; all other state variables are left unchanged.

4.2 Some system functions

For our example, here is a specification of an operation for
handing over aircraft a? from airspace from? to airspace
to?:

Handover

a? : Aircraft

from?, to? : Space

pre(a? ∈ location(from?))
changes only{location}
location ′ = location ⊕ {a? 7→ to?}

The specification says that a? must be assigned to airspace
from? at the time the operation is invoked, and will be reas-
signed to airspace to? as a result of the operation; note that
location is the only state variable affected by this operation.
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As a second example, here is the operation for controller c?
going off duty:

ClockOff

c? : Controller

pre(c? ∈ (on duty \ ran control))
changes only{on duty}
on duty ′ = on duty \ {c?}

The precondition says that c? should be on-duty but not
in control of an airspace. If c? does currently control an
airspace, that airspace must be reassigned to another on-
duty controller before c? can be clocked off.

Reassign

s? : Space

c?, c! : Controller

pre(control(s?) = c? ∧ ran control 6= on duty)
changes only{control}
control ′ = control ⊕ {s? 7→ c!}
c! ∈ on duty \ ran control

The specification of Reassign says that the operation should
reassign control of airspace s? to an on-duty controller c!
who is not currently controlling an airspace. This high-level
model gives no further details of exactly how c! is selected;
that’s left to lower-level specifications.

4.3 Validation of the functional model

In addition to type- and semantic-checking as for the data
model above, automated support is available for further
checks on the functional specification:

• Feasibility checking – to check that for any state in
which the operation can be invoked (i.e., its precon-
dition is true), the system can make a transition to a
state in which the operation specification is satisfied
and the state invariants are preserved. This check can
be partially automated.

• Animation – to check that the system-as-modelled be-
haves as expected. The Possum tool [20] has a wide
variety of modes for animating specifications from “an-
imation scripts” written by system analysts. For exam-
ple, it can step through operational scenarios by ap-
plying operations one by one under interactive control,
or it can perform complete searches of function spaces
checking for user-defined conditions.

Did you spot the deliberate error in the Handover opera-
tion above? The feasibilty check will reveal that the given

specification’s precondition is not sufficient, since it cannot
guarantee that the capacity of airspace to? will not be ex-
ceeded. To correct the oversight, the following constraint
should be added to the precondition:

num aircraft(to?, location) < capacity(to?)

5 Modelling system design details

The last topic treated in this short introduction to Cogito
concerns support for verification of system designs at lower
levels of detail. Here we illustrate how part of a system
architecture for the ATC example could be modelled and
shown to meet higher-level requirements.

5.1 A distributed architecture

Let us suppose that a distributed architecture is chosen for the
system, whereby each airspace is assigned its own particular
equipment (such as a monitor, radar, radio communications,
etc). Suppose that at this new level of design it is decided to
associate a sequence (“queue”) of aircraft with each airspace
– by analogy with the ranks of flight-progress strips often
used in ATC centres, say.

The system model at this new level of detail will have state
variables on duty , control and capacity as before, but the
location variable will be replaced by a new variable for
“assignment queues” as follows:

assigQueue : Space 7→ seq Aircraft

In the modified data model, the definition of utilized
airspaces becomes

{s : Space | #assigQueue(s) 6= 0}

and the number of aircraft in a utilized airspace s is
#assigQueue(s). State invariants 1 and 2 will remain
as above, but invariants 3 and 4 will be replaced by the
following:2

• Airspaces are assigned queues if and only if they are
activated

domassigQueue = dom control

2Note that in Z mathematical semantics, a sequence is regarded as a
mapping from a sequence of numbers (the sequence indexes) to sequence
elements:

〈x1,x2, . . . , xn 〉 = {1 7→ x1, 2 7→ x2, . . . ,n 7→ xn}

Thus, #s gives the length of a sequence s and ran s converts the sequence
into a set with the same elements.
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• The capacity of activated airspaces is not exceeded

∀ s : domassigQueue •
#assigQueue(s) ≤ capacity(s)

The operations from the high-level model need to be adapted
to the new model: e.g.

Handover

a? : Aircraft ; from?, to? : Space

pre(a? ∈ ran assigQueue(from?) ∧
#assigQueue(to?) < capacity(to?))

changes only{assigQueue}
assigQueue ′(from?) =

remove(a?, assigQueue(from?))
assigQueue ′(to?) = assigQueue(to?) a 〈a?〉
{from?, to?} −C assigQueue ′ =

{from?, to?} −C assigQueue

where remove is a function which removes an element from
a list and −C is a Z function which removes sets of elements
from the domain of a mapping [33].

5.2 Design verification

The new model can be shown to be a true refinement of
the high-level model by providing a relationship between
the states of the two models which shows how “concrete”
states relate back to “abstract” states and verifying certain
other relationships hold – the so-called data refinement proof
obligations [21]. In this case we could try to define location

in terms of the new model:

location : Aircraft 7→ Space

location = {a 7→ s | a ∈ ran assigQueue(s)}

However, when we try to verify the mathematical consis-
tency of this definition – in particular, when we try to show
it is a true function, with a unique output for each input in
its domain – we come across a problem: how do we know
that each aircraft belongs to a unique airspace? The state in-
variant for the new model needs to be strengthened by some
statement to this effect: e.g.

∀ s1, s2 : domassigQueue • s1 6= s2 ⇒
ran assigQueue(s1) ∩ ran assigQueue(s2) = ∅

This is an example of how verification of lower-level designs
against higher-level designs can reveal errors and oversights.

6 Summary and conclusions

In summary, the paper illustrates one particular formal
method (Cogito) on a simple example. Other formal meth-
ods are available for other kinds of problem.

Some of the main advantages of formal methods are:

• Formal specifications are precise, concise and unam-
biguous, which makes them an excellent medium for
communication between system designers, analysts,
testers and evaluators. Again, they are intended to
supplement and improve informal specifications, not
to replace them.

• Because they use formal, machine-checkable notation,
a wide variety of automated checks can be applied to
them (including checks not illustrated above, such as
for freedom from deadlock and freedom from livelock).
The ability to model and validate high levels of design
means that errors can be caught earlier in the design
life-cycle, with consequent cost savings.

• The ability to reason formally about specifications
means that the level of semantic checking is far deeper
than that provided by program analysis tools, for exam-
ple. The discipline it imposes means that subtle errors
and oversights are more likely to be picked up during
analysis.

• Formalising the relationship between different levels of
design means that design steps can be verified, and re-
quirements traceability can be automated and checked.
This has particular value during incremental builds and
maintenance.

• Formal specifications can be used as a precise basis for
a range of other activities: e.g. they can be used as test
oracles, or to derive test cases in a systematic manner
[27], or as a basis for FMEAs and HAZOPs.

• Prototypes can be derived directly from specifications.

However, formal methods are intended to enhance existing
development and assurance techniques and not to replace
them. To use them effectively requires staff with a good
deal of experience and some mathematical maturity, a good
pre-existing design methodology, and good tool support.
Most importantly, they do not replace the need for domain
expertise (although they can make it easier to acquire!).

7 Suggested Reading

7.1 On the web

Formal Methods home page:
http://www.comlab.ox.ac.uk/archive/formal-methods.html

NASA Formal Methods Program:
http://eis.jpl.nasa.gov/quality/Formal Methods/
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Rushby report for US Federal Aviation Authority
“Formal Methods and their Role in the Certification of
Critical Systems” :
http://www.csl.sri.com/reports/postscript/csl-95-1.ps.gz

7.2 Annotated bibliography

The following list is not intended to be definitive, but gives
some pointers to useful literature on the use of formal meth-
ods:

• Use of formal methods on Safety-Critical Systems: [2,
6, 7]

• Standards calling up formal methods: [29, 30]

• Case studies of applications of formal methods: [8, 11,
19, 23]

• Industry experience reports: [14, 16, 17, 34]

• Reference books on particular formal methods:

– Z [33]

– VDM [21]

– B [1, 24]

– Object Z [12] for object-oriented specifications

– refinement of specifications to code [28]

– Cogito [5]

– Spark Ada [9]

• Use of formal methods in aerospace: [32]

• Use of formal methods in Human-Computer Interface
design: [18]

• Formal reasoning: [3, 4]

• Tool support: [5, 20, 22, 25, 26, 31]

• Recent developments and future directions: [10, 13,
15]

SVRC technical reports can be obtained electronically from
http://svrc.it.uq.edu.au
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