SOFTWARE VERIFICATION RESEARCH CENTRE
SCHOOL OF INFORMATION TECHNOLOGY

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT

No. 99-31

A Case Study in Softwar e Safety Assurance Using Formal Methods

Brenton Atchison, Peter Lindsay, David Tombs

September 1999

Phone: +61 7 3365 1003
Fax: +61 7 3365 1533

Note: Most SVRC technical reports are available via
anonymous FTP, from svrc.it.ug.edu.au in the directory
/pub/SV RCltechreports. Abstracts and compressed
postscript files are available via http://svrc.it.ug.edu.au.

A Case Study in Software Safety Asaurance
Using Famal Methods

Brenton Atchison, Peter Lindsay, David Tombs

Software Verificaion Reseach Centre
Schod of Information Tedhnology
The University of Queensland
Queendland 4072,Australia

email: { brenton,pal,tombs} @svrc.ugedu.au

Abstract

This report describes a formal approac to verificaion and validation of safety requirements
for embedded software, by applicaion to a simple wntrol-logic cae study. The logic is
formaly spedfied in Z. System safety properties are formalised by defining an abstrad
model of the system’s physicd behaviour in Z, including its hazadous gates and dominant
sensor failures. The Posaum spedficaion-animation tod is then used to chedk that the logic
meds its sfety requirements. Finally, the logic is implemented in SPARK Ada and SPARK
Examiner is used to formally verify the implementation meets its gedfication. Design safety
validation and source ®de verificaion are cmpletely automated, removing the need for
human intervention.

Keywords. safety-critica systems, formal methods, safety assurance V&V

1 Introduction

This report describes a forma approach to asauring safety of the design and implementation of
embedded software for smple @ntrol systems. The gproach differs from more traditional formal
approaches in that much o it is fully automated and it largely avoids the need for complex
mathematicd proofs. It isthuslikely to be far more wst-effedive, while off ering as high (and arguably
even higher) assurance

The approach isillustrated on the development of a safety argument for a simple cae study concerning
the software control logic for a hydro-mechanical press Badkgroundto the cae study is presented in
sedion 2, including the operational concept and system architecture.

1.1 Approach to Safety Assurance
There follows an autline of the proposed software safety assurance process.

1. System safety requirements are assumed to have been derived by an appropriate hazard analysis,
including consideration of possible software-input (sensor) failure modes. For the case study, the
results of such an analysis are described in section 3, but afull description of the task is outside the
scope of this report. The requirements are expressed as properties of the press's physica
behaviour and control system sensor and actuator values. [Atchison, 1997 #8] contains more
details of the hazard analysis activities.

2. Control-logic design is expressed as a finite-state input/output machine. Safety of the logic design
is validated by analysing al possible behaviours of the logic in its operationd environment
(including the possibility of single sensor failures). Formally this is achieved by specification
animation wsing a Z spedfication of the cntrol logic and an abstract model of the press and its
sensors and actuator. The behaviours leading to hazardous system states are analysed, and it is

1

argued that the residual risk of logic-related system failuresis acceptably low. The software design
is presented in section 4 and the safety validation process is described in section 5. The Possum
todl [Hazel, 1997#7] is used for specification animation.

3. The control logic is implemented in SPARK Ada, with formal annotations derived drectly from
the Z specification. (With appropriate tod support this step could be fully automated.) The
SPARK Examiner toolset [2] is used to formally verify that the implementation meds its
specification. The process used is described in sections 6 and 7.

Theresult isafully tool-suppated safety argument for the aontrol-logic software for the press such as
could form the are of a software safety cese. (Safety case ingredients not covered here include
failures' likelihood, and system-integration test results showing that the installed software behaves as
implemented.)

The approach made it possible to discover deficiencies in the antrol-logic design, and to replay the
analysis automatically uponmaking modifications to the logic. The systematic, repeatable nature of the
approad represents a significant improvement over manual processes, without the overhead of full
formal development. As such, we believe it has the potential to be a highly cost-effedive, high
integrity approach to development of safety asaurance for embedded software.

There ae necessarily some adivities of the safety asaurance processthat cannot be treated by formal
functional analysis, in particular the assesament of fail ure likelihoods and residual risk. It is intended
that the analysis presented in this paper will provide information for these ativities but they are not
presented here.

1.2 Formal Specification Notation

The Sum spedfication language [5] is used to specify both the @ntrol logic and operational
environment. Sum is a variant of the Z spedficaion language [6] devised primarily to facilitate the
production of moduar spedfications and ease specification readability. Unique features of the Sum
language relevant to this case study are:

1. A collection of declarations and definitions may be grouped into a modue. Modules may be
imported, giving visibility to the referenced entities.

2. State macdines are easily represented by modues through the use of predefined Sate, Init and Op
schemas. State schemas represent the state encapsulated by the modue through a llection o
typed variables. The state isinitialised by the Init schema. State transitions are catured by Op
schemas which specify the relationship between state variables before and after a transition. The
modified state variables are identified by an appended dash. The scope of variables that can be
referenced by the Init and Op schemas is restricted to the modu e Sate schema variables by default
but can be extended arbitrarily. The changes_only expresson in a schema specifies which part of
the state may be changed by an operation.

3. Preoonditions can be explicitly associated with Op schemas in order to convey more information
abou the intended specification. A precondition is identified with the prefix pre and represent
asumptions about the state prior to invocaion of an operation.

Posaum interprets queries made in Sum and responds with simplifications to those queries. Arbitrary
Sum expressions and predicates can be evaluated and a Sum state madchine can be “exeauted” by
stepping conseautively through operations of that machine with active (true) preconditions.

The control logic Sum spedficationis manualy trandated to SPARK Ada anotations which provide a
functional specification embedded within the program. The SPARK analysis tods enable proofs that
the program satisfies the specification.

2 Case Study

2.1 Operational Concept

The (hypothetical) case study is based on a system first described by the HISE group at the University
of York [3] and which was purportedly inspired by ared system. The case study concerns a 50 tonne
hydro-mecdhanicd presswhich is used to produce body parts for a certain make of motor vehicle. The
pressisloaded and wnloaded by a single operator. Unformed sheets of metal (workpieces) arrive on a
conveyor belt roughly once per minute. The operator loads a workpiece from the roll-off areainto the
press, then pushes a button which causes the pressto close: that is, the plunger falls to the bottom
under gravity, pressing the workpiece into its desired shape. The press then gpens again, and the
operator unloads the formed product from the press and dacesit onto a second conveyor belt.

The press is opened by adivating an electric motor and engaging clutches which drive hydro-
mechanical winding gea. The press plunger is held against the top stop by running the motor
continucusly. There is a point, called the point of no return (PONR), after which it is pointless — and
may in fact be dangerous — to try to open a closing press because the falling plunger’s momentum is ©
gred.

Under normal operation, the presswill close in approximately 2 seconds, and open in approximately 4
seoonds. There would normally be 420 oprations of the press per day. The industrial pressis
illustrated in Figure 1.

Top sensor ——
< —— Plunger
<—— Drive chain
PoNR
0 sensor . Button
—— Guard
Bottom sensor O
I Motor
f A
PLC

Clutches

Figure 1 - Industrial Press

2.2 System Architecture

The system architedure extends existing hydro-mechanica winding gea with the push buiton, position
sensors and a PLC based control system. A functiona block diagram of the architecture is illustrated
by Figure 2.

Push Button

Top Sensor PLC Control

System

Dri i Plunger
Drive

PoNR

Sensor .
Bottoyn Sig

Bottom
Sensor

Figure 2 - Industrial Press Control System Architecture

The position of the press plunger is measured by three micro-switch sensors, positioned at the top,
bottom and plysical point of noreturn, which are ‘toggled’ by alever fitted to the centre of the plunger
whenever the plunger passes the switch. Table 2-1 indicates how the sensor values are interpreted.

Sensor Interpretation of high signal

Top plunger is at top d travel

PoNR plunger is below point of noreturn
Bottom plunger is at bottom of travel
Button buttonis pressed

Table 2-1 - Press System Sensor Signals

The control logic of the pressis implemented in software exeauting on a PLC. It scans sensor signals
from an input register at frequent intervals and writes the motor drive signal to an ouput register where
appropriate. The motor drive signal is sanned by eledronic comporents that activate the electro-
mechanical clutch and motor system.

3 Safety Analysis

Although a complete safety anaysis is outside the scope of this report, a summary of results is
provided by way of context.

The pressincludes a physical guard which alows the operator to put his or her arms into the press bu
not the head or torso. The main remaining operational safety hazard is that the operator, or a second
person, will have his or her hands crushed by the closing press. This hazard is to be mitigated by
inclusion of an “abort” facility, whereby the motor drive will be engaged if the buttonis released while
the plunger isfalling above the PONR.

Any attempt to raise a plunger falling below the PONR is hazardous, since it will slow plunger descent
without actually stopping it reaching the bottom (thus giving the operator more time to put his handsin
a dosing press), or may even cause the winding gea to break. A partia mitigation of this hazard is
ensure that the buttonis placed far enough away to alow a plunger falling past the PONR to read the
bottom before the operator can travel from the button to the press.

The“primary” system safety requirements for normal (fault-free) operation are:
1. Themotor drive shall be adive when butonisreleased while plunger is above the PONR.

2. Themotor drive shall not be activated when the plunger is faling below the PONR.
4

A further, “secondary” safety requirement is that sensor failures sould not cause ahazard. More
precisely, it will be required that all single aitical persistent sensor fail ures be deteded and revea ed
within ore operational cycle of the press Sensor failures may have avariety of causes, including
electrical and mechanical faults. Persistent failures (such as breaages) only shall be considered here,
since they are the most likely and the most pernicious (especialy if allowed to go undetected for many
operational cycles of the press). In afull safety case, these and ather possible hardware failures would
be identified and asseessed by a separate analysis sich asan FMEA [4].

Rather than derive software specific safety requirements, we present a model of the software design
and investigate whether safety is preserved under operating condtions, even in the presence of single
persistent sensor faults.

4 Software Design

This section describes the aontrol logic chosen for the case study. This report will not attempt to record
how this particular design was chosen, except to say that the logic correspords closdly to the intuitive
operation of the press as described above, with tests for physically imposdble sensor-value
combinations. Sedion 5 below presents the detailed asauranceto show that the design meds the safety
requirements described above.

4.1 Informal Design Specification

The software is designed with typical scan architecture consisting of input modue, control logic
modue and autput modue. Normal operation d the software is arepeated cycle wnsisting of:

1. Scaninpusfrom sensors,
2. Exeaute mntrol logic; and
3. Write outputs to motor drive aduator

The state transition dagram in Figure 3 defines the control logic modue. Sensor value @wmbinations
not represented in the diagram result in a null transition. Under normal (fault-free) operation d the
press, logical states correspord to physica states of the press as described by Table 4-1. The motor
drive output is only modified on entry to the opening and closing states. At power up, the state
machine isinitiali sed to the opening state.

bottom{
or PONRT{ bottom{]
or button{ or PONR{

button]
& bottomJ
& PoNR[

button{

motor drive on

~
K\jifff
and top[l
PoNR{ & bottom]
& button
uncond
closing
halt
closed

button] & bottom]] & PoNR]

bottom{l

Key: low signal]
high signall

Figure 3 - Press Control Logic

Logicd State Interpretation

Opening Plunger isrising

Open Plunger has readed top

realy Plunger has readed top and
buttonis not currently pressd

closing Plunger isfalling above PONR

uncondclosing

Plunger is falling below PoNR
and will close unconditionally

halt open Operation is halted with plunger
at top
halt closed Operation is halted with plunger

on presshed

Table 4-1 Software states

Note that the operator is required to release the push button before the plunger reaches the top,
otherwise the presswill halt open. We do ot consider the procedure for restarting the press after fault
detection here. Clearly there would need to be procedures for safely shutting down the pressto all ow
Similarly, the software would be augmented with facilities for reporting the nature of the

repair.

failure detected, but these ae not treated here.

Table 4-2 summarises the point of detection of critical sensor failures. It is assumed that the critical
sensor failures are determined by a separate analysis. Some failures may also be detected at other

points in the operation.

Sensor failure mode

Point of detection

Bottom sensor stuck low

Not detected —noncritical fault

Bottom sensor stuck high

Bottom sensor high signal received when
plunger is closing above PONR

Top sensor stuck low

Not detected —noncritical fault

Top sensor stuck high

Top sensor high signal recaved when
plunger is closing below PONR

PoNR sensor stuck low

Bottom sensor high signal reasived before
PoNR sensor low signal received when
plunger is descending

PONR sensor stuck high

PoNR sensor high signal reasived when
plunger is at top o travel

Button sensor stuck low

Non ceteded — ron critical fault

Button sensor stuck high

Button sensor high signal received as
plunger reachestop of travel.

Table 4-2 - Detection of critical sensor failures

4.2 Formal Design Specification

The software design is trandated into Sum using three modules, as illustrated by Figure 4. The
complete Sum specifications are in Appendix A. The formal specification is described below. The
ASCIl representation of Sum is trandated into a more traditional Z style, interspersed with
commentary. The specification is presented in a modular fashion with Sum modules delimited by an
outer frame and schemas within separated by internal frames.

Machine

/

Sensors Actuator

Figure 4 - Formal Software Specification Structure

The Sensors and Actuator modul es represent the input and output interfaces of the software by the
types and values of the sensor and motor drive signals. They are an abstraction of the interfaces only
and do not specify the interface protocol to be used. The following introduces a number of typed
variables denoting Sensor and Actuator states. Typesfor the variables; IN. SG and OUT_S G are
defined within the module by the set of potential variable val ues.

—Sensors
IN_SIG ::= high| low
hstatp
button, top, PONR, bottom: IN_SG

—Actuator
OUT_SG::=a on| a off
hstate
motor: OUT _SG

The control logic is specified by the Machine module. This module imports the interface modules in
order to read and manipulate interface signa states. The type for the local control variable, which
records the local control state, is introduced within the module.

—Machine
import Sensors
import Actuator
CONTROL ::= opening| open| ready| closing| uncond_closing
halt_open| halt_closed
State
F control: CONTROL
Sensors.state
‘ Actuator.state

Initialisation sets values for the control logic state and the motor drive signal, but not the sensor val ues.

init
control' = opening
Actuator.motor' = Actuator.a_on

State machine transitions are modelled by an Op schema for each machine state. Execution of the state
machine is assumed to occur by invoking the operational schema with an active precondition.

An example operational schema follows. The schema concerns the transitions from the Closing state
of the state machine, including the null transition which results in no change. Note that, since the
changes_only expression cannot be embedded in a Sum if expression, the values of control and
Actuator.motor are set on every branch.

—OopAt_Closing
pre control = closing
if Sensors.battom = Sensors.high

then
(cortrol' = halt_closed A Actuator.motor' = Actuator.a_off)
else
(if Sensors.PoNR = Sensors.high
then
(control' = uncond_closing A Actuator.motor’ = Actuator.a_off)
else
(if Sensors.button = Sensors.low
then
(control' = opening A Actuator.motor' = Actuator.a_on)
else

(control’ = closing A Actuator.motor' = Actuator.a_ df)
fi)
fi)
fi
changes_only{control, Actuator.motor}

For convenience, execution of the state machine is captured by a single operation. The result is
deterministic since the preconditions of all operations are digoint, as can be checked by inspection.

‘ Transition == (At_Opening v At_Open v At_Ready v At_Closing v

} At_Uncond_Closing v At_Halt_Open v At_Halt_Closed)

The operational semantics of this specification are assumed to be that the Transition operation is
repeatedly invoked until no further progressis possible. Sensor values may change arbitrarily between
invocations.

4.3 Hardware Interface Specification

The software interacts with the sensors and motor drive via input and output registers. Sensor signals
are mapped onto asingle register at memory address 100001". Its content is specified by Table 4-3.

! The underlying hardware and addresses of registers isimaginary and has been conceived for this paper.

8

Sensor Register Protocol

Top 11 xxxxxx: high signal
00xxxxxx: low signal
PoNR xx11xxxx: high signal

XX00xxxx: low signal

Bottom xxXxx11xx: high signal

XXxX00xx: low signal

Button Xxxxxx11: high signal

xxXxxxx00: low signal

Table 4-3 - Press System Sensor Signals

The motor output register is located at memory address 100QL1. The motor drive interprets 11111111
asan ON signal and 00@0000as an OFF signal.

5 Software Design Safety Assurance

5.1 Strategy

This section describes our approach to verification that the software design sdtisfies the safety
requirements described above. The approach is based onforma modelling of system states as they
relate to safety, and exhaustive analysis of possible system behaviours using the Possum specification-
animationtool [7].

In order to verify the safety requirements of the press physical system, the software state machine is
animated within an (abstrad) environment simulating the ejuipment under control. Different
animations are used to explore the effed of software cntrol on physical system behaviour under
normal (fault-fre€ conditions and in the presence of single persistent sensor failures. Press operation
and sensor failures are modelled as a finite state machine and formally specified in Sum.

Verification of system safety requirements is then performed by systematically searching all possble
behaviours of the combined system using specification animation. The system states readed are
automaticdly compared with the system safety requirements and unsafe operational scenarios are
identified and anaysed.

5.2 Abstract Model of Press Operation

To simulate the operation dof the presswe introduce amodel comprising six possible physicd states of
the plunger (see Table 5-1), with transitions as illustrated in Figure 5. The simulation model abstracts
away from timing properties such as exactly when transitions in the physical state occur. The
interpretation of when transitions take place is as foll ows:

¢ ‘motor drive on" means that the motor drive is applied for sufficiently long to achieve the indicated
effed onthe sate of the plunger;

* ‘motor drive off’ means that the motor driveis off for sufficiently long to have the indicated effect;
e all other casesresult in anull transition.

Note that the model is more liberal than redity, in the sense that it considers more states than may be
physicdly passible.

In defining the press simulation model, a number of simplifying assumptions have been made aout
aspects of press operation, in particular:

1. There ae no failures of the electromedianical plunger drive mecdhanism, and the motor drive has
the desired effect onthe plunger.

2. Thepress ensors areinstalled in their corred positions; in particular, the PONR sensor isinstalled
closeto the true “point of noreturn”.

The system only exhibits single, permanent sensor failures.

The controller operates according to the control logic design. Note however that no assumption is
made ebou processor response time.

We expect that possible violations of these assumptions would be dedt with in other parts of the safety
case, such as aconsideration d possible hardware failures and a software timing analysis.

The paosition of the plunger in each state is used by the animator to determine what would be the
corresponding presssensor values under fault-free operation: e.g. in the at_bottom state, the bottom
and PoNR sensor values would be high and the top sensor value would be low. To modd persistent
sensor failures, the simulation is extended by transitions corresponding to sensors failing and thereafter
reporting a constant value.

A formal specificaion of the model is given in section 5.4

Simulator state Physicd interpretation
at_bottom Plunger is below bottom sensor
below_PoNR Plunger is between bottom and PONR sensors; continuaus

application d the motor drive will prevent press closing and will
eventually raise plunger above PONR sensor

falling_to_lottom | Similar to below_PoNR but motor drive anna prevent press
closing due to dovnward momentum

above PONR Plunger is between PONR and top sensor; continuous application
of the motor drive will prevent plunger passing PoONR sensor and
will eventually raise plunger above top sensor

falling_past PONR | Similar to above PoNR but motor drive cannot prevent plunger
passing PONR sensor due to downward momentum

at_top Plunger is above top sensor

Table 5-1 - Plunger statesin press simulation

5.3 Animation Design

In the animation, the presssimulation model takes actuator values from the control software & inputs
and assigns press snsor values as outputs. Together, the simulation model, the wntrol software
specification, and push and release of the buttonwill emulate operation of the Press

The animation consists of a systematic exploration of the possible physicd behaviours of the press
simulation model under software and operator control. The “system state” comprises all possible
combinations of states of the system comporents (simulator, software and kutton). The primary system
safety reguirements from sedion 3 are formali sed as properties of the system state and chedked at each
step of the animation. The secondary safety requirement — that single persistent sensor failures are
detected and revealed —is demonstrated by showing that the press halts within ore gy/cle of such a
failure occurring.

10

motor drive on m

At top J

Top Sensor i motor drive off

motor drive on .
motor drive off

[Above PONR H Falling pest PONR }
A

PoNR Sensor motor drive on

motor drive on motor drive off
motor drive off v
[Below PONR H Falling to bottom]
Y

Bottom Sensor motor drive on/off
motor drive on /
{ At bottom]

U motor drive off

Figure5 - PressSimulation Model

Separate animations are performed for fault-free operation and for each sensor failure mode. The
animation is performed using a depth-first search o all readable system states. The search is
constructed from basic animation events as described in Table 5-2.

Animation event Interpretation

[nit Initialise ssimulation state (software in gpening
state, plunger at bottom, button released)

Control_Transition Single (possibly null) transition d the software
state machine without change to plunger state or
sensor values

Button_Transition Togd e of the button sensor value (push o release
as appropriate), with noother changes

Plunger_Transition Single (possibly null) transition d the plunger
state and press ensor values, based onthe current
aduator state

Sensor_Failure Activates the gpropriate sensor failure mode
(e.g. Bottom_Fail_High)

STOP Terminate this run of the animation

Table 5-2 — Basic animation eveits

The algorithms for animating the “normal operation” and “bottom sensor stuck high” scenarios are
described in Figure 6 using a CCS-like processdescription language [8]. The algorithms keep track of
what system states have been visited, and badktrack when an arealy-visited state is reached. By their
exhaustive nature, the dgorithms clearly will determine al possible system states reachable from the
initial state.

11

The algorithms return atransition table for the complete system, as well as example runs (sequences of
states corresponding to possible behaviours of the system) to aid in analysis.

a) b)
Normal -> Init ;P Bottom Stuck High -> Init ;P
P -> if sate already visited then STOP P-> if state already visited then STOP
elseQ elseQ
Q-> Control_Transition ;P Q-> Control_Transition ;P
| Plunger_Transition ;P | Plunger_Transition ;P
| Button_Transition ; P | Button_Transition ; P

| Bottom_Fail_High ;R
R -> if state_already visited then STOP
dseS
S-> Control_Transition ;R
| Plunger_Transition ;R
| Button_Transition ;R

Figure 6 -Animation algorithm for a) normal operation b) bottom sensor fails high

5.4 Animation Specification

The system for animation is specified by extending the existing Sum software specification with a new
Smulator module through the shared import of interface states, as illustrated by Figure 7. The
specification is explained in more detail below. The complete specification is given in Appendix B.
<<Requires update!! >>

Machine
Control System
Sensors Actuator
Environment
Smulator

Figure 7 - Smulation Environment

54.1 Smulation State

The state of the Smulation module extends the machine state with a record of sensor health, physical
state of the plunger and button, and an indication of safety. For convenience we define identifiers for
useful sets of physical states and rename values of sensor variables.

Smulator
I
/I Industrial Press Simulation Environment
/I The environment module provides a simulation environment for the Press
/I 1ogic state machine. The simulation is performed at a physical level.

12

/I The modelled physical state of the pressisused to drive sensor signals.

/I These, in turn, drive the control logic which then causes a physical

/I state change. It is possible to activate sensor failures and

/I investigate their effect.

I

import Sensors

import Actuator

import Machine

1

Il State

/I In addition to encapsulating the logic, sensor and motor drive states,

/I the state represents the physical movement of the plunger.

I

SENSOR_HEALTH ::= broken| ok

PLUNGER ::= at_bottom| below_PoNR above_PoNR| at_top
falling_past PONR| falling_to_bottom

states above top == {at_top}

states above PoNR == {above PoNR, at_top, falling_past PONR}

states above bottom == {s: PLUNGERI| s= at_bottom}

SAFETY ::= safe| abort_failed| unsafe_motor_drive

BUTTON ::= pressed| released

high == Sensors.high

low == Sensors.low

hstatp
Sensors.state
Actuator .state
Machine.state
plunger: PLUNGER
button: BUTTON
safety: SAFETY
button_health, top_health, PONR_health, bottom_health. SENSOR HEALTH

The Init schema initiaises the complete simulation state, including the value of sensors and physical
states of the press plunger and push button. Note that no initial value is assigned to the safety indicator
variable.
—init
Machine.init
Sensors.button' = Sensors.low
Sensors.top' = Sensors.low
Sensors.PONR' = Sensors.high
Sensors.bottom’ = Sensors.high
button_health' = ok
top_health' = ok
PoNR_health' = ok
bottom_health' = ok
plunger' = at_bottom
button' = released

13

5.4.2 Evaluating Safety

Safety is automatically evaluated through animation by updating the safety variable in accordance with
the hazardous states defined by Section 3. Thisis achieved by including the condition of safety within
the state schema & a state invariant. The state invariant is then included as a condition within each
operational schema, resulting in modification of the safety variable throughou the animation.

| _state

safety = if ((plunger = falling_to_bottom and
(Actuator.motor = Actuator.a_on)) then
unsafe_motor_drive
else
if ((plunger in states above PoNR) and
(Actuator.motor /= Actuator.a_on) and
(button = released)) then
abort_failed
else
safe
fi
fi

5.4.3 Simulation Operations

Top level operations corresponding to the animation events of Table 5-2 are defined, corresponding to
transitions of the simulator, the button and the cntrol |ogic.

The Control_Transition simply renames the transition of the state madine.

| _op Control_Transition
Machine.Transition
changes_only{Machine.control, Actuator.motor, safety}

The physical simulation model described in Section 5.2is captured by a set of valid transitions. These
arereqrded by alocal function variable next_plunger_state defined as follows.

next_plunger_state: (PLUNGER x Actuator.OUT_SG) — PLUNGER

next_plunger_state(at_bottom, Actuator.a_off) = at_bottom
next_plunger_state(at_bottom, Actuator.a_on) = below_PoNR
next_plunger_state(below_PoNR, Actuator.a_off) = falling_to_bottom
next_plunger_state(below_PoNR, Actuator.a_on) = above PoNR
next_plunger_state(above PoNR, Actuator.a_off) = falling_past_ PONR
next_plunger_state(above PONR, Actuator.a_on) = at_top
next_plunger_state(at_top, Actuator.a_off) = above PoNR
next_plunger_state(at_top, Actuator.a_on) = at_top
next_plunger_state(falling_past PoNR, Actuator.a_off) = falling_to_bottom
next_plunger_state(falling_past_ PoNR, Actuator.a_on) = below_PoNR
next_plunger_state(falling_to_bottom, Actuator.a_off) = at_bottom
next_plunger_state(falling_to_bottom, Actuator.a_on) = at_bottom

14

A single operation is used to execute the physicd movement of the plunger and upate sensor values
acordingly. Sensor values are only modified if the corresponding sensor is “hedthy” (not failed
stuck).

—op Plunger_Transition
plunger' = next_plunger_state(plunger, Actuator.motor)
Sensors.top' =

(if top_health = ok then
(if (next_plunger_state (plunger, Actuator.motor)
states_above top) then high else low fi)
else
Sensors.top
fi)
Sensors.PoNR' =
(if PONR_health = ok then
if (next_plunger_state (plunger, Actuator.motor) e
states above PoNR) then low else highfi)
else
Sensors.PoNR
fi)
Sensors.bottom' =
(if bottom_health = ok then
(if (next_plunger_state(plunger, Actuator.motor)
states above bottom) then low else highfi)

else
Sensors.bottom
fi)
changes_ony{plunger, Sensors.top, Sensors.PoNR, Sensors.bottom, safety}

Operations are provided to push and release the button. The button signal is only modified if the
button sensor is healthy. Only the example of pushing the button is shown here.

op Push_Transition
Sensors.button' = (if (button_health = ok) then high else Sensors.button fi)
button' = pressed
changes_ony{Sensors.button, button, safety}

Sensor failures are forced through a number of operations, one for each failure mode. The following
specifies the bottom sensor failing with a permanent high signal.

op Bottom_Fail_High
Sensors.bottom = high
bottom_health' = broken
changes_ony{Sensors.bottom, bottom_health}

5.4.4 Algorithm Implementation

The search algorithm of Figure 6 isimplemented by a Tcl program [9] integrated with the Possum tool
to execute the appropriate sequence of operations. The program executes a traditional stack-based
implementation of a depth-first search. During the search, alist of al visited states is maintained. In
order to backtrack during the search, some auxiliary operations are provided to reset the system state.

15

The program produces a transcript of all runs explored, together with a summary table of reachable
system states and corresponding system state transitions.

5.5 Animation Results

55.1 Presentation of Results

The animation results are generated separately for fault-free operation and for each permanent sensor
failure mode. The number of visited states for each operational scenario is listed in Table 5-3. The
states encountered in fault-free operation are a so visited while exploring the effects of sensor failures.

Animation mode #states
Normal (fault-free) 32
Bottom Stuck Low 64
Bottom Stuck High 74
PoNR Stuck Low 66
PoNR Stuck High 78
Top Stuck Low 64
Top Stuck High 88
Button Stuck Low 64
Button Stuck High 64
Tota (unique) 338

Table 5-3 - Number of visited states

For each mode, all generated paths are recorded and the results are summarised in a transition table.
Example results for fault-free operation and for the bottom sensor high failure are presented in Sections
5.5.2 and 5.5.3. A summary of all animation results is presented in Appendix C. Some abbreviations
have been used to capture the states but their meaning should be evident.

55.2 Fault-Free Operation

A transition table summarising all behaviours under fault-free operation is presented in Figure 8. There
are three hazardous states that occur when the button is initially released while the plunger is faling
above the PONR. However, these states are transitory and are safety isimmediately restored upon next
execution of the software. Unless the software halts or is extremely slow, no accidents can arise.

Model check for Industrial Press Control System

Nunmber of states = 32

pl unger control button not or safe CT BTPT
1 at_bottom opening rel eased a_on safe 1 2 4
2 at _bottom opening pressed a_on safe 2 1 3
3 bel ow_PoNR openi ng pr essed a_on safe 3 4 6
4 bel ow_PoNR openi ng rel eased a_on safe 4 3 5
5 above_PoNR opening rel eased a_on safe 5 6 16
6 above_PoNR openi ng pressed a_on safe 6 5 7
7 at_top openi ng pr essed a_on safe 8 16 7
8 at _top open pressed a_on safe 9 11 8
9 at_top hal t _open pr essed a_on safe 9 10 9
10 at_top hal t _open rel eased a_on safe 10 9 10
11 at_top open rel eased a_on safe 12 8 11
12 at_top r eady rel eased a_on safe 12 13 12

13 at_top ready pr essed a_on safe 14 12 13
14 at_top cl osi ng pressed a_of f saf e 14 15 18
| 15 at_top cl osi ng rel eased a_off no_abort 16 14 17
16 at_top openi ng rel eased a_on safe 11 7 16
|17 above_PoNR cl osi ng rel eased a_off no_abort 5 18 20
18 above_PoNR cl osi ng pressed a_off safe 18 17 19
19 past_PoNR cl osing pr essed a_off safe 19 20 28
| 20 past_PoNR cl osing rel eased a_off no_abort 21 19 23
21 past_PoNR opening rel eased a_on safe 21 22 4
22 past_PoNR opening pr essed a_on safe 22 21 3
23 to_bottom closing rel eased a_off safe 24 28 32
24 to_bottom uncond cls released a_off safe 24 25 27
25 to_bottom uncond_cls pressed a off safe 25 24 26
26 at_bottom uncond_cls pressed a_off safe 2 27 26
27 at_bottom uncond cls released a_off safe 1 26 27
28 to_bottom closing pressed a_off safe 25 23 29
29 at_bottom closing pr essed a_off safe 30 32 29
30 at_bottom halt_closed pressed a_off safe 30 31 30
31 at_bottom halt_closed released a_off safe 31 30 31
32 at_bottom closing rel eased a_off safe 31 29 32

Figure 8 — Sates visited under Fault-freeoperation

55.3 Bottom Stuck High Failure Operation

Figure 9 illustrates the list of states visited under a permanent bottom high sensor failure. Again there
are temporary hazardous states that are controlled by immediate software execution. Other hazardous
states of longer duration are highlighted.

Model check for Industrial Press Control System Bottom Fail _Hi gh
Nunber of states 74
p! unger control button not or safe bottom CT BT PT F.T

1 at _bottom opening rel eased a_on safe ok 1 2 4 41
2 at_bottom opening pr essed a_on safe ok 2 1 3 42
3 bel ow_PoNR openi ng pressed a_on safe ok 3 4 6 32
4 bel ow_PoNR openi ng rel eased a_on safe ok 4 3 5 31
5 above_PoNR openi ng rel eased a_on safe ok 5 6 18 34
6 above_PoNR opening pr essed a_on safe ok 6 5 7 33
7 at _top openi ng pressed a_on safe ok 8 18 7 22
8 at_top open pr essed a_on safe ok 9 13 8 21
9 at _top hal t _open pressed a_on safe ok 9 10 9 12
10 at_top hal t _open rel eased a_on safe ok 10 9 10 11
11 at_top hal t _open rel eased a_on safe broken 11 12 11 11
12 at_top hal t _open pr essed a_on safe broken 12 11 12 12
13 at_top open rel eased a_on safe ok 14 8 13 20
14 at_top ready rel eased a_on safe ok 14 15 14 74
15 at_top r eady pressed a_on safe ok 16 14 15 73
16 at_top cl osing pr essed a_off safe ok 16 17 24 72
17 at_top cl osing rel eased a_off no_abort ok 18 16 23 69
18 at_top openi ng rel eased a_on safe ok 13 7 18 19
19 at_top openi ng rel eased a_on safe broken 20 22 19 19
20 at_top open rel eased a_on safe broken 11 21 20 20
21 at_top open pr essed a_on safe broken 12 20 21 21
22 at_top openi ng pressed a_on safe broken 21 19 22 22
23 above_PoNR cl osing rel eased a_off no_abort ok 5 24 26 68
24 above_PoNR cl osing pressed a_of f safe ok 24 23 25 65
25 past_PoNR cl osing pr essed a_off safe ok 25 26 48 64
26 past_PoNR cl osing rel eased a_off no_abort ok 27 25 35 61
27 past_PoNR opening rel eased a_on safe ok 27 28 4 30
28 past_PoNR opening pressed a_on safe ok 28 27 3 29
29 past_PoNR opening pr essed a_on safe broken 29 30 32 29

30 past_PoNR opening rel eased a_on safe broken 30 29 31 30
31 bel ow_PoNR openi ng rel eased a_on safe broken 31 32 34 31
32 bel ow_PoNR openi ng pr essed a_on safe broken 32 31 33 32
33 above_PoNR openi ng pressed a_on safe broken 33 34 22 33
34 above_PoNR opening rel eased a_on safe broken 34 33 19 34
35 to_bottom closing rel eased a_off safe ok 36 48 54 60
36 to_bottom uncond cls released a_off safe ok 36 37 39 47
37 to_bottom uncond_cls pressed a_off safe ok 37 36 38 44
38 at_bottom uncond_cls pressed a off safe ok 2 39 38 43
39 at_bottom uncond_cls released a_off safe ok 1 38 39 40
40 at_bottom uncond cls released a off safe broken 41 43 40 40
41 at_bottom opening rel eased a_on safe broken 41 42 31 41
42 at_bottom opening pressed a_on safe broken 42 41 32 42
43 at_bottom uncond_cls pressed a off safe broken 42 40 43 43
44 to_bottom uncond_cls pressed a_off safe br oken 45 47 43 44
45 to_bottom opening pr essed a_on bad_drv broken 45 46 42 45
46 to_bottom opening rel eased a_on bad_drv broken 46 45 41 46
47 to_bottom uncond_cls released a_off safe broken 46 44 40 47
48 to_bottom closing pr essed a_off safe ok 37 35 49 57
49 at_bottom cl osing pressed a_off safe ok 50 54 49 56
50 at_bottom halt_closed pressed a off safe ok 50 51 50 53
51 at_bottom halt_closed released a_off safe ok 51 50 51 52
52 at_bottom halt_closed released a_off safe br oken 52 53 52 52
53 at_bottom halt_cl osed pressed a_off safe broken 53 52 53 53
54 at_bottom closing rel eased a_off safe ok 51 49 54 55
55 at_bottom closing rel eased a_off safe broken 52 56 55 55
56 at_bottom closing pr essed a_off safe broken 53 55 56 56
57 to_bottom closing pressed a_off safe broken 58 60 56 57
58 to_bottom halt_closed pressed a off safe br oken 58 59 53 58
59 to_bottom halt_closed released a_off safe broken 59 58 52 59
60 to_bottom closing rel eased a_off safe br oken 59 57 55 60
61 past_PoNR closing rel eased a_off no_abort broken 62 64 60 61
62 past_PoNR halt_closed released a_off no_abort broken 62 63 59 62
63 past_PoNR halt_cl osed pressed a off safe broken 63 62 58 63
64 past_PoNR closing pressed a_off safe broken 63 61 57 64
65 above_PoNR cl osing pr essed a_off safe broken 66 68 64 65
66 above_PoNR halt_cl osed pressed a_off safe broken 66 67 63 66
67 above_PoNR halt_closed rel eased a_off no_abort broken 67 66 62 67
68 above_PoNR cl osi ng rel eased a_off no_abort broken 67 65 61 68
69 at_top cl osing rel eased a_off no_abort broken 70 72 68 69
70 at_top halt _closed released a_off no_abort broken 70 71 67 70
71 at_top hal t _cl osed pressed a off safe broken 71 70 66 71
72 at_top cl osing pressed a_of f safe broken 71 69 65 72
73 at_top ready pr essed a_on safe broken 12 74 73 73
74 at_top r eady rel eased a_on safe broken 11 73 74 74

Figure 9 - States visited with bottom sensor stuck high

Figure 10 illustrates one of the unsafe scenarios produced by the animation. In this scenario, the bottom
sensor fails high while the plunger is falling above the PONR. As a result, the software fails to abort
press closure when the button is released and the plunger falls uncontrollably to the press bottom. The
sensor failure is detected when the plunger returns to the top of travel, and the press operation is halted.

pl unger control but t on not or safe bot t om
1 at_bottom opening rel eased a_on safe ok
2 bel ow_PoNR openi ng rel eased a_on safe ok
3 above_PoNR openi ng rel eased a_on safe ok
4 at_top openi ng rel eased a_on safe ok
5 at _top open rel eased a_on safe ok
6 at_top ready rel eased a_on safe ok
7 at _top r eady pressed a_on safe ok
8 at_top cl osing pr essed a_off safe ok
9 above_PoNR cl osi ng pressed a_off safe ok

18

above_PoNR cl osi ng pr essed a_off safe br oken

above_PoNR uncond_cls pressed a_off safe br oken
above_PoNR uncond_cls pressed a off safe br oken
above_PoNR uncond_cls released a_off no_abort broken
past _PoNR uncond_cls released a_off no_abort broken
to_bottom uncond_cls released a_off safe br oken
at_bottom uncond cls released a_off safe br oken
at _bottom opening rel eased a_on safe br oken
at _bottom opening rel eased a_on safe br oken
bel ow_PoNR openi ng rel eased a_on safe br oken
above_PoNR openi ng rel eased a_on safe br oken
at _top openi ng rel eased a_on safe br oken
at _top hal t _open rel eased a_on safe br oken

Path conplete: cycle or halted

Figure 10 - An example hazardous scenario

This scenario is typical of the remaining hazardous states of press operation. Section 5.5.4 presents a
more complete analysis of the results.

554 Analyssof Results

Inspection of the animation output reveals that all persistent failure modes are detected and handled
within one operational cycle. Despite this, 22 unsafe states are till encountered that are not
immediately rectified by the control logic. Such states require further analysis to determine
acceptabhility, asfollows.

1

The bottom sensor fails high while the plunger is below PoNR and falling to bottom. In this case
the motor drive will be unsafely activated before the plunger reaches the bottom of the press. The
sensor fault will then be detected when the plunger reaches top of the travel, and the press will halt
open. An argument for accepting this risk would probably be based on the low likelihood that the
sensor would fail within this small window of opportunity.

The bottom sensor fails high while the plunger is faling above the PONR. The fault will be
detected immediately and the press will halt closed; in the meantime however the abort facility will
be lost for the rest of that cycle. An argument for accepting this risk would probably be based on
the low likelihood that the abort facility would be required in the small window of opportunity.

The PoNR sensor fails low at a@most any point in the cycle, the press closes under normal
operation, the plunger falls past the PONR, and the operator then erroneoudy releases the button
before the plunger has reached the bottom. As a result, the software, thinking the plunger has not
yet passed the PONR, will try to abort operation by activating the motor drive (unsafdly, asit turns
out). The presswill close and then immediately start re-opening. The sensor fault will be detected
the next time the plunger reaches the bottom under normal operation, and the press will halt closed.
However, it is possible that this fault would go undetected for several operations if the operator
continues to release the button before the plunger reaches the bottom. This can be prevented by
operational procedures to maintain button pressure until the plunger beginsto rise.

The PoNR sensor fails high while the plunger is falling above the PONR. Again, the abort facility
will be lost temporarily, but the fault will be detected when the plunger reaches the bottom and the
press will halt closed.

An unusua (and extremely unlikely) scenario occurs when the PONR sensor fails high after the
plunger begins descent but prior to passing the top sensor. In this case, the software may cycle
through to the uncond_closing state where an assumed failure of the top sensor is detected and
operation is halted. The plunger is allowed to fal and descent cannot be aborted. The very small
window of opportunity for this scenario would render it acceptable.

The button sensor fails high while the press is fully open or closing, resulting in the loss of the
abort facility. The sensor fault will be detected when the plunger next reaches top of travel. The

19

risk of this failure may be reduced by an additional form of protection, for example abean to
detect human presencein the press vicinity.

6 Implementation

This section describes the implementation of the Press ftware using the SPARK restricted subset of
Ada andits associated toolset [2]. Annotations inserted to assist code verification are included bu not
discussed until section 7. The complete code listing isin Appendix D.

6.1 SPARK background

SPARK is a subset of Ada that excludes many unsafe features. The SPARK kernel is well- defined,
easy to urderstand, yet suited to programming in the large. Ada features that are hard to spedfy or
inappropriate in ahigh-integrity context are excluded.

Aswell asthe Ada subset, SPARK contains two layers of annotation, a formal comment. Anndations
constrain the Ada semantics to enable static flow analysis and proof against spedfication.

Static analysis is a mandatory asped of SPARK Ada development that provides a rigorous sanity
chedk on the dtatic structure of the code, over and above normal type-cheding. Data flow analysis
chedks the direction of data flow: that variables are written before they are read. Information flow
analysis further chedks dependencies between variables: that an output depends only on a specified set
of inputs. In SPARK these dependencies between variables are ‘declared’ as part of a procedure
specification through (mandatory) global and derives annotations”. The SPARK Examiner tool
performs flow analysis using these annaations.

The second, gtional, layer of annotation (pre, post, assert and check) state conditions that must hold
on the program at different points of its execution. For example, pre states a subprogram's
preconditions and post its postconditions; together they aad as ecification of the subprogram’s
behaviour. The condtions are expressed in a predicate logic cdled FDL that relates Ada program
objects. The SPARK Examiner generates a mlledion d verification conditions (VCs - also known as
proaf obligations) on the SPARK program using the optional annotations. VCs are generated by
tracing badkwards over the program flow graph from an asserted final state to aninitial state.

VCs must be discharged to prove that the program meds its gecification. For example, a procedure
body must achieve the post-condtion on its procedure spedfication and a loop assertion must be valid
at every iteration. The SPARK Simplifier tool will normally discharge ea@h VC automaticaly.
Otherwise, the more powerful interactive SPARK Proof Chedker is nealed.

The original SPARK source is submitted to a normal Ada compil er for trandation to machine code. If
the SPARK analysis reveds no errors then the cmpilation shoud succeed. Some Ada programs
cannot be handled by the SPARK toolkit, in particular those cntaining low-level and 10 code; these
must be vali dated separately.

6.2 Implementation description

6.2.1 Program units

Ada and SPARK code is produced manually by trandating from the formal Sum spedfication. Code
productionis aso informed by an understanding of the informal transition diagram.

The Ada architedure broadly mirrors the Sum spedfication. There are however notable differences
owing to the way the two languages handle state. In Sum, state and behaviour are present in each
schema definition, and the madiine's total state and behaviour is derived via Sum’'s smantic rules.

2 Strictly, data flow analysis (the global annotations) is mandatory and information flow analysis (the derives
annaations) is optional, but we regard bah forms as essential in arigorous devel opment.

20

Adais an imperative programming language and state and behaviour must be programmed expli citly.
Thisleadsto a dightly different modu e structure, with four Ada program units.

package Sensors - defines sensor values and read operation

package Actuator - defines actuator values and write operation

package Transitions - defines macdine states, initial state, and state transitions
procedure Machine — dedares date variables and exeautes main control loop

Figure 7 illustrates the Ada program structure, with arrows indicating unit dependencies. Units not
subject to SPARK analysis are shaded grey. Comparison with Figure 4 shows how Ada differs from
the Sum. The most obvious change is that the specification modue Machine is implemented by the
main procedure Machine and the supporting Transitions padkage. Clealy, there is no implementation
of the simulation environment.

Machine
main procedure

!

\
Transitions , Transitions
package spec package body
Sensors Sensors Actuator Actuator
package body package spec package spec package body

Figure 7 - Software Implementation Structure

Thetrandation of objeds and functionsisrelatively intuitive, except that some name modifications are
made to improve ading style and to enable the SPARK toolset to verify the code. Additional code is
provided to implement the implicit operational semantics.

The other padkages in the hierarchy declare static types and subprograms, which animate the machine
when invoked. The Sensors and Actuator padkages correspond to the Sum interface modues with the
same names. They contain type definitions and access methods to hardware devices. The baodies of
these packages access device registers directly and are not formally analysed; they are shaded grey on
the diagram.

The Sum init and op schemas beame procedures in a new padkage cdled Transitions with no drect
acessto state. This corresponds to input and output schema variables, an aternative specification
style, and eases verification.

For reasons of programming style and convenience, and for ease of andysis, state and behaviour are
dedared in the top-level procedure, Machine. Machine repeaedly exeautes transitions on the state until
a halt state isreached, thereby implementing the implicit operation of the Sum machine.

Spedfic e ements of the program are discussed below. For ease of reference each program segment is
labelled with the host program unit.
6.2.2 Typeand variable declarations

Trandation of Sum types into Ada types and variables is straightforward, with the exception that
dlightly different approaches were taken in aggregation of type declarations.

Sensor and aduator signal types translate exactly to enumerated types; however there is an extra type
that captures the mmplete sensor state. Thisis done to simplify procedural accessto the state.

type In_Sig is (high, low);

21

type State is record

top :In_Sig;

PoNR: In_Sig;

bottom : In_Sig;

button : In_Sig;
(=T o Lo I =TT 0] o XS TTPR package Sensors
type Out_Sigis (a_on, a_0ff); . package Actuator

The definition of control |ogic states trand ates naturally into an Ada enumeration type.

type Control_Type is (opening, open, ready, closing, uncond_closing, halt_open, halt_closed);
package Transitions

The program state is dedared centrally in main procedure Machine, as three variables. This
correspondsto the total state of the Sum modues.

control : Transitions.Control_Type;
sensors_state : Sensors.State;
MOLOr : ACTUALOr.OUL_SiQ; «oeeeeeieiiiieiieee et ee e procedure Machine

6.2.3 External devicecontrol

The Sum spedfication does not capture external device mntrol but assumes that device state is directly
acaessble. The Ada aode abstrads from device ®ntrol in asimilar way through aceessprocedures that
read the sensor values and switch the motor drive.

procedure Read (Value: out State);
--# global State_Seq;
--# derives Value, State_Seq from State_Seq;cccoeveeeeeecrrreenns package Sensors

procedure Write (Value: in Out_Sig);
--# global State_Seq;
--# derives State_Seq from Value, State_Seq;ccccceevvvvvvvvvverennnnnn. package Actuator

The global and derives annaations, together with the procedure parameter modes, specify data and
information flow. The physicd hardware devices access mapped memory attached to the host
processor directly and asynchronouwsly, as defined in Section 22. State_Seq is an imaginary variable
that represents the sequence of values of mapped memory. Read gets a new value from the devices,
which it also updites. Write sends a new value to the devices, and aso depends ontheir current value.

The bodies of the Read and Write procedures directly address this memory via alow-level Ada
representation d the aldress space The implementation is inherently hardware-spedfic; it cannot be
analysed by SPARK and must be verified by inspection and test. Specimen implementations are
presented in Appendices D.2 and D.4.

Note that the flow annotations specify a general behaviour for al devicereaders and writers, whatever
implementation is chosen.

The specification in Section 22 requires the pressto halt if one of the sensor registers contains an
undefined value ‘10 or ‘01. If the sensor Read procedure detects quch a value it returns a
Sensors_State where dl values are stuck ‘high’ permanently. The press shoud then halt within one
normal operational cycle.

6.2.4 Initialisation

An Ada procedure specification is written corresponding to the SUM initialisation schema.

procedure Init (control : out Control_Type;
motor : out Actuator.Out_Sig);
--# derives control, motor from ;

22

--# post(control = opening and MOtOr = a_0N);ccocveeerriiieeerriiieeenns package Transitions

This procedure assigns initial values to the state machine and the motor drive at system start-up. The
derives annotation indicates that the output values of both control and motor do not depend on
anything, i.e. that the function is a true initiaisation. The post-condition specifies what the initia
values are. It is copied from the SUM.

The implementation istrivial and listed in Appendix D.4.

6.25 Statetranstions

A SPARK procedure is defined for each state transition specified by a SUM operation schema. Each
procedure has three parameters: the set of sensors, the current state, and the motor effector. It also has
SPARK information flow annotations and pre and post-conditions trandated from the SUM
specification. Here is the procedure specification corresponding to the At_Closing schema.

procedure At_Closing (sensors_state: in Sensors.State;
control :in out Control_Type;
motor : out Actuator.Out_Sig);
--# derives control from control, sensors_state

--# & motor from sensors_state;
--# pre control = closing;
--# post (sensors_state.bottom = high
--# -> (control = halt_closed and motor = a_off))
--# and ((not (sensors_state.bottom = high)
--# and (sensors_state.PONR = high))
--# -> (control = uncond_closing and motor = a_off))
--# and ((not (sensors_state.bottom = high or
--# sensors_state.PoNR = high)
--# and (sensors_state.button /= high))
--# -> (control = opening and motor = a_on))
--# and (not (sensors_state.bottom = high or
--# sensors_state.PoNR = high or
--# sensors_state.button /=high)
-H# -> (control = closing and motor = a_0ff)); ... package Transitions

The modes of the three parameters and their information flow derivations correspond directly to their
roles in the state machine.

e sensors_state is pureinput, and therefore a non-changing in parameter.

e control may change during the procedure depending on the old state and sensor values, so it is
anin out parameter with accompanying derivation rules.

e motor is specified as an out parameter whose value is derived from the sensor input values.
Thisinformation flow rule follows from the formal Sum specification, which assigns a value to
the motor on every transition, regardless of its previous state. Informal analysis of the system
indicates that the motor is known to be in state a_off on entry (and is likewise known on entry
to every other state transition), but this fact is not stated by the Sum and is accordingly ignored.

The pre- and postconditions specify what the function must achieve. They are obtained by manual
tranditeration of Sum into FDL. The trandation is fairly immediate up to substitution of variable
names. The one difference is that FDL does not have an if ... then ... else ... form. SUM rules of the
form if A then B else C fi are trandated to the semantically equivalent (A -> B) and (not A -> C). The
formis also provably equivalent to (A and B) or (not A and C).

The bodies of the transition functions are straightforward. There are no further annotations. The body
of At_Closing is given here.

procedure At_Closing (sensors_state: in Sensors.State;

23

control :in out Control_Type;
motor : out Actuator.Out_Sig) is
begin
if sensors_state.bottom = high then
control := halt_closed;
motor := a_off;
elsif sensors_state.PoNR = high then
control := uncond_closing;
motor := a_off;
elsif sensors_state.button /=high then
control := opening;
motor := a_on;
else
motor := a_off;
end if;
ENA AL _ClOSING; vttt package body Transitions
The At_Closing example ill ustrates how flow annotations and code interact. Parameter control is
asdgned a new value if the mndition on the sensors holds. Therefore it depends on the sensors.
Otherwise, it does not change, and its value depends on its own initial value. Hence the derivation
control from control, sensors_state is respected. The Motor variable is assigned a different value
acording to the sensors’ values. Therefore the derivation motor from sensors_state is respected. Note
that motor is assigned a value inside eadh conditional case, which is a necessary condition on a
parameter of mode out.

It is visually apparent that the body setisfies the specification. A discussion d how this fact is proven
followsin sections7.1and 7.2.

6.2.6 Alternative programming styles

The Ada procedures could have been written in other ways and still reflect the Sum. Programmer
choiceisinformed by good Ada style, and by the information flow rules, which place tight restrictions
on haw variables are used.

One might make use of the observed, but unspecified, fact that the motor parameter is known onentry
to each transition. With this information, its parameter mode could be changed to in out, information
flow rules simplified, and redundant assignments removed. Some transitions never switch the motor
drive, for example At_Opening. In these cases motor could be omitted as a parameter altogether.
However, it is considered better coding style to make dl procedure signatures equivalent. It is also
unwise to rely on assumptions not explicit in the formal specificaion without revisiting that
specification.

The parameter control always takes the same value on entry; in our example it is closing. One
alternative is to make control an out parameter, change its derives statement to control from
sensors_state and amit the precondition. However, if were this was done, an assignment to the
parameter must be performed inside the else clausein the body, becaise an out parameter must always
be asigned onexit.

It happens that At_Closing and dher state transitions are called at only one place in the program,
inside the main control loop(see6.27), and their actual parameters are the state variables mentioned in
Sedion 6.2.2 An dternative programming style would make the transition procedures parameterless,
and access the variables as globals. SPARK makes all global data use visible, so there would be no cost
to review and analysis. The style alopted here has the alvantage of simplifying padage dependencies
and easing long-term maintenance.

The information flow rules are probably the hardest part of SPARK to program correctly, and very
sensitive to dight changes in design, as indicated above. This sendtivity shoud be expected.
Information flow analysis is a very stringent ched that variables and parameters are only used in the
way that the designer intended. In practise, it reveded many flaws in the program code during ealy
development. Onceinformation flow had been established, formal proof followed without difficulty.

24

6.2.7 Main program

The main Ada program first declares and initialises the state variables, and switches the motor
accordingly.

Transitions.Init (control,motor);
ACtUALOr. WIIte (IMOLOK); wovvvvverereeeieieeeeeeeeseaeerereeeeeenrnreenenesnernrernrnrnrnrnrnrnnes procedure Machine

It then enters a loop that emulates the assumed operation of the Sum specification and informal state
machine, by repeatedly activating transitions where preconditions allow. Specifically, the loop does
three things at each iteration: it reads the current value of the sensors; it executes the transition
procedure for the current state; and it switches the motor drive on or off as appropriate.

The loop only terminates if the state machine enters one of two termina states, halt_open and
halt_closed.

while (control /= Transitions.halt_open)
and then (control /= Transitions.halt_closed)
--# assert true; -- SPARK demands a loop invariant

loop
Press_Sensors.Read (sensors_state);

case control is
when Transitions.opening =>
Transitions.At_Opening (sensors_state, control, motor);
when Transitions.open =>
Transitions.At_Open (sensors_state, control, motor);
when Transitions.ready =>
Transitions.At_Ready (sensors_state, control, motor);
when Transitions.closing =>
Transitions.At_Closing (sensors_state, control, motor);
when Transitions.uncond_closing =>
Transitions.At_Uncond_Closing (sensors_state, control, motor);
when Transitions.halt_open | Transitions.halt_closed =>
null; --# check false; -- means that this path can never be taken
end case;

Press_Actuator.Write (motor);
=73 Yo [N To Yo o 5 PP URR procedure Machine

The assertion at the start of the loop is a requirement of SPARK, and states an invariant that must hold
on every iteration. Because the state machine is deterministic, exactly one operation is valid at each
repetition and True is a sufficient invariant.

The last limb of the case clause is necessary according to the rules of Ada but is never executed. This
fact is asserted by the check False annotation, which means that paths leading to that limb must yield
falsehood; i.e. no such path can exist.

The final step of the main program is to assert that it terminates only in a halt_open or halt_closed
state.

--# assert (control = Transitions.halt_open) or (control = Transitions.halt_closed); procedure
Machine

25

7 Implementation Safety Assurance

7.1 Generation of verification conditions

The SPARK Examiner tool generates verification conditions (VCs) for each procedure it examines.
V Cs are derived from the executable code and optional proof annotations, and state theorems that must
be satisfied in order to claim that the code meets its specification, as stated by the proof annotations.

They are obtained by walking backwards over the program flow graph, from afixed point given by one
annotation to an earlier annotation, symbolically undoing assignments on the way (see [2] for more
information). VCs are the relationships between variables remaining at the end of this process. They
are expressed in FDL and are typically verbose, difficult to read, and their derivation from the SPARK
code is unintuitive.

The SPARK press software contains proof annotations as pre- and post-conditions on each transition
procedure, and aloop invariant and termination condition on the main control loop. There are therefore
V Cs pertaining to these parts of the program. Altogether there are 19 VCs generated by initialisation
and transition procedures and 15 by the main procedure, including the control loop.

As an example, four verification conditions are generated for procedure At_Closing and recorded in
file at _cl osi.vcg. The compete listing is shown in Appendix E but one verification condition is
shown here.

procedure_at _cl osing_1.

H1: control = closing
H2: fld _bottom(sensors_state) = high
->
C1: (fld_botton(sensors_state) = high) -> ((halt_closed =
halt_cl osed) and (a_off = a_off)) .
c2: ((not (fld_botton(sensors_state) = high)) and (fld_ponr(

sensors_state) = high)) -> ((halt_closed =
uncond_closing) and (a_off = a_off)) .

C3: ((not ((fld_botton(sensors_state) = high) or (fld_ponr(
sensors_state) = high))) and (fld_button(
sensors_state) <> high)) -> ((halt_cl osed =
opening) and (a_off = a_on))

4. (not ((fld_bottonm(sensors_state) = high) or ((fld_ponr(
sensors_state) = high) or (fld_button(
sensors_state) <> high)))) -> ((halt_closed =
closing) and (a_off = a_off))

The FDL notation, particularly record field selection, is somewhat clumsy and obscure. In fact, the
verification conditions are trivia, and can be discharged using name equivalence and modus ponens.
The body of At_Closing achieves its specification in a straightforward, obvious manner, so one might
expect the VCsto be simple.

There are four V Cs because the postcondition on the procedure has four conjuncts. By comparing with
the SPARK specification it will be observed that the hypotheses of the VCs are derived from the
precondition together with the antecedents of the postcondition. The conjectures of the VCs are
calculated by assuming the conclusions of the postconditions and walking backwards through the
procedure body.

7.2 Discharge of verification conditions

The SPARK Simplifier generates two sets of log files: arecord of the proofs performed (*.dg); and a
summary of proven theorems (*.siv). Inspection of the files shows that all 34 V Cs are discharged.

A proof of procedure_at _cl osi ng_1, taken fromfile at _cl osi . sl g isshown in Appendix E.

26

As expected, the VC is discharged automatically by simplifying equivalences in the conjecture and by
showing contradictory hypotheses. Other V Cs for other procedures are longer, but do not require logic
that is any more complex.

The summary of proven theorems for procedure at_closing, taken from file at _cl osi . si v isshown
in Appendix E.

Discharge of al VCs proves formally that the SPARK code satisfies its specification, as stated by the
proof annotations. Because the annotations were trandated directly from Sum, it also proves rigorously
that the SPARK satisfies the Sum specification.

8 Discussion

8.1 Formal Methodsand Design Safety Analysis

There are a number of ways that formal methods can be used to support safety analysis. In addition to
providing higher levels of rigour, forma methods can improve the efficiency of the analysis task by
enabling various levels of automation. In keeping with our aim of addressing lightweight assurance
methods, we discuss the use of forma methods for animation, static analysis, model checking and
hazard analysis. Assurance by theorem proving is not considered.

8.1.1 Animation

Animation and simulation of formal specifications has been proposed as a useful and cost effective
validation tool and has been implemented for many formalisms, including Z dialects [7, 10], VDM
[11], the B method [12], the SCR method [13] and RSML [14]. The advantages of animation include:

1. Providing enhanced understanding of specifications through immediate feedback;
2. Discovery of specification inconsistencies and simple errors; and
3. Validation of functions and expected behaviour through executed test cases.

For animation to be possible, the specification must be in an executable form. Hayes and Jones note
the dangers of encouraging executable specifications [15], suggesting that useful specification
strategies and styles are precluded and it is impossible to include assumptions or clauses that are not
computable. Furthermore, executable specifications may not alow nondeterminism; a useful and
sometimes necessary specification tool. They conclude that executable specifications would be best
classified as rapid prototyping.

Even interpreted as a protoyping activity, interactive animation and simulation of a formal
specification offersinsight into a specification and improves the effectiveness of using formal methods.
However, animation suffers the limitations of testing in that, results drawn from one animation
scenario do not necessarily imply more universal properties about the specification behaviour. For the
case study presented here it was possible to model system safety properties and software as finite state
machines, and to carry out an exhaustive analysis by performing a complete search of the reachable
state space. In more general situations, however, animation alone does not provide the rigorous
assurance required of safety critical systems.

8.1.2 Static Analysis

Some formal specification languages and tools offer limited forms of automated static analysis for
consistency, completeness, non determinism, reachability and deadlock [13] [14] [16]. Such tools can
detect subtle errors in specifications and, where safety properties can be expressed in an appropriate
form, they can be used to perform safety anaysis. It has been shown that such smple checks can
identify a large number of specification errors [17]. However, the analysis cannot be generaly
extended to more sophisticated functional safety requirements.

27

8.1.3 Modd Checking

Modd cheding is a verification technique that has traditionally been used for rigorous hardware
verification [18]. The success of hardware model checking has lead to incressed application to
software verification [19] [20] [21]. The aim of model chedking is to systematically explore the
behaviour of an operational system model for satisfaction of a set of desired functional properties. It
suffers the same genera problems nated for animation above, but can be more efficient in certain
domains.

A number of input languages have been proposed for the specifications to be verified but most require
trandation into an internal representation for efficient exeaution. The specification langauges are
commonly restricted to constructive styles, often based on finite state madiines, where e&h state an
be determined trivially from existing states. One exception is Jdson’s Nitpick [22] which aacepts
specifications in a large subset of Z. In this case, implicit specificaion styles are al owed, including
the use of state invariants and definition of behaviour through combination of operational schemas|[6].

The largest obstacle in making software model cheding feasible has been the large state spaces
introduced by complex software data structures. Recent innovations have begun to successfully
addressthis isaue through state space dstraction techniques and efficient executions [20] [21] [22].
Current technology all ows state spaces in the order of 10°° to be explored using practical amourts of
time and computing resources.

If it isfeasible, safety analysis through model cheding promisesto be an efficient and rigorous option.
One potentia obstacle lies in communicaing the asurance gained from successful verification.
Unlike proof, there is no reasoned argument that can be audited and the integrity of the tod must be
relied upon.

8.1.4 Hazard Analysis

Safety analysis has traditionaly been performed using semi-formal hazard analysis techniques such as
Fault Tree Analysis [23]. Such techniques are usualy used to decompose an identified environmental
hazard into its causal failure modes and, where the failure modes relate to software, complementary
safety requirements are typically derived. Asairrance of software safety is then generated by
demonstrating that the software spedfication satisfies the derived safety properties and that the
specification isimplemented correctly [24] [25] [26].

Application of hazard analysisistypicaly a manual process but some work has been dore using formal
specifications as the basis for partial automation d hazard analysis [14] [27]. These techniques
typically use the causal relationships implicit in a specification to derive a structure the analysis.
Others have aeated formal interpretations of hazard analysis techniques for the purpose of making the
analysis more rigorous [28] [29]. In these caes, failure modes are typicdly expressed as properties
formulated in some temporal logic but there is no proposed process for generating them automatically
from aformal specification.

8.1.5 Proposed Approach

The safety analysis approach described in this paper initially makes use of animation techndogy and
the expected advantages were exhibited. In particular, many minor errors in the formal specification
were discovered through initial experimentation with the model. It also facilitated an interactive
approach to software design, where the specification was built and “tested” incrementaly. This
allowed many flawsto be removed before more rigorous analysis began.

The use of animation technology to perform the rigorous safety analysisis quite different to the model
chedking approaches described above. In particular, the model cheding engine was not built within
the animation tool but was integrated externally via an application program interface. This allowed the
full range of animation cgpabilities to be used, in particular, the specification could make use of the full
expressive power of the Z language and safety analysis was performed onthe specification directly.
However, the performance of the analysis was substantially lower than those demonstrated for custom
model cheding tools. Furthermore, the model cheding engine was custom built for the goplication

28

using knowledge of the application. To be applied more widely to larger, generic systems, the toolset
would require significant modification. Alternatively, mature model checking technology could be
used.

Regardless of the tools used, the approach to safety assurance differs significantly to traditional hazard
analysis methods. In particular, we demonstrate safety of the complete software behaviour in the
context of a modelled environment, rather than derive separate software safety properties and
environmental assumptions.

This approach requires additional rigour in specifying assumptions about the software execution
environment but it eliminates the two-step process of applying property-based hazard analysis through
the system design, then validating the derived safety properties against a software specification. In
fact, the rigorous environmental modelling can be viewed as an advantage since it exposes operationa
assumptions for external validation.

8.2 Production and verification of SPARK Ada Code

Some of our processis manual, particularly generation of the SPARK Ada code and proof annotations
from the Sum specification. This requires maintenance of different descriptions of the system, at
essentially the same level, and is a source of potential errors of trandation. A more automated process
would be more reliable, and also certifiable. The following different, and as yet incomplete, solutions
have been proposed.

The Cogito group [30] have proposed a method for the refinement of Sum specifications to Ada code
within the Cogito framework. The Adais trandated from an Intermediate Language, a subset of SUM,
which contains schema descriptions of imperative statements and control structures, and which can be
assembled into op schemas that are similar to proceduresin a programming language. The Intermediate
Language can be written directly, or refined from normal SUM and the refinement steps verified by
Ergo, the theorem prover for Cogito.

The Cogito toolset includes a trandator from IL into a subset of Ada. This subset is not SPARK-
compliant. It contains forbidden features such as generic packages and declare blocks; moreover, it
does not offer any annotations. However it does reflect many of the principles underlying SPARK,
such as the prohibitions on unbounded types, aliasing and reading of unitialised variables. Further,
Caogito retains flow information, and so has the potential to generate mandatory SPARK annotations,
although it does not do so presently.

As well as program statements, an IL schema may specify conditions that do not translate directly to
program, perhaps rules derived from software requirements. These are retained as Z rules on op
schemas. At present the Adatranslator converts them into simple Ada comments. In principle however,
they could be trandated to SPARK proof annotations, and discharged using the SPARK proof checker.

The DERA Compliance Notation [31] is built upon ProofPower, a commercial Z theorem prover. It
uses a literate programming paradigm to link Z specifications, SPARK Ada code and natural language
text. The user builds an Ada framework for their system, without initially providing the details of the
implementation. Instead, requirements are expressed as Z statements and SPARK annotations.
Progressively, these are replaced, manually, by Ada code. An associated Compliance Tool checks that
the Ada code is compatible with the Z, by generating verification conditions in similar manner to the
SPARK tool. VCs can be discharged using Proof Power or ancther Z prover such as CADiIZ. Within the
Notation, fragments of code are scattered throughout a descriptive text. There are tools that assemble
Adaand Z fragments into complete programs for submission to a compiler, animator, or other tool.

The University of York have developed a method to convert a Z specification into the refinement
calculus - essentially an implementable subset of Z together with static pre- and post- conditions [32].
It is claimed that the implementable subset is tranglatable into SPARK Ada, although the work is less
advanced compared with Cogito. The validity of the refinement process can verified using a theorem
prover like CADIZ.

29

8.3 Limitations of Approach

Although forma methods have been used extensively to verify and validate functiona aspects of the
case study system, some aspects have not been formalised and remain as assumptions. For a complete
safety case, these aspects must be addressed by separate analyses.

8.3.1 Hardwarelnterface

An informal specification for the hardware interface is provided in Section 4.3 and the corresponding
implementation in Section 6.2.3. However, the interface is not considered in the formal design or
implementation assurance. In principle, it may be possible to extend the system model with a
specification of the hardware design and its relationship to the software address space. However, the
formalisation would add little to the informal specification. The interface specification is an important
part of the design but assurance of its correctness must be provided by a separate process.

8.3.2 Failure Analysisand Risk Assessment

The effect of some failures, such as electro-mechanical faults in the drive mechanism, are not treated
formally and the analysis assumes that they do not occur. Although the control system design is
validated under sensor failures, an assumption is made that only single, permanent sensor failures will
be experienced. Even under the assumed sensor failure modes, some hazardous behaviours are till
found to remain.

A separate risk assessment is necessary to show that the likelihood of violating the assumptions is
sufficiently low, and that the residual risk of remaining hazardous conditions is acceptable.

8.3.3 Timing

In Section 5.5.4 we note that some of the hazardous states can be ignored due to their transient nature,
effectively eliminating the exposure of risk. In fact, this relies on the assumption of comparative
execution time of the software and the behaviour of the environment. While discharging the
assumption is quite simple for the system presented in this report, the analysis may be non-trivial for
more complex applications.

8.4 FutureWork

Future work could include devel opment of the Possum animation tool to facilitate more efficient model
checking. Alternatively, the use of an existing model checker could be explored. Regardiess of the
toolset used, the system design safety assurance approach described in this paper should be explored on
a number of applications, including those with modularised software designs. An interesting direction
would be to apply the approach to partitioned software systems in which the critical software is
modelled and shown to be safe, assuming integrity of the design partition. The obligation to verify the
partition would be then be transferred to the code verification.

We intend to investigate mechanising the trandation from the Sum specification to the SPARK
annotations. This would remove a source of error introduced by the manual trandation and remove the
burden of multiple representations, particularly with regard to change control. It is possible that some
constraints on the specification style would arise but these may actually assist the specification activity.

9 Conclusions

This paper has demonstrated an approach to applying formal methods to verify that a given software
design meets its system-safety requirements and that given source code (in Ada) meets its design
requirements. We have aimed for lightweight application of formal methods which maximises the
opportunities for automation of assurance tasks and reduces the requirement for verification by formal
proof. The method employs a widely used formal specification language (Z) and a mixture of
systematic animation, similar to model checking, and SPARK Ada code analysis.

30

Full validation o design safety was possble for the particular application because of its relatively
simple nature, and the fact that its behaviours could be reduced to a finite set for animation. Although
such full validation may not be possible in more general situations, the gproach nore-the-less offers
clarity, tracedility and automation of much of the analysis.

In the proposed method, assurance is achieved by:

1. Preliminary hazard analysis that derives top level safety requirements relate to desirable invariants
of the operational system state.

2. Use of animation to execute dl behaviours of a formally specified software control system in the
simulated context of its environment. The environment includes a model of the ntrolled physica
system as well as simulated sensor failure modes. Automatic comparison d executed states with
the safety requirements identifies operational scenarios that can lead to unsafe states.

3. Useof the SPARK toadlset to verify correctnessof the Ada awde against the formal software design.
The Ada mde is written to conform to the provided specification, with the style mnstrained to
facilitate verification. Proof annotations are inserted Complete verificationisrequired. Trandation
from the formal specificationto SPARK verificaion annotations is required at present but we aim
to increase the medhanisation of this processin the future.

The method was applied to a small case study with a control system design modelled as a state
macdhine. Results of the verification confirm that the software is generally safe but some scenarios that
violate the safety requirements are identified. Two of the scenarios are unexpectedly introduced by the
detection mecdhanisms designed to miti gate other sensor fail ure modes.

The proposed approach could be gplied effectively with current model checking technology and
emerging code verification toolsets. While it impases greater requirements on the modelling of system
and environmental behaviour, the gproach can simplify the assurance dfort by eliminating the need
for manual system hazard analysis or safety verification.

10 Acknowledgments

We thank Paul Strooper for comments on earlier versions of this paper, Dan Hazel for suppat of the
animation and the Cogito groupfor the Sum formatting tool used to prepare this report.

11 References

[1] A. Bloesch, E. Kazmierczak, P. Kearney, and O. Traynor, “Cogito: A methodology and system for
formal software development,” International Journal of Software Engineering and Knowledge
Engineering, vol. 4,pp. 599617, 1995.

[2]J. G. P. Barnes, High Integrity Ada - The SPARK Approach: Addison-Wesley, 1997.

[3]J. McDermid and T. Kely, “Industrial Press. Safety Case,” High Integrity Systems Engineeing
Group, University of York 1996.

[4] US Department of Defense, MIL-STD-1629A, Procedures for Performing a Failure Mode Effects
and Criticality Analysis, 1980.

[5] O. Traynor, P. Kearney, E. Kazmierczak, L. Wang, and E. Karlson, “Extending Z with modues,”
Australasian Computer Science Communications, vol. 17,pp.513522, 1995.

[6] J. Woodcock and J. Davies, Using Z: Prentice-Hall, 1996.

[7]D. Hazel, P. Strooper, and O. Traynor, “An animator for the SUM spedfication language,”
presented at Procealings Asia-Padfic Software Engineering Conference and Internationa
Computer Science Conference, 1997.

[8] R. Milner, “A Calculus of Communicaing Systems,” Lecture Notes in Computer Science, vol. 92,
1980.

31

[9] B. Welch, Practical Programming in Tcl and Tk: Prentice Hall, 1995.

[10] M. Hewitt, C. OHalloran, and C. T. Sennet, “Experiences with PiZA, an Animator for Z,”
presented at Procealings ZUM'97, 1997.

[11] C. B. Jores, K. D. Jones, P. A. Lindsay, and R. Moore, Mural: A Formal Development System:
Springer Verlag, 1991.

[12] J. Bicarregui, J. Dick, B. Matthews, and E. Woods, “Making the most of formal specification
through animation, testing and proof,” Science of Computer Programming, vol. 29,pp. 5378, 1997.

[13] C. Heitmeyer, J. K. Jr, B. Labaw, and R. Bharadwaj, “SCR*: A Toolset for Specifying and
Anayzing Requirements,” presented at Proc. 10th Annua Conference on Computer Assurance
(COMPASS95), 1995.

[14] V. Ratan, K. Partridge, J. Reese, and N. Leveson, “Safety Analysis Tools for Requirements
Spedfications,” presented at Proc. 11th Annual Conference on Computer Asairance
(COMPASS96), 1996.

[15 1. J. Hayesand C. B. Jones, “ Specifications are not (necessarily) executable,” |EE/BCS Software
Engineering Journal, vol. 6, pp. 320338, 1989.

[16] D.Hard, H. Lachover, A. Aaanad, A. Pnudli, M. Paliti, R. Sherman, A. Shtull-Trauring, and M.
Trakhenbrot, “STATEMATE: A working environment for the development of complex reactive
systems,” |EEE Transactions on Software Engineering, vol. 16,pp.403414, 1990.

[17] R. R. Lutz, “Targeting Safety-Related Errors During Software Requirements Analysis,”
presented at Proc. First ACM SIGSOFT Symposium of Software Engineering, Los Angeles, 1993.

[18 J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and J. Hwang, “Symbolic model

cheding: 1020 states and beyond! presented at Proc. 5th Annual Symposium on Logic in
Computer Science, 1990.

[19 J M. Atlee ad J Gannon, “State-Based Model Checking of Event-Driven System
Requirements,” |EEE Transactions on Software Engineering, vol. 19, p. 2440, 1993.

[20] W. Chan, R. Anderson, P. Beame, S. Burns, F. Mudugno, D. Notkin, and J. D. Reese, “Model
Cheding Large Software Specifications,” |EEE Transactions on Software Engineering, vol. 24, pp.
498519, 1998.

[2]] C. Heitmeyer, J. JamesKirby, B. Labaw, M. Archer, and R. Bharadwgj, “Using Abstraction and
Model Chedking to Detect Safety Violations in Requirements Specifications,” |EEE Transactions
on Software Engineering, vol. 24, pp 927-947, 1998.

[22] D.Jaksonand C. A. Damon, “Elements of Style: Analysing a Software Design Feature with a
Courterexample Detector,” IEEE Transactions on Software Engineering, vol. 22, pp. 484495,
1996.

[23] N. H. Roberts, W. E. Vesdly, D. F. Haad, and F. F. Goldberg, Fault Tree Handbook: Systems
and Reliability Research Officeof U.S. Nuclear Regulatory Commisson, 19B1.

[24] Australian Department of Defence, Def(Aust) 5679 The procurement of computer-based safety
critical systems, 2.0ed: Codification and Standardisation Authority, 1998.

[259] RTCA Inc., Software considerations in airborne systems and equipment certification,
RTCA/DO178-B:, 1992.

[26] UK Ministry of Defence, The Procurement of Safety Critival Software in Defence Equipment.
Defence Sandard 00-55, 1995.

[27] S. Liu and J. McDermid, “A Model-Oriented Approach to Safety Analysis Using Fault Trees
and a Support System,” J. Systems Software, vol. 35,pp.151-164, 1996.

[28] K.M. Hansen, A. P. Ravn, andV. Stavridou, “ From Safety Analysis to Software Requirements,”
| EEE Transactions on Software Engineering, vol. 24,pp.573-584, 1998.

32

[29] J. Gorski and A. Wardinski, “Formalising Fault Trees,” presented at Proceeadings of the Safety
Critical Systems Symposium, 1995.

[30] P. Kearney andL. Wildman, “From Formal Spedficationsto Ada Programs,” The University of
Queendand, SVRC Technicd Report 98-24, 1998.

[3]] C.OHadloran, C. T. Sennett, and A. Smith, “Demonstrating the Compliance of Ada Programs
with Z Specifications,” presented at Proceedings of the 5th Refinement Workshop,1992.

[32] D.T. Jordan, C. J. Locke, J. A. McDermid, C. E. Parker, B. A. P. Sharp, and |. Toyn, “Literate
Formal Development of Ada from Z for Safety-Critica Applicdion",” presented at
SAFECOMP94, 1994.

Appendix A Software Design Sum Specifications
Following Sum modules are provided:

1. Sensors

2. Actuator

3. Machine

_Sensors
1
/I Industrial Press Sensors Module
/I Press_Sensors models the state of the Press Sensor signals.
/I Each sensor may produce a high or low signal.
1
IN. SG::= high| low
/I Binary input signal
__State

button, top, PONR, bottom: IN_ 9SG

__Actuator
1
/I Industrial Press Actuator Drive
/I The motor drive module isimported by the state machine.
/I The only contents are the type and state of the motor drive
/I signal.

1
1
/I Type Declarations
1
OUT 9G:=aon| a off
1
/I State
1

state

’7 motor: OUT 9SG

__Machine

1
/I Industrial Press SW State Machine Module

/I Captures the logic of the Press control system.

/I Values of Press sensor and drive signals are imported as variables
/I to be manipulated by the control system.

1
import Sensors
import Actuator
1
/I Type Declarations

Il
CONTROL ::= opening | open| ready | closing| uncond_closing
halt_open | halt_closed

1

/I State

/I Control logic state includes the logical software state

/I aswell asthe state of press sensor and drive signals.

1

__State
control: CONTROL
Sensors.state
Actuator.state

1
/I Initidisation
1

init

control' = opening
Actuator.motor' = Actuator.a_on

1
/I Operations
/I Each operation corresponds to behaviour exercised
/I inaparticular state. The precondition of each operation
/I isthe associated state.
/I For each operation, current values of sensor signals are used
/I to determine the appropriate state transition and change the
/I Press motor drive signal.
/I Only the software state and motor signal may be modified.
1
/I Execution of the state machine is assumed to occur by repeatedly
/I invoking the operation with an active (true) preconditon.
/I Selection of operations is deterministic since operation
/I preconditions are mutually exclusive.
1
__op At_Opening
pre control = opening
if Sensors.top = Sensors.high
then
(control' = open A Actuator.motor' = Actuator.a_on)
else
(control' = opening A Actuator.motor' = Actuator.a_on)
fi
changes_only{control, Actuator.motor}

—opAt_Open
pre control = open
if (Sensors.bottom = Sensors.high) v
(Sensors.PoNR = Sensors.high) v

35

(Sensors.button = Sensors.high)
then
(control' = halt_open A Actuator.motor' = Actuator.a_on)
else
(control' = ready A Actuator.motor' = Actuator.a_on)
fi
changes _only{control, Actuator.motor}

__opAt_Ready.
pre control = ready
if Sensors.bottom = Sensors.highv
Sensors.PoNR = Sensors.high
then
(control' = halt_open A
Actuator.motor' = Actuator.a_on)

else
(if Sensors.button = Sensors.high
then
(control’ = closing A Actuator.motor' = Actuator.a_off)
else

(control' = ready A Actuator.motor' = Actuator.a_on)
fi)
fi
changes _only{control, Actuator.motor}

__opAt_Closing
pre control = closing
if Sensors.bottom = Sensors.high

then
(control’ = halt_closed A Actuator.motor' = Actuator.a_off)
else
(if Sensors.PoNR = Sensors.high
then
(control' = uncond_closing A Actuator.motor' = Actuator.a_off)
else
(if Sensors.button = Sensors.low
then
(control' = opening A Actuator.motor' = Actuator.a_on)
else
(cortrol' = closing A Actuator.motor' = Actuator.a_ df)
fi)

fi)
fi
changes_only{control, Actuator.motor}

__opAt_Uncond_Closing
pre control = uncond_closing
if Sensors.top = Sensors.high
then

36

(control' = halt_closed A Actuator.motor' = Actuator.a_off)
else
(if Sensors.bottom = Sensors.high A
Sensors.top = Sensors.low
then
(control' = opening A Actuator.motor' = Actuator.a_on)
else
(control' = uncond_closing A
Actuator.motor' = Actuator.a_dff)
fi)
fi
changes _only{control, Actuator.motor}

__opAt_Halt_Open
pre control = halt_open
changes only{}

op At_Halt_Closed
pre control = halt_closed
changes_only{}

Transition == (At_Opening v At_Open v At_Ready v At_Closingv At_Uncond_Closing v
At_Halt_Open v At_Halt_Closed)
|

37

Appendix B Simulation Environment Sum Specifications
The Smulator module specification is provided.

—3Smulator
I e
/I Industrial Press Simulation Environment
/I The environment modul e provides a simulation environment for the Press
/I logic state machine. The simulation is performed at a physical level.
/I The modelled physical state of the pressis used to drive sensor signals.
/I These, in turn, drive the control logic which then causes a physical
/I state change. It is possible to activate sensor failures and
/I investigate their effect.
I e
import Sensors
import Actuator
import Machine
I mmmm -
Il State
/l In addition to encapsulating the logic, sensor and motor drive states,
/I the state represents the physical movement of the plunger.
e e
SENSOR_HEALTH ::= broken| ok
PLUNGER ::= at_bottom| below_PoNR| above PoNR| at_top
falling_past_ PONR| falling_to_bottom
states_above top == {at_top}
states above PoNR == {above PoNR, at_top, falling_past PoNR}
states above bottom == {s. PLUNGER] s # at_bottom}
SAFETY ::= safe| abort_failed| unsafe_motor_drive
BUTTON ::= pressed| released
high == Sensors.high
low == Sensors.low

next_plunger_state: (PLUNGER x Actuator.OUT_SG) — PLUNGER

next_plunger_state(at_bottom, Actuator.a off) = at_bottom
next_plunger_state(at_bottom, Actuator.a_on) = below_PoNR
next_plunger_state(below_PoNR, Actuator.a_off) = falling_to_bottom
next_plunger_state(below_PoNR, Actuator.a_on) = above PoNR
next_plunger_state(above PoNR, Actuator.a_off) = falling_past PONR
next_plunger_state(above PoNR, Actuator.a_on) = at_top
next_plunger_state(at_top, Actuator.a_off) = above PoNR
next_plunger_state(at_top, Actuator.a_on) = at_top
next_plunger_state(falling_past PoNR, Actuator.a_off) = falling_to_bottom
next_plunger_state(falling_past PoNR, Actuator.a_on) = below_PoNR
next_plunger_state(falling_to_bottom, Actuator.a_off) = at_bottom
next_plunger_state(falling_to_bottom, Actuator.a_on) = at_bottom

state
Sensors.state
Actuator .state
Machine.state
plunger: PLUNGER
button: BUTTON
safety: SAFETY
button_health, top_health, PONR_health, bottom health: SENSOR HEALTH

safety = if ((plunger = falling_to_bottom and
(Actuator.motor = Actuator.a_on)) then
unsafe_motor_drive
else
if ((plunger in states_above PoNR) and
(Actuator.motor /= Actuator.a_on) and
(button = released)) then
abort _failed
else
safe
fi
fi

/I Initialisation
/I Initialises sensor signals, logic state machine and physical
Il state.

—init
Machine.init
Sensors.button’ = Sensors.low
Sensors.top' = Sensors.low
Sensors.PONR' = Sensors.high
Sensors.battom’ = Sensors.high
button_health' = ok
top_health' = ok
PoNR_health' = ok
bottom_health' = ok
plunger' = at_bottom
button' = released

/I Operations

/I Simulation operations are provided to manipul ate the system
/I at aphysical level.

/I The button may be pressed or released.

39

/I Sensors may be forced to fail at any time. Failures are considered

/I to be permanent.

/I The plunger moves between physical statesin accordance with

/I expected physical laws. The granularity of movement isto alow

/I redlistic smulation of movement to be interleaved with sensor failures

// and operator behaviour.

/I Plunger movements are driven by current movement and motor drive.

/I Each movement modifies sensor signals as expected and allows execution
/' of the control logic.

I mmmmmmmm e

/[Button operations
I mmmmmmmmmmm e
op Push_Transition
Sensors.button’ = (if (button_health = ok) then high else Sensors.button fi)
button' = pressed
changes_only{Sensors.button, hutton, safety}

op Release Transition
Sensors.button’ = (if (button_health = ok) then low el se Sensors.button fi)
button' = released
changes_only{Sensors.button, hutton, safety}

/I Sensor Failure operations
I mmmmmmmmmmm e
—op Top_Fail_High
Sensors.top' = high
top_health' = broken
changes_only{Sensors.top, top_health}

—op Top_Fail_Low.
Sensors.top' = low
top_health' = broken
changes_only{Sensors.top, top_health}

op PoNR_Fail_High
Sensors.PoNR' = high
PoNR _health' = broken
changes only{Sensors.PoONR, PONR_health}

—Oop PoNR_Fail _Low

Sensors.PONR' = low
PoNR_health' = broken
changes _only{Sensors.PoONR, PONR_health}

—op Bottom_Fail_High
Sensors.baitom’ = high
bottom_health' = broken
changes_only{Sensors.bottom, batom_health}

op Bottom_Fail_Low:.

Sensors.battom' = low
bottom_health' = broken
changes_only{Sensors.bottom, batom_health}

—op Button_Fail_High

Sensors.button’ = high
button_health' = broken
changes _only{Sensors.button, hutton_health}

—op Button_Fail_Low.

Sensors.button’ = low
button_health' = broken
changes_only{Sensors.button, hutton_health}

// Plunger Transition
I

Il Movement is governed by a state machine which transitions between

/| statesin accordance with current motor drive.

—op Plunger_Transition

plunger’ = next_plunger_state(plunger, Actuator.motor)
Sensors.top’ =
(if top_health = ok then
(if (next_plunger_state (plunger, Actuator.motor)
states above top) then high else low fi)
else
Sensors.top
fi)
Sensors.PoNR' =
(if PONR_health = ok then
if (next_plunger_state (plunger, Actuator.motor) e
states abose PoNR) then low else highfi)

41

else
Sensors.PoNR
fi)
Sensors.battom’ =
(if bottom_health = ok then
(if (next_plunger_state(plunger, Actuator.motor) e
states above_bottom) then low else highfi)
else
Sensors.bottom
fi)
changes_only{plunger, Sensors.top, Sensors.PoNR, Sensors.bottom, safety}

/l Can also remain at a steady physical state in order to test
/I behaviour when no sensor signals change.
I mmmmmmmmmmm e
op Control_Transition
Machine. Transition
changes_only{Machine.control, Actuator.motor, safety}

42

Appendix C Simulation Results
The results of the simulations under each of the sensor failures are presented bel ow.

Simulation Under No Sensor Failure

Mbdel check for Industrial Press Control System

Nunber of states = 32

pl unger control button not or safe CT BTPT
1 at _bottom opening rel eased a_on safe 1 2 4
2 at _bottom opening pressed a_on safe 2 1 3
3 bel ow_PoNR openi ng pressed a_on safe 3 4 6
4 bel ow_PoNR openi ng rel eased a_on safe 4 3 5
5 above_PoNR openi ng rel eased a_on safe 5 6 16
6 above_PoNR openi ng pressed a_on safe 6 5 7
7 at _top openi ng pressed a_on safe 8 16 7
8 at_top open pressed a_on safe 9 11 8
9 at_top hal t _open pressed a_on safe 9 10 9
10 at_top hal t _open rel eased a_on safe 10 9 10
11 at_top open rel eased a_on safe 12 8 11
12 at_top r eady rel eased a_on safe 12 13 12
13 at_top r eady pressed a_on safe 14 12 13
14 at_top cl osi ng pressed a_of f safe 14 15 18
15 at_top cl osi ng rel eased a_off no_abort 16 14 17
16 at_top openi ng rel eased a_on safe 1 7 16
17 above_PoNR cl osi ng rel eased a_off no_abort 5 18 20
18 above_PoNR cl osi ng pressed a_of f safe 18 17 19
19 past_PoNR closing pressed a_off safe 19 20 28
20 past_PoNR cl osing rel eased a_off no_abort 21 19 23
21 past_PoNR opening rel eased a_on safe 21 22 4
22 past_PoNR opening pressed a_on safe 22 21 3
23 to_bottom closing rel eased a_off safe 24 28 32
24 to_bottom uncond_cls released a off saf e 24 25 27
25 to_bottom uncond_cls pressed a_off saf e 25 24 26
26 at_bottom wuncond_cls pressed a_of f safe 2 27 26
27 at_bottom uncond_cls released a_off safe 1 26 27
28 to_bottom closing pressed a_of f safe 25 23 29
29 at_bottom closing pressed a_off safe 30 32 29
30 at_bottom halt_cl osed pressed a_off saf e 30 31 30
31 at_bottom halt_closed released a_off safe 31 30 31
32 at_bottom closing rel eased a_off safe 31 29 32

Simulation Under Bottom Sensor Low Failure

Model check for Industrial Press Control System Bottom Fail _Low

Nunber of states = 64

pl unger control button not or safe bottom CT BT PT FT
1 at_bottom opening rel eased a_on safe ok 1 2 4 64
2 at_bottom opening pressed a_on safe ok 2 1 3 63
3 bel ow_PoNR openi ng pressed a_on safe ok 3 4 6 35
4 bel ow_PoNR openi ng rel eased a_on safe ok 4 3 5 36
5 above_PoNR openi ng rel eased a_on safe ok 5 6 18 26
6 above_PoNR openi ng pressed a_on safe ok 6 5 7 27
7 at_top openi ng pressed a_on safe ok 8 18 7 28
8 at_top open pressed a_on safe ok 9 13 8 29
9 at _top hal t _open pressed a_on safe ok 9 10 9 12
10 at_top hal t _open rel eased a_on safe ok 10 9 10 11
11 at_top hal t _open rel eased a_on saf e broken 11 12 11 11
12 at_top hal t _open pressed a_on safe broken 12 11 12 12
13 at_top open rel eased a_on safe ok 14 8 13 20
14 at_top ready rel eased a_on safe ok 14 15 14 21
15 at_top ready pressed a_on safe ok 16 14 15 22
16 at_top cl osi ng pressed a_off safe ok 16 17 46 23
17 at_top cl osi ng rel eased a_off no_abort ok 18 16 45 24
18 at_top openi ng rel eased a_on saf e ok 13 7 18 19
19 at_top openi ng rel eased a_on saf e broken 20 28 19 19
20 at_top open rel eased a_on safe broken 21 29 20 20

21 at_top r eady rel eased a_on safe broken 21 22 21 21
22 at_top ready pressed a_on safe broken 23 21 22 22
23 at_top cl osi ng pressed a_of f safe broken 23 24 30 23
24 at_top cl osi ng rel eased a_off no_abort broken 19 23 25 24
25 above_PoNR cl osi ng rel eased a_off no_abort broken 26 30 32 25
26 above_PoNR openi ng rel eased a_on safe broken 26 27 19 26
27 above_PoNR openi ng pressed a_on safe broken 27 26 28 27
28 at_top openi ng pressed a_on safe broken 29 19 28 28
29 at_top open pressed a_on safe broken 12 20 29 29
30 above_PoNR cl osi ng pressed a_of f safe broken 30 25 31 30
31 past_PoNR closing pressed a_of f safe broken 31 32 42 31
32 past_PoNR closing rel eased a_off no_abort broken 33 31 37 32
33 past_PoNR opening rel eased a_on safe broken 33 34 36 33
34 past_PoNR opening pressed a_on safe broken 34 33 35 34
35 bel ow_PoNR openi ng pressed a_on safe broken 35 36 27 35
36 bel ow_PoNR openi ng rel eased a_on safe broken 36 35 26 36
37 to_bottom closing rel eased a_off saf e broken 38 42 44 37
38 to_bottom uncond_cls released a_off safe broken 38 39 41 38
39 to_bottom uncond_cls pressed a_of f safe broken 39 38 40 39
40 at_bottom uncond_cls pressed a_off saf e broken 40 41 40 40
41 at_bottom uncond cls released a_off saf e broken 41 40 41 41
42 to_bottom closing pressed a_of f safe broken 39 37 43 42
43 at_bottom closing pressed a_of f safe broken 40 44 43 43
44 at_bottom closing rel eased a_off safe broken 41 43 44 44
45 above_PoNR cl osi ng rel eased a_off no_abort ok 5 46 48 25
46 above_PoNR cl osi ng pressed a_off safe ok 46 45 47 30
47 past _PoNR cl osing pressed a_of f saf e ok 47 48 56 31
48 past_PoNR cl osing rel eased a_off no_abort ok 49 47 51 32
49 past _PoNR opening rel eased a_on saf e ok 49 50 4 33
50 past_PoNR opening pressed a_on safe ok 50 49 3 34
51 to_bottom closing rel eased a_off saf e ok 52 56 62 37
52 to_bottom uncond_cls released a off saf e ok 52 53 55 38
53 to_bottom uncond_cls pressed a_of f safe ok 53 52 54 39
54 at_bottom uncond_cls pressed a_of f safe ok 2 55 54 40
55 at_bottom uncond_cls released a off saf e ok 1 54 55 41
56 to_bottom closing pressed a_off safe ok 53 51 57 42
57 at_bottom closing pressed a_of f safe ok 58 62 57 43
58 at_bottom halt_cl osed pressed a_of f safe ok 58 59 58 61
59 at_bottom halt_closed released a off saf e ok 59 58 59 60
60 at_bottom halt_closed released a off saf e broken 60 61 60 60
61 at_bottom halt_cl osed pressed a_off safe broken 61 60 61 61
62 at_bottom closing rel eased a_off safe ok 59 57 62 44
63 at_bottom opening pressed a_on safe broken 63 64 35 63
64 at_bottom opening rel eased a_on safe broken 64 63 36 64
Simulation Under Button Sensor High Failure
Model check for Industrial Press Control System Bottom Fail_High
Nunber of states 74

pl unger control button not or safe bottom C.T BT P.T .T
1 at _bottom opening rel eased a_on safe ok 1 2 4 41
2 at_bottom opening pressed a_on safe ok 2 1 3 42
3 bel ow_PoNR openi ng pressed a_on safe ok 3 4 6 32
4 bel ow_PoNR openi ng rel eased a_on safe ok 4 3 5 31
5 above_PoNR openi ng rel eased a_on safe ok 5 6 18 34
6 above_PoNR openi ng pressed a_on safe ok 6 5 7 33
7 at_top openi ng pressed a_on safe ok 8 18 7 22
8 at _top open pressed a_on safe ok 9 13 8 21
9 at _top hal t _open pressed a_on safe ok 9 10 9 12
10 at_top hal t _open rel eased a_on saf e ok 10 9 10 11
11 at_top hal t _open rel eased a_on saf e broken 11 12 11 11
12 at_top hal t _open pressed a_on safe broken 12 11 12 12
13 at_top open rel eased a_on safe ok 14 8 13 20
14 at_top r eady rel eased a_on safe ok 14 15 14 74
15 at_top r eady pressed a_on safe ok 16 14 15 73
16 at_top cl osi ng pressed a_of f safe ok 16 17 24 72
17 at_top cl osi ng rel eased a_off no_abort ok 18 16 23 69
18 at_top openi ng rel eased a_on safe ok 13 7 18 19
19 at_top openi ng rel eased a_on safe broken 20 22 19 19
20 at_top open rel eased a_on safe broken 11 21 20 20
21 at_top open pressed a_on safe broken 12 20 21 21

22 at_top openi ng pressed a_on safe broken 21 19 22 22

23 above_PoNR cl osi ng rel eased a_off no_abort ok 5 24 26 68
24 above_PoNR cl osi ng pressed a_of f safe ok 24 23 25 65
25 past_PoNR cl osing pressed a_off safe ok 25 26 48 64
26 past_PoNR cl osing rel eased a_off no_abort ok 27 25 35 61
27 past_PoNR opening rel eased a_on safe ok 27 28 4 30
28 past_PoNR opening pressed a_on safe ok 28 27 3 29
29 past_PoNR opening pressed a_on safe broken 29 30 32 29
30 past_PoNR opening rel eased a_on safe broken 30 29 31 30
31 bel ow_PoNR openi ng rel eased a_on safe broken 31 32 34 31
32 bel ow_PoNR openi ng pressed a_on safe broken 32 31 33 32
33 above_PoNR openi ng pressed a_on safe broken 33 34 22 33
34 above_PoNR openi ng rel eased a_on safe broken 34 33 19 34
35 to_bottom closing rel eased a_off safe ok 36 48 54 60
36 to_bottom uncond_cls released a_off safe ok 36 37 39 47
37 to_bottom uncond_cls pressed a_off saf e ok 37 36 38 44
38 at_bottom uncond_cls pressed a_off saf e ok 2 39 38 43
39 at_bottom uncond_cls released a_off safe ok 1 38 39 40
40 at_bottom wuncond_cls released a_off safe broken 41 43 40 40
41 at_bottom opening rel eased a_on safe broken 41 42 31 41
42 at_bottom opening pressed a_on safe broken 42 41 32 42
43 at_bottom uncond_cls pressed a_of f safe broken 42 40 43 43
44 to_bottom uncond _cls pressed a_of f saf e broken 45 47 43 44
45 to_bottom opening pressed a_on bad_drv broken 45 46 42 45
46 to_bottom opening rel eased a_on bad_drv br oken 46 45 41 46
47 to_bottom uncond_cls released a_off safe broken 46 44 40 47
48 to_bottom closing pressed a_off safe ok 37 35 49 57
49 at_bottom closing pressed a_off safe ok 50 54 49 56
50 at_bottom halt_cl osed pressed a_of f safe ok 50 51 50 53
51 at_bottom halt_closed released a_off safe ok 51 50 51 52
52 at_bottom halt_closed released a off saf e broken 52 53 52 52
53 at_bottom halt_cl osed pressed a_off saf e broken 53 52 53 53
54 at_bottom closing rel eased a_off safe ok 51 49 54 55
55 at_bottom closing rel eased a_off safe broken 52 56 55 55
56 at_bottom closing pressed a_off safe broken 53 55 56 56
57 to_bottom closing pressed a_off safe broken 58 60 56 57
58 to_bottom halt_closed pressed a_of f safe broken 58 59 53 58
59 to_bottom halt_closed released a_off safe broken 59 58 52 59
60 to_bottom closing rel eased a_off saf e broken 59 57 55 60
61 past_PoNR closing rel eased a_off no_abort broken 62 64 60 61
62 past_PoNR halt_closed released a_off no_abort broken 62 63 59 62
63 past_PoNR halt_cl osed pressed a_off saf e broken 63 62 58 63
64 past_PoNR closing pressed a_of f safe broken 63 61 57 64
65 above_PoNR cl osi ng pressed a_of f safe broken 66 68 64 65
66 above PoNR hal t_cl osed pressed a_off saf e broken 66 67 63 66
67 above_PoNR halt_cl osed rel eased a_off no_abort broken 67 66 62 67
68 above_ PoNR cl osi ng rel eased a_off no_abort broken 67 65 61 68
69 at_top cl osi ng rel eased a_off no_abort broken 70 72 68 69
70 at_top halt _cl osed rel eased a_off no_abort broken 70 71 67 70
71 at_top hal t _cl osed pressed a_of f safe broken 71 70 66 71
72 at_top cl osi ng pressed a_off safe broken 71 69 65 72
73 at_top r eady pressed a_on safe broken 12 74 73 73
74 at_top r eady rel eased a_on safe broken 11 73 74 74

Simulation Under PONR Sensor Low Failure

Model check for Industrial Press Control System PoNR Fail _Low

Nunber of states = 66

pl unger control button not or safe PoNR CT BT PT ET
1 at_bottom opening rel eased a_on safe ok 1 2 4 41
2 at_bottom opening pressed a_on safe ok 2 1 3 40
3 bel ow_PoNR openi ng pressed a_on safe ok 3 4 6 35
4 bel ow_PoNR openi ng rel eased a_on safe ok 4 3 5 36
5 above_PoNR openi ng rel eased a_on safe ok 5 6 18 26
6 above_PoNR openi ng pressed a_on safe ok 6 5 7 27
7 at_top openi ng pressed a_on safe ok 8 18 7 28
8 at _top open pressed a_on safe ok 9 13 8 29
9 at_top hal t _open pressed a_on safe ok 9 10 9 12
10 at_top hal t _open rel eased a_on saf e ok 10 9 10 11
11 at_top hal t _open rel eased a_on safe broken 11 12 11 11

12 at_top hal t _open pressed a_on safe broken 12 11 12 12

13 at_top open rel eased a_on safe ok 14 8 13 20
14 at_top ready rel eased a_on safe ok 14 15 14 21
15 at_top r eady pressed a_on safe ok 16 14 15 22
16 at_top cl osi ng pressed a_off safe ok 16 17 48 23
17 at_top cl osi ng rel eased a_off no_abort ok 18 16 47 24
18 at_top openi ng rel eased a_on safe ok 13 7 18 19
19 at_top openi ng rel eased a_on safe broken 20 28 19 19
20 at_top open rel eased a_on safe broken 21 29 20 20
21 at_top ready rel eased a_on safe broken 21 22 21 21
22 at_top ready pressed a_on safe broken 23 21 22 22
23 at_top cl osi ng pressed a_off safe broken 23 24 30 23
24 at_top cl osi ng rel eased a_off no_abort broken 19 23 25 24
25 above_PoNR cl osi ng rel eased a_off no_abort broken 26 30 32 25
26 above_PoNR openi ng rel eased a_on safe broken 26 27 19 26
27 above_PoNR openi ng pressed a_on safe broken 27 26 28 27
28 at_top openi ng pressed a_on safe broken 29 19 28 28
29 at_top open pressed a_on safe broken 12 20 29 29
30 above_PoNR cl osi ng pressed a_of f safe broken 30 25 31 30
31 past_PoNR closing pressed a_off safe broken 31 32 42 31
32 past_PoNR closing rel eased a_off no_abort broken 33 31 37 32
33 past_PoNR opening rel eased a_on safe broken 33 34 36 33
34 past_PoNR opening pressed a_on safe broken 34 33 35 34
35 bel ow_PoNR openi ng pressed a_on safe broken 35 36 27 35
36 bel ow_PoNR openi ng rel eased a_on safe broken 36 35 26 36
37 to_bottom closing rel eased a_off saf e broken 38 42 46 37
38 to_bottom opening rel eased a_on bad_drv broken 38 39 41 38
39 to_bottom opening pressed a_on bad_drv broken 39 38 40 39
40 at_bottom opening pressed a_on saf e broken 40 41 35 40
41 at_bottom opening rel eased a_on safe broken 41 40 36 41
42 to_bottom closing pressed a_off safe broken 42 37 43 42
43 at_bottom closing pressed a_off safe broken 44 46 43 43
44 at_bottom halt_closed pressed a_of f safe broken 44 45 44 44
45 at_bottom halt_closed rel eased a_off safe broken 45 44 45 45
46 at_bottom closing rel eased a_off saf e broken 45 43 46 46
47 above_PoNR cl osi ng rel eased a_off no_abort ok 5 48 50 25
48 above_PoNR cl osi ng pressed a_of f safe ok 48 47 49 30
49 past_PoNR cl osing pressed a_of f safe ok 49 50 62 31
50 past_PoNR closing rel eased a_off no_abort ok 51 49 53 32
51 past_PoNR opening rel eased a_on safe ok 51 52 4 33
52 past_PoNR opening pressed a_on safe ok 52 51 3 34
53 to_bottom closing rel eased a_off safe ok 54 62 66 37
54 to_bottom uncond_cls released a off saf e ok 54 55 57 61
55 to_bottom uncond_cls pressed a_off saf e ok 55 54 56 60
56 at_bottom uncond_cls pressed a_of f safe ok 2 57 56 59
57 at_bottom uncond_cls released a_off safe ok 1 56 57 58
58 at_bottom uncond_cls released a off saf e broken 41 59 58 58
59 at_bottom uncond_cls pressed a_off saf e broken 40 58 59 59
60 to_bottom uncond_cls pressed a_off saf e broken 60 61 59 60
61 to_bottom uncond_cls released a_off safe broken 61 60 58 61
62 to_bottom closing pressed a_off safe ok 55 53 63 42
63 at_bottom closing pressed a_off safe ok 64 66 63 43
64 at_bottom halt_cl osed pressed a_off saf e ok 64 65 64 44
65 at_bottom halt_closed released a_off safe ok 65 64 65 45
66 at_bottom closing rel eased a_off safe ok 65 63 66 46

Simulation Under PONR Sensor High Failure

Mbdel check for Industrial Press Control System PoNR _Fail _High

Nunber of states = 78

pl unger control button not or safe PoNR CT BT PT FT
1 at _bottom opening rel eased a_on safe ok 1 2 4 41
2 at _bottom opening pressed a_on safe ok 2 1 3 42
3 bel ow_PoNR openi ng pressed a_on safe ok 3 4 6 32
4 bel ow_PoNR openi ng rel eased a_on safe ok 4 3 5 31
5 above_PoNR openi ng rel eased a_on safe ok 5 6 18 34
6 above_PoNR openi ng pressed a_on safe ok 6 5 7 33
7 at_top openi ng pressed a_on safe ok 8 18 7 22
8 at_top open pressed a_on safe ok 9 13 8 21
9 at _top hal t _open pressed a_on safe ok 9 10 9 12
10 at_top hal t _open rel eased a_on safe ok 10 9 10 11

46

11 at_top hal t _open rel eased a_on saf e broken 11 12 11 11
12 at_top hal t _open pressed a_on safe broken 12 11 12 12
13 at_top open rel eased a_on safe ok 14 8 13 20
14 at_top r eady rel eased a_on safe ok 14 15 14 78
15 at_top r eady pressed a_on safe ok 16 14 15 77
16 at_top cl osi ng pressed a_of f safe ok 16 17 24 76
17 at_top cl osi ng rel eased a_off no_abort ok 18 16 23 65
18 at_top openi ng rel eased a_on safe ok 13 7 18 19
19 at_top openi ng rel eased a_on safe broken 20 22 19 19
20 at_top open rel eased a_on safe broken 11 21 20 20
21 at_top open pressed a_on safe broken 12 20 21 21
22 at_top openi ng pressed a_on safe broken 21 19 22 22
23 above_PoNR cl osi ng rel eased a_off no_abort ok 5 24 26 64
24 above_PoNR cl osi ng pressed a_of f safe ok 24 23 25 61
25 past_PoNR cl osing pressed a_of f safe ok 25 26 46 60
26 past_PoNR cl osing rel eased a_off no_abort ok 27 25 35 57
27 past_PoNR opening rel eased a_on safe ok 27 28 4 30
28 past_PoNR opening pressed a_on safe ok 28 27 3 29
29 past_PoNR opening pressed a_on safe broken 29 30 32 29
30 past_PoNR opening rel eased a_on safe broken 30 29 31 30
31 bel ow_PoNR openi ng rel eased a_on safe broken 31 32 34 31
32 bel ow_PoNR openi ng pressed a_on safe broken 32 31 33 32
33 above_PoNR openi ng pressed a_on safe broken 33 34 22 33
34 above_PoNR openi ng rel eased a_on safe broken 34 33 19 34
35 to_bottom closing rel eased a_off saf e ok 36 46 52 56
36 to_bottom uncond_cls released a off saf e ok 36 37 39 45
37 to_bottom uncond_cls pressed a_of f safe ok 37 36 38 44
38 at_bottom uncond_cls pressed a_of f safe ok 2 39 38 43
39 at_bottom uncond_cls released a off saf e ok 1 38 39 40
40 at_bottom wuncond cls released a_off saf e broken 41 43 40 40
41 at_bottom opening rel eased a_on safe broken 41 42 31 41
42 at_bottom opening pressed a_on safe broken 42 41 32 42
43 at_bottom uncond_cls pressed a_off saf e broken 42 40 43 43
44 to_bottom uncond_cls pressed a_off saf e broken 44 45 43 44
45 to_bottom uncond_cls released a_off safe broken 45 44 40 45
46 to_bottom closing pressed a_of f safe ok 37 35 47 55
47 at_bottom closing pressed a_off safe ok 48 52 47 54
48 at_bottom halt_cl osed pressed a_off saf e ok 48 49 48 51
49 at_bottom halt_closed rel eased a_off safe ok 49 48 49 50
50 at_bottom halt_closed released a_off safe broken 50 51 50 50
51 at_bottom halt_cl osed pressed a_off saf e broken 51 50 51 51
52 at_bottom closing rel eased a_off saf e ok 49 47 52 53
53 at_bottom closing rel eased a_off safe broken 50 54 53 53
54 at_bottom closing pressed a_of f safe broken 51 53 54 54
55 to_bottom closing pressed a_off safe broken 44 56 54 55
56 to_bottom closing rel eased a_off saf e broken 45 55 53 56
57 past_PoNR closing rel eased a_off no_abort broken 58 60 56 57
58 past_PoNR uncond_cls released a_off no_abort broken 58 59 45 58
59 past_PoNR uncond_cls pressed a_off safe broken 59 58 44 59
60 past_PoNR closing pressed a_of f safe broken 59 57 55 60
61 above_PoNR cl osing pressed a_of f safe broken 62 64 60 61
62 above PoNR uncond_cls pressed a_off saf e broken 62 63 59 62
63 above_PoNR uncond_cls released a_off no_abort broken 63 62 58 63
64 above_ PoNR cl osi ng rel eased a_off no_abort broken 63 61 57 64
65 at_top cl osi ng rel eased a_off no_abort broken 66 76 64 65
66 at_top uncond_cls released a_off no_abort broken 67 75 63 66
67 at_top halt _cl osed rel eased a_off no_abort broken 67 68 70 67
68 at_top hal t _cl osed pressed a_off saf e broken 68 67 69 68
69 above PoNR hal t_cl osed pressed a_off saf e broken 69 70 72 69
70 above_PoNR halt_cl osed rel eased a_off no_abort broken 70 69 71 70
71 past_PoNR halt_closed released a_off no_abort broken 71 72 74 71
72 past_PoNR halt_cl osed pressed a_of f safe broken 72 71 73 72
73 to_bottom halt_cl osed pressed a_of f safe broken 73 74 51 73
74 to_bottom halt_closed released a off saf e broken 74 73 50 74
75 at_top uncond_cl s pressed a_off saf e broken 68 66 62 75
76 at_top cl osi ng pressed a_of f safe broken 75 65 61 76
77 at_top r eady pressed a_on safe broken 12 78 77 77
78 at_top r eady rel eased a_on safe broken 11 77 78 78

Simulation Under Top Sensor Low Failure

Mbdel check for Industrial Press Control System Top_Fail _Low

47

Nunber of states = 64

pl unger control button not or saf e top CT BT PT FT
1 at_bottom opening rel eased a_on safe ok 1 2 4 41
2 at _bottom opening pressed a_on safe ok 2 1 3 40
3 bel ow_PoNR openi ng pressed a_on safe ok 3 4 6 30
4 bel ow_PoNR openi ng rel eased a_on safe ok 4 3 5 29
5 above_PoNR openi ng rel eased a_on safe ok 5 6 18 32
6 above_PoNR openi ng pressed a_on safe ok 6 5 7 31
7 at_top openi ng pressed a_on safe ok 8 18 7 20
8 at_top open pressed a_on safe ok 9 13 8 64
9 at_top hal t _open pressed a_on safe ok 9 10 9 12
10 at_top hal t _open rel eased a_on safe ok 10 9 10 11
11 at_top hal t _open rel eased a_on safe broken 11 12 11 11
12 at_top hal t _open pressed a_on safe broken 12 11 12 12
13 at_top open rel eased a_on safe ok 14 8 13 63
14 at_top r eady rel eased a_on safe ok 14 15 14 62
15 at_top ready pressed a_on safe ok 16 14 15 61
16 at_top cl osi ng pressed a_off safe ok 16 17 22 60
17 at_top cl osi ng rel eased a_off no_abort ok 18 16 21 59
18 at_top openi ng rel eased a_on safe ok 13 7 18 19
19 at_top openi ng rel eased a_on safe broken 19 20 19 19
20 at_top openi ng pressed a_on safe broken 20 19 20 20
21 above_PoNR cl osi ng rel eased a_off no_abort ok 5 22 24 58
22 above_PoNR cl osi ng pressed a_off safe ok 22 21 23 57
23 past_PoNR cl osing pressed a_of f safe ok 23 24 34 56
24 past_PoNR cl osing rel eased a_off no_abort ok 25 23 33 55
25 past_PoNR opening rel eased a_on safe ok 25 26 4 28
26 past_PoNR opening pressed a_on safe ok 26 25 3 27
27 past_PoNR opening pressed a_on safe broken 27 28 30 27
28 past_PoNR opening rel eased a_on safe broken 28 27 29 28
29 bel ow_PoNR openi ng rel eased a_on safe broken 29 30 32 29
30 bel ow_PoNR openi ng pressed a_on safe broken 30 29 31 30
31 above_PoNR openi ng pressed a_on safe broken 31 32 20 31
32 above_PoNR openi ng rel eased a_on safe broken 32 31 19 32
33 to_bottom closing rel eased a_off saf e ok 33 34 50 54
34 to_bottom closing pressed a_off safe ok 35 33 45 53
35 to_bottom uncond_cls pressed a_of f safe ok 35 36 38 44
36 to_bottom uncond_cls released a_off safe ok 36 35 37 43
37 at_bottom uncond_cls released a off saf e ok 1 38 37 42
38 at_bottom uncond_cls pressed a_off saf e ok 2 37 38 39
39 at_bottom uncond_cls pressed a_of f safe broken 40 42 39 39
40 at_bottom opening pressed a_on safe broken 40 41 30 40
41 at_bottom opening rel eased a_on safe broken 41 40 29 41
42 at_bottom uncond cls released a_off saf e broken 41 39 42 42
43 to_bottom uncond_cls released a_off safe broken 43 44 42 43
44 to_bottom uncond_cls pressed a_of f safe broken 44 43 39 44
45 at_bottom closing pressed a_of f safe ok 46 50 45 52
46 at_bottom halt_cl osed pressed a_off saf e ok 46 47 46 49
47 at_bottom halt_closed rel eased a_off saf e ok 47 46 47 48
48 at_bottom halt_closed rel eased a_off safe broken 48 49 48 48
49 at_bottom halt_closed pressed a_of f safe broken 49 48 49 49
50 at_bottom closing rel eased a_off saf e ok 47 45 50 51
51 at_bottom closing rel eased a_off saf e broken 48 52 51 51
52 at_bottom closing pressed a_of f safe broken 49 51 52 52
53 to_bottom closing pressed a_of f safe broken 44 54 52 53
54 to_bottom closing rel eased a_off saf e broken 54 53 51 54
55 past_PoNR cl osing rel eased a_off no_abort broken 28 56 54 55
56 past_PoNR closing pressed a_of f safe broken 56 55 53 56
57 above_PoNR cl osi ng pressed a_of f safe broken 57 58 56 57
58 above_PoNR cl osi ng rel eased a_off no_abort broken 32 57 55 58
59 at_top cl osi ng rel eased a_off no_abort broken 19 60 58 59
60 at_top cl osi ng pressed a_of f safe broken 60 59 57 60
61 at_top ready pressed a_on safe broken 60 62 61 61
62 at_top r eady rel eased a_on safe broken 62 61 62 62
63 at_top open rel eased a_on safe broken 62 64 63 63
64 at_top open pressed a_on safe broken 12 63 64 64

Simulation Under Top Sensor High Failure

Model check for Industrial Press Control System Top_Fail _High

Nunber of states = 88

pl unger control button not or saf e top CT BT PT FT
1 at_bottom opening rel eased a_on safe ok 1 2 4 88
2 at_bottom opening pressed a_on safe ok 2 1 3 83
3 bel ow_PoNR openi ng pressed a_on safe ok 3 4 6 51
4 bel ow_PoNR openi ng rel eased a_on safe ok 4 3 5 52
5 above_PoNR openi ng rel eased a_on safe ok 5 6 18 26
6 above_PoNR openi ng pressed a_on safe ok 6 5 7 53
7 at _top openi ng pressed a_on safe ok 8 18 7 54
8 at _top open pressed a_on safe ok 9 13 8 49
9 at_top hal t _open pressed a_on safe ok 9 10 9 12
10 at_top hal t _open rel eased a_on saf e ok 10 9 10 11
11 at_top hal t _open rel eased a_on safe broken 11 12 11 11
12 at_top hal t _open pressed a_on safe broken 12 11 12 12
13 at_top open rel eased a_on safe ok 14 8 13 20
14 at_top r eady rel eased a_on safe ok 14 15 14 21
15 at_top ready pressed a_on safe ok 16 14 15 22
16 at_top cl osi ng pressed a_of f safe ok 16 17 68 23
17 at_top cl osi ng rel eased a_off no_abort ok 18 16 67 24
18 at_top openi ng rel eased a_on safe ok 13 7 18 19
19 at_top openi ng rel eased a_on safe broken 20 54 19 19
20 at_top open rel eased a_on safe broken 21 49 20 20
21 at_top ready rel eased a_on safe broken 21 22 21 21
22 at_top r eady pressed a_on safe broken 23 21 22 22
23 at_top cl osi ng pressed a_off safe broken 23 24 30 23
24 at_top cl osi ng rel eased a_off no_abort broken 19 23 25 24
25 above_PoNR cl osi ng rel eased a_off no_abort broken 26 30 32 25
26 above_PoNR openi ng rel eased a_on safe broken 27 53 19 26
27 above_PoNR open rel eased a_on saf e broken 28 48 20 27
28 above_PoNR ready rel eased a_on safe broken 28 29 21 28
29 above_PoNR ready pressed a_on safe broken 30 28 22 29
30 above_PoNR cl osi ng pressed a_off safe broken 30 25 31 30
31 past_PoNR closing pressed a_off safe broken 31 32 64 31
32 past_PoNR cl osing rel eased a_off no_abort broken 33 31 55 32
33 past_PoNR opening rel eased a_on safe broken 34 50 52 33
34 past_PoNR open rel eased a_on safe broken 35 43 47 34
35 past_PoNR ready rel eased a_on safe broken 35 36 42 35
36 past_PoNR ready pressed a_on safe broken 31 35 37 36
37 bel ow_PoNR ready pressed a_on safe broken 38 42 29 37
38 bel ow_PoNR hal t _open pressed a_on saf e broken 38 39 41 38
39 bel ow_PoNR hal t _open rel eased a_on saf e broken 39 38 40 39
40 above_PoNR hal t _open rel eased a_on safe broken 40 41 11 40
41 above_PoNR hal t _open pressed a_on safe broken 41 40 12 41
42 bel ow_PoNR ready rel eased a_on saf e broken 39 37 28 42
43 past_PoNR open pressed a_on safe broken 44 34 46 43
44 past _PoNR halt_open pressed a_on safe broken 44 45 38 44
45 past _PoNR halt_open rel eased a_on safe broken 45 44 39 45
46 bel ow_PoNR open pressed a_on safe broken 38 47 48 46
47 bel ow_PoNR open rel eased a_on saf e broken 39 46 27 47
48 above_PoNR open pressed a_on safe broken 41 27 49 48
49 at_top open pressed a_on safe broken 12 20 49 49
50 past_PoNR opening pressed a_on safe broken 43 33 51 50
51 bel ow_PoNR openi ng pressed a_on safe broken 46 52 53 51
52 bel ow_PoNR openi ng rel eased a_on safe broken 47 51 26 52
53 above_PoNR openi ng pressed a_on safe broken 48 26 54 53
54 at_top openi ng pressed a_on safe broken 49 19 54 54
55 to_bottom closing rel eased a_off saf e broken 56 64 66 55
56 to_bottom uncond_cls released a off saf e broken 57 61 63 56
57 to_bottom halt_closed released a_off safe broken 57 58 60 57
58 to_bottom halt_closed pressed a_off safe broken 58 57 59 58
59 at_bottom halt_cl osed pressed a_off saf e broken 59 60 59 59
60 at_bottom halt_closed released a off saf e broken 60 59 60 60
61 to_bottom uncond_cls pressed a_of f safe broken 58 56 62 61
62 at_bottom uncond_cls pressed a_of f safe broken 59 63 62 62
63 at_bottom uncond_cls released a off saf e broken 60 62 63 63
64 to_bottom closing pressed a_off safe broken 61 55 65 64
65 at_bottom closing pressed a_of f safe broken 59 66 65 65
66 at_bottom closing rel eased a_off safe broken 60 65 66 66
67 above_PoNR cl osi ng rel eased a_off no_abort ok 5 68 70 25
68 above_ PoNR cl osi ng pressed a_off safe ok 68 67 69 30
69 past_PoNR cl osing pressed a_off safe ok 69 70 78 31
70 past_PoNR closing rel eased a_off no_abort ok 71 69 73 32
71 past_PoNR opening rel eased a_on safe ok 71 72 4 33
72 past_PoNR opening pressed a_on safe ok 72 71 3 50
73 to_bottom closing rel eased a_off saf e ok 74 78 82 55
74 to_bottom uncond_cls released a_off safe ok 74 75 77 56

49

75 to_bottom uncond_cls pressed a_off saf e ok 75 74 76 61

76 at_bottom uncond_cls pressed a_of f safe ok 2 77 76 62
77 at_bottom uncond_cls released a_off safe ok 1 76 77 63
78 to_bottom closing pressed a_off safe ok 75 73 79 64
79 at_bottom closing pressed a_off safe ok 80 82 79 65
80 at_bottom halt_cl osed pressed a_of f safe ok 80 81 80 59
81 at_bottom halt_closed released a_off safe ok 81 80 81 60
82 at_bottom closing rel eased a_off saf e ok 81 79 82 66
83 at_bottom opening pressed a_on safe broken 84 88 51 83
84 at_bottom open pressed a_on safe broken 85 87 46 84
85 at_bottom halt_open pressed a_on safe broken 85 86 38 85
86 at_bottom halt_open rel eased a_on saf e broken 86 85 39 86
87 at_bottom open rel eased a_on saf e broken 86 84 47 87
88 at_bottom opening rel eased a_on safe broken 87 83 52 88

Simulation Under Button Sensor Low Failure

Model check for Industrial Press Control System Button_Fail _Low

Nunber of states = 64

pl unger control button not or safe button C.T BT P.T F.T
1 at_bottom opening rel eased a_on safe ok 1 2 4 43
2 at _bottom opening pressed a_on safe ok 2 1 3 44
3 bel ow_PoNR openi ng pressed a_on safe ok 3 4 6 34
4 bel ow_PoNR openi ng rel eased a_on safe ok 4 3 5 33
5 above_PoNR openi ng rel eased a_on safe ok 5 6 18 36
6 above_PoNR openi ng pressed a_on safe ok 6 5 7 35
7 at _top openi ng pressed a_on safe ok 8 18 7 24
8 at _top open pressed a_on safe ok 9 13 8 23
9 at_top hal t _open pressed a_on safe ok 9 10 9 12
10 at_top hal t _open rel eased a_on saf e ok 10 9 10 11
11 at_top hal t _open rel eased a_on safe broken 11 12 11 11
12 at_top hal t _open pressed a_on safe broken 12 11 12 12
13 at_top open rel eased a_on safe ok 14 8 13 20
14 at_top r eady rel eased a_on safe ok 14 15 14 21
15 at_top ready pressed a_on safe ok 16 14 15 22
16 at_top cl osi ng pressed a_off safe ok 16 17 26 64
17 at_top cl osi ng rel eased a_off no_abort ok 18 16 25 63
18 at_top openi ng rel eased a_on safe ok 13 7 18 19
19 at_top openi ng rel eased a_on safe broken 20 24 19 19
20 at_top open rel eased a_on safe broken 21 23 20 20
21 at_top r eady rel eased a_on safe broken 21 22 21 21
22 at_top r eady pressed a_on safe broken 22 21 22 22
23 at_top open pressed a_on safe broken 22 20 23 23
24 at_top openi ng pressed a_on safe broken 23 19 24 24
25 above_PoNR cl osi ng rel eased a_off no_abort ok 5 26 28 62
26 above_PoNR cl osi ng pressed a_off safe ok 26 25 27 61
27 past_PoNR cl osing pressed a_of f safe ok 27 28 48 60
28 past_PoNR cl osing rel eased a_off no_abort ok 29 27 37 59
29 past_PoNR opening rel eased a_on safe ok 29 30 4 32
30 past_PoNR opening pressed a_on safe ok 30 29 3 31
31 past_PoNR opening pressed a_on safe broken 31 32 34 31
32 past_PoNR opening rel eased a_on safe broken 32 31 33 32
33 bel ow_PoNR openi ng rel eased a_on safe broken 33 34 36 33
34 bel ow_PoNR openi ng pressed a_on safe broken 34 33 35 34
35 above_PoNR openi ng pressed a_on safe broken 35 36 24 35
36 above_PoNR openi ng rel eased a_on safe broken 36 35 19 36
37 to_bottom closing rel eased a_off safe ok 38 48 54 58
38 to_bottom uncond_cls released a off saf e ok 38 39 41 47
39 to_bottom uncond_cls pressed a_off saf e ok 39 38 40 46
40 at_bottom uncond_cls pressed a_of f safe ok 2 41 40 45
41 at_bottom uncond_cls released a_off safe ok 1 40 41 42
42 at_bottom wuncond cls released a_off saf e broken 43 45 42 42
43 at_bottom opening rel eased a_on safe broken 43 44 33 43
44 at _bottom opening pressed a_on safe broken 44 43 34 44
45 at_bottom uncond_cls pressed a_of f safe broken 44 42 45 45
46 to_bottom uncond_cls pressed a_off saf e broken 46 47 45 46
47 to_bottom uncond cls released a_off saf e broken 47 46 42 47
48 to_bottom closing pressed a_of f safe ok 39 37 49 57
49 at_bottom closing pressed a_of f safe ok 50 54 49 56
50 at_bottom halt_cl osed pressed a_off saf e ok 50 51 50 53
51 at_bottom halt_closed released a off saf e ok 51 50 51 52

52 at_bottom halt_closed released a off saf e broken 52 53 52 52

53 at_bottom halt_cl osed pressed a_of f safe broken 53 52 53 53
54 at_bottom closing rel eased a_off safe ok 51 49 54 55
55 at_bottom closing rel eased a_off saf e broken 52 56 55 55
56 at_bottom closing pressed a_off safe broken 53 55 56 56
57 to_bottom closing pressed a_of f safe broken 46 58 56 57
58 to_bottom closing rel eased a_off safe broken 47 57 55 58
59 past_PoNR cl osing rel eased a_off no_abort broken 32 60 58 59
60 past_PoNR cl osing pressed a_off safe broken 31 59 57 60
61 above_PoNR cl osing pressed a_of f safe broken 35 62 60 61
62 above_PoNR cl osi ng rel eased a_off no_abort broken 36 61 59 62
63 at_top cl osi ng rel eased a_off no_abort broken 19 64 62 63
64 at_top cl osi ng pressed a_off safe broken 24 63 61 64

Simulate Button Sensor High Failure

Model check for Industrial Press Control System Button_Fail _High

Nunber of states = 64

pl unger control button not or safe button CT BT P.T F.T
1 at_bottom opening rel eased a_on safe ok 1 2 4 41
2 at_bottom opening pressed a_on safe ok 2 1 3 42
3 bel ow_PoNR openi ng pressed a_on safe ok 3 4 6 32
4 bel ow_PoNR openi ng rel eased a_on safe ok 4 3 5 31
5 above_PoNR openi ng rel eased a_on safe ok 5 6 18 34
6 above_PoNR openi ng pressed a_on safe ok 6 5 7 33
7 at_top openi ng pressed a_on safe ok 8 18 7 22
8 at _top open pressed a_on safe ok 9 13 8 21
9 at _top hal t _open pressed a_on safe ok 9 10 9 12
10 at_top hal t _open rel eased a_on saf e ok 10 9 10 11
11 at_top hal t _open rel eased a_on saf e broken 11 12 11 11
12 at_top hal t _open pressed a_on safe broken 12 11 12 12
13 at_top open rel eased a_on safe ok 14 8 13 20
14 at_top r eady rel eased a_on safe ok 14 15 14 64
15 at_top r eady pressed a_on safe ok 16 14 15 63
16 at_top cl osi ng pressed a_of f safe ok 16 17 24 62
17 at_top cl osi ng rel eased a_off no_abort ok 18 16 23 61
18 at_top openi ng rel eased a_on safe ok 13 7 18 19
19 at_top openi ng rel eased a_on safe broken 20 22 19 19
20 at_top open rel eased a_on safe broken 11 21 20 20
21 at_top open pressed a_on safe broken 12 20 21 21
22 at_top openi ng pressed a_on safe broken 21 19 22 22
23 above_PoNR cl osi ng rel eased a_off no_abort ok 5 24 26 60
24 above_PoNR cl osi ng pressed a_of f safe ok 24 23 25 59
25 past_PoNR cl osing pressed a_of f safe ok 25 26 46 58
26 past_PoNR cl osing rel eased a_off no_abort ok 27 25 35 57
27 past_PoNR opening rel eased a_on safe ok 27 28 4 30
28 past_PoNR opening pressed a_on safe ok 28 27 3 29
29 past_PoNR opening pressed a_on safe broken 29 30 32 29
30 past_PoNR opening rel eased a_on safe broken 30 29 31 30
31 bel ow_PoNR openi ng rel eased a_on safe broken 31 32 34 31
32 bel ow_PoNR openi ng pressed a_on safe broken 32 31 33 32
33 above_PoNR openi ng pressed a_on safe broken 33 34 22 33
34 above_PoNR openi ng rel eased a_on safe broken 34 33 19 34
35 to_bottom closing rel eased a_off saf e ok 36 46 52 56
36 to_bottom uncond_cls released a off saf e ok 36 37 39 45
37 to_bottom uncond_cls pressed a_of f safe ok 37 36 38 44
38 at_bottom uncond_cls pressed a_of f safe ok 2 39 38 43
39 at_bottom uncond_cls released a off saf e ok 1 38 39 40
40 at_bottom wuncond cls released a_off saf e broken 41 43 40 40
41 at_bottom opening rel eased a_on safe broken 41 42 31 41
42 at_bottom opening pressed a_on safe broken 42 41 32 42
43 at_bottom uncond_cls pressed a_off saf e broken 42 40 43 43
44 to_bottom uncond_cls pressed a_off saf e broken 44 45 43 44
45 to_bottom uncond_cls released a_off safe broken 45 44 40 45
46 to_bottom closing pressed a_of f safe ok 37 35 47 55
47 at_bottom closing pressed a_off safe ok 48 52 47 54
48 at_bottom halt_closed pressed a_off saf e ok 48 49 48 51
49 at_bottom halt_closed rel eased a_off safe ok 49 48 49 50
50 at_bottom halt_closed released a_off safe broken 50 51 50 50
51 at_bottom halt_cl osed pressed a_off saf e broken 51 50 51 51
52 at_bottom closing rel eased a_off saf e ok 49 47 52 53

51

53 at_bottom closing rel eased a_off safe broken 50 54 53 53

54 at_bottom closing pressed a_of f safe broken 51 53 54 54
55 to_bottom closing pressed a_of f safe broken 44 56 54 55
56 to_bottom closing rel eased a_off saf e broken 45 55 53 56
57 past_PoNR closing rel eased a_off no_abort broken 57 58 56 57
58 past_PoNR cl osing pressed a_off safe broken 58 57 55 58
59 above PoNR cl osi ng pressed a_off saf e broken 59 60 58 59
60 above_PoNR cl osi ng rel eased a_off no_abort broken 60 59 57 60
61 at_top cl osi ng rel eased a_off no_abort broken 61 62 60 61
62 at_top cl osi ng pressed a_of f safe broken 62 61 59 62
63 at_top ready pressed a_on safe broken 62 64 63 63
64 at_top r eady rel eased a_on safe broken 61 63 64 64

52

Appendix D Spark Ada Code
There are seven Adafiles altogether.
specification of package Sensors'
package body Sensors

specification of package Actuator®
package body Actuator
specification of package Transitions’

o o bk~ w D PE

package body Transitions'

7. main procedure Machine’

All seven have been checked for syntax and semantics by the GNAT Ada compiler, and five (marked
") have been analysed by the SPARK Examiner. Those five are included here in the form of a
numbered listing generated by SPARK or the original source where no listing is available. The
remaining two are implementatiuon dependent and have not been checked by SPARK. Their listing

hereisthe original sourcetext.

1. File sensors.Ist - contains aspecification of package Sensors.

Listing of SPARK Text

SPARK95 Examiner with VC and RTC Generator Release 2.5/ 04.97

Demonstration Version

DATE : 12-SEP-1999 12:19:08.03

Line
1 package Sensors
2 --#own State_Seq;
3 --#initializes State_Seq;
4 is
5
6 type In_Sig is (high, low);
7
8 type State is record
9 top . In_Sig;
10 PoNR :In_Sig;
11 bottom :In_Sig;
12 button :In_Sig;
13 end record;
14
15 procedure Read (Value: out State);

16 --# global State_Seq;
17 --# derives Value, State_Seq from State_Seq;

19 end Sensors;

--End of file

2. File sensors.adb - contains package body Sensors

with System.Storage_Elements;

package body Sensors
--# own State_Seq is Sensor_Register, Sensor_Error;
is
type Sensor_Value is (lo, fault_21, fault_2, hi);
for Sensor_Value use (lo => 0, fault_1 => 1, fault_2 => 2, hi => 3);

type Local_Sensors_State is record
SV_Top :Sensor_Value;
SV_PNR :Sensor_Value ;
SV_Bottom : Sensor_Value;
SV_Button : Sensor_Value;

end record;

for Local_Sensors_State use record
SV_Top at O range 0..1;
SV_PNR at O range 2..3;
SV_Bottom at 0 range 4..5;
SV_Button at 0 range 6..7;

end record,;

for Local_Sensors_State'Size use 8; -- fits in a single byte

for Local_Sensors_State'Alignment use 1; -- byte aligned

for Local_Sensors_State'Bit_Order use System.High_Order_First; -- big-endian machine

Sensor_Register : Local_Sensors_State;

SR_Address : constant := 16#100001#; -- 16Mb addressable RAM, 000000. .ffffff

for Sensor_Register'Address use System.Storage_Elements.To_Address (SR_Address);
pragma Volatile (Sensor_Register);

-- machine has 16Mb addressable RAM, 000000..ffffff

-- hardware sensor is connected to address 100001

-- hardware is writing to this location continuously

Sensor_Error : Boolean := False;

-- if ever a sensor error is detected,

-- the read routine delivers a 'high' on all channels forever.

-- this will cause the press machine to halt within one cycle.

procedure Readl (X : in Sensor_Value; Y : out In_Sig) is
--# global out Sensor_Error
begin
if X = hi then Y := high;
elsif X = lo then Y := low;
else Sensor_Error := True; Y:= high;
end if;
end Read1,;

procedure Read (Value: out State) is
Sensor_Temp : Local_Sensors_State;
begin
if Sensor_Error then
Value := (high, high, high, high);
return;
end if;

Sensor_Temp := Sensor_Register; -- atomic assignment to ensure a stable value

Readl (Sensor_Temp.SV_Top, Value.top);

Readl (Sensor_Temp.SV_PNR, Value.PoNR);

Readl (Sensor_Temp.SV_Bottom, Value.bottom);

Readl (Sensor_Temp.SV_Button, Value.button);
end Read;

begin

Sensor_Error := False;
end Sensors;

3. Fileactuator.lst ' - contains specification of package Actuator

Listing of SPARK Text
SPARK95 Examiner with VC and RTC Generator Release 2.5/ 04.97
Demonstration Version

DATE : 12-SEP-1999 12:19:07.92

Line
package Actuator

--# own State_Seq;

--# initializes State_Seq;
is

type Out_Sig is (a_on, a_off);

~NouhwNE

8 procedure Write (Value: in Out_Sig);
9 --#global State_Seq;
10 --#derives State_Seq from Value, State_Seq;
11
12 end Actuator;

--End of file

4. Fileactuator.adb - contains package body Actuator

with System.Storage_Elements;

package body Actuator
--# own State_Seq is Drive_Register;
is

type Drive_Value is range 0..(2**8-1);
for Drive_Value'Size use 8; -- fits in a single byte
for Drive_Value'Alignment use 1; -- byte aligned

Drive_ON : constant Drive_Value := 2#1111_1111#;
Drive_OFF : constant Drive_Value := 2#0000_0000#;

Drive_Register : Drive_Value;

Drive_Address : constant := 16#100011#; -- 16Mb addressable RAM, 000000..ffffff

for Drive_Register'Address use System.Storage_Elements.To_Address (Drive_Address);
pragma Volatile (Drive_Register);

-- machine has 16Mb addressable RAM, 000000..ffffff

-- hardware motor drive is connected to address 100011

-- hardware is reading from this location continuously

procedure Write (Value: in Out_Sig) is
begin
case Value is
when on => Drive_Register := Drive_ON;
when off => Drive_Register := Dr ive_OFF;
end case;
end Write;

end Actuator;

5. Filetransitions.ada T - contains specification of package Transitions

with Sensors;
use type Sensors.In_Sig;

with Actuator;
--# inherit Sensors, Actuator;

package Transitions is

type Control_Type is (opening, open, ready, closing, uncond_closing, halt_open,
halt_closed);

-- abbreviations to make the postconditions more readable

high 1 ¢ onstant Sensors.In_Sig := Sensors.high;
low : constant Sensors.In_Sig := Sensors.low;

a_on : constant Actuator.Out_Sig := Actuator.a_on;
a_off: constant Actuator.Out_Sig := Actuator.a_off;

procedure Init (control : out Control_Type;
motor . out Actuator.Out_Sig);

--# derives control, motor from ;

--# post (control = opening and motor = a_on);

procedure At_Opening (sensors_state: in Sensors.State;
control: in out Control_Type;
motor : out Actuator.Out_Sig);

--# derives control from control, sensors_state

--# & motor from ;

--# pre control = opening;
--# post (sensors_state.top = high

--# -> (control = open and notor = a_on))

--# and (not (sensors_state.top = high)

--# -> (control = opening and nmotor = a_on));

procedure At_Open (sensors_state : in Sensors. State;
control : in out Control_Type;
not or : out Actuator.CQut_Sig);

--# derives control fromcontrol, sensors_state

--# & motor from;

--# pre control = open;

--# post ((sensors_state.bottom = high or

--# sensors_state. PONR = hi gh or

--# sensors_state. button = high)

--# -> (control = halt_open and notor = a_on))

--# and (not(sensors_state.bottom = high or

--# sensors_state. PONR = hi gh or

--# sensors_state. button = high)

--# -> (control = ready and notor = a_on));

procedure At_Ready (sensors_state : in Sensors. State;
control : in out Control_Type;
not or : out Actuator.CQut_Sig);

--# derives control fromcontrol, sensors_state
--# & motor from sensors_state;

--# pre control = ready;

--# post ((sensors_state.bottom = high or

--# sensors_state. PONR = hi gh)

--# -> (control = halt_open and notor = a_on))
--# and ((not (sensors_state.bottom = high or
--# sensors_state. PONR = hi gh)

--# and (sensors_state. button = high))

--# -> (control = closing and notor = a_off))
--# and ((not (sensors_state.bottom= hi gh or

--# sensors_state. PONR = hi gh)

--# and (not (sensors_state.button = high)))

--# -> (control =ready and notor = a_on));

procedure At_Cosing (sensors_state: in Sensors. State;
control : in out Control_Type;
not or : out Actuator.CQut_Sig);

--# derives control fromcontrol, sensors_state

--# & motor from sensors_state;

--# pre control = closing;

--# post (sensors_state.bottom= hi gh

--# -> (control = halt_closed and nmotor = a_off))

--# and ((not (sensors_state.bottom = hi gh)

--# and (sensors_state. PONR = high))

--# -> (control = uncond_cl osing and notor = a_off))
--# and ((not (sensors_state.bottom = high or

--# sensors_state. PONR = hi gh)

--# and (sensors_state. button /= high))

--# -> (control = opening and notor = a_on))

--# and (not (sensors_state.bottom = high or

--# sensors_state. PONR = hi gh or

--# sensors_state. button /=high)

--# -> (control = closing and notor = a_off));

procedure At_Uncond_C osing (sensors_state : in Sensors. St ate;
control : in out Control_Type;
not or : out Actuator.Qut_Sig);

--# derives control fromcontrol, sensors_state

56

-# & motor from sensors_state;

--# pre control = uncond_closing;

--# post (sensors_state.top = high

—# -> (control = halt_closed and motor = a_off))

-# and ((not (sensors_state.top = high)

--# and (sensors_state.bottom= high))

- -> (control = opening and motor = a_on))

--# and ((not (sensors_state.top = high or

--# sensors_state.bottom = high))

- -> (control = unc ond_closing and motor = a_off));

end Transitions;

6. Filetransitions.Ist T —containspackage body Transitions

Listing of SPARK Text
SPARK95 Examiner with VC and RTC Generator Release 2.5/ 04.97
Demonstration Version

DATE : 12-SEP-1999 12:19:10.01

Line
1 package body Transitions
2 is
3 procedure Init (control : out Control_Type;
4 motor : out Actuator.Out_Sig) is
5 begin
6 control := opening;
7 motor := a_on;
8 end Init;
+++ Flow analysis of subprogram Init performed: no

errors found.

9
10
11 procedure At_Opening (sensors_state: in Sensors.State;
12 control: in out Control_Type;
13 motor : out Actuator.Out_Sig) is
14 begin
15 if sensors_state.top = high then
16 control := open;
17 end if;

18 motor ;= a_on;
19 end At_Opening;

+++ Flow analysis of subprogram At_Opening
performed: no errors found.

20

21 procedure At_Open (sensors_state . in Sensors.State;
22 control :in out Control_Type;

23 motor : out Actuator.Out_Sig) is
24 begin

25 if (sensors_state.bottom = high) or

26 (sensors_state.PoNR = high) or

27 (sensors_state.button = high) then

28 control := halt_open;

29 else

30 control := ready;

31 end if;

32 motor :=a_on;
33 end At_Open;

(1) Flow Error : Importation of the initial value of variable
control is ineffective.
M (2) Flow Error : The imported value of control is not used in the

derivation of control.

57

35 procedure At_Ready (sensors_state 1in Se nsors.State;
36 control :in out Control_Type;
37 motor : out Actuator.Out_Sig) is
38 begin
39 if (sensors_state.bottom = high) or
40 (sensors_state.PoNR = high) then
41 control := halt_open;
42 motor ;= a_on;
43 elsif sensors_state.button = high then
44 control := closing;
45 motor := a_off;
46 else motor :=a_on;
47 end if;
48 end At_Ready;
+++ Flow analysis of subprogram At_Ready performed:
no errors found.
49
50 procedure At_Closing (sensors_state :in Sensors.State;
51 control :in out Control_Type;
52 motor : out Actuator.Out_Sig) is
53 begin
54 if sensors_state.bottom = high then
55 control := halt_closed;
56 motor := a_off;
57 elsif sensors_state.PoNR = high then
58 control := uncond_closing;
59 motor := a_off;
60 elsif sensors_state.button /= high then
61 control := opening;
62 motor ;= a_on;
63 else
64 motor := a_off;
65 end if;
66 end At_Closing;
+++ Flow analysis of subprogram At_Closing
performed: no errors found.
67
68 procedure At_Uncond_Closing (sensors_state :in Sensors.State;
69 control :in out Control_Type;
70 motor : out Actuator.Out_Sig) is
71 begin
72 if sensors_state.top = high then
73 control := halt_closed;
74 motor := a_off;
75 elsif sensors_state.bottom = high then
76 control := opening;
77 motor := a_on;
78 else motor := a_off;
79 end if;
80 end At_Uncond_Closing;
+++ Flow analysis of subprogram At_Uncond_Closing
performed: no errors found.
81
82 end Transitions;
--End of file

7. File machinelst

Listing of SPARK Text

T - contains main procedure Machine

SPARK95 Examiner with VC and RTC Generator Release 2.5/ 04.97

Demonstration Version

DATE : 12-SEP-1999 12:19:09.02

58

L
]
@

1 with Transitions; use type Transitions. Control _Type;
2 wth Sensors;
3 with Actuator;
4
5 --# inherit Transitions, Sensors, Actuator;
6 --# main_program
7
8 procedure Machine
9 --# global in out Sensors. State_Seq;
10 --# in out Actuator.State_Seq;
11 --# derives Sensors.State_Seq from*
12 --# & Actuator. State_Seq from*, Sensors. State_Seq;
13 is
14
15 control : Transitions. Control _Type;
16 sensors_state : Sensors. State;
17 nmotor : Actuator.Qut_Sig;
18
19 begin
20 Transitions.Init (control, notor);
21 Actuator.Wite (notor);
22
23 while (control /= Transitions.halt_open)
24 and then (control /= Transitions. halt_cl osed)
25 --# assert true; -- SPARK demands a | oop invari ant
26
27 | oop
28 Sensors. Read (sensors_state);
29
30 case control is
31 when Transitions. openi ng =>
32 Transi tions. At _Openi ng (sensors_state, control, notor);
33 when Transitions.open =>
34 Transitions. At _Open (sensors_state, control, notor);
35 when Transitions.ready =>
36 Transitions. At _Ready (sensors_state, control, notor);
37 when Transitions.cl osing =>
38 Transitions. At _C osing (sensors_state, control, notor);
39 when Transitions.uncond_cl osing =>
40 Transi tions. At _Uncond_C osing (sensors_state, control, notor);
41 when Transitions. halt_open | Transitions. halt_closed =>
42 null; --# check false; -- means that this path can never be taken
43 end case;
44
45 Actuator.Wite (notor);
46 end | oop;
47
48 --# assert (control = Transitions.halt_open) or (control = Transitions.halt_closed);
49

50 end Machi ne;

+++ Fl ow anal ysi s of subprogram Machi ne perfornmed:
no errors found.

--End of file@---o-mmmi i

59

Appendix E Spade Simplifier Output
The following SPADE outputs are provided:
1. 7filesof generated VCs

init.vcg, at_openi.vcg, at_open.vcg, at_ready.vcg, at_closi.vcg,
at _uncon. vcg, nachine.vcg

Fileat _cl osi . vcg shown here.
EEEE SRR R SRS EEEEEEREEEEE SRR R ER R R R EEERREEREREEEEREESEESRESEES]

Semantic Anal ysis of SPARK Text
SPARK95 Exani ner with VC and RTC Generator Release 2.5 / 04.97

Denonstration Version
EEEE SRR R SRS EEEEEEREEREEE SRR EEER R R R EEERREEREREEEEEEREESESEES]

DATE : 12- SEP-1999 12:19:09. 84

procedure Transitions. At_C osing

For path(s) fromstart to finish:

procedure_at _cl osing_1.

H1: control = closing .
H2: fld_bottonm(sensors_state) = high .
->
Cl: (fld_botton(sensors_state) = high) -> ((halt_closed =
halt _cl osed) and (a_off = a_off)) .
c2: ((not (fld_bottom(sensors_state) = high)) and (fld_ponr(

sensors_state) = high)) -> ((halt_closed =
uncond_cl osing) and (a_off = a_off)) .

C3: ((not ((fld_botton(sensors_state) = high) or (fld_ponr(
sensors_state) = high))) and (fld_button(
sensors_state) <> high)) -> ((halt_closed =
opening) and (a_off = a_on)) .

CA: (not ((fld_bottom(sensors_state) = high) or ((fld_ponr(
sensors_state) = high) or (fld_button(
sensors_state) <> high)))) -> ((halt_closed =
closing) and (a_off = a_off))

procedure_at _cl osing_2.

H1: control = closing .
H2: not (fld_bottom(sensors_state) = high)
H3: fld_ponr(sensors_state) = high .
->
Cl: (fld_botton{sensors_state) = high) -> ((
uncond_cl osing = halt_closed) and (a_off = a_off)) .
c2: ((not (fld_bottom(sensors_state) = high)) and (fld_ponr(

sensors_state) = high)) -> ((uncond_closing =
uncond_cl osing) and (a_off = a_off)) .

C3: ((not ((fld_botton(sensors_state) = high) or (fld_ponr(
sensors_state) = high))) and (fld_button(
sensors_state) <> high)) -> ((uncond_closing =
opening) and (a_off = a_on)) .

CA: (not ((fld_bottonm(sensors_state) = high) or ((fld_ponr(
sensors_state) = high) or (fld_button(
sensors_state) <> high)))) -> ((uncond_cl osing =
closing) and (a_off = a_off))

procedure_at _cl osing_3.

H1: control = closing .
H2: not (fld_bottom(sensors_state) = high)
H3: not (fld_ponr(sensors_state) = high)
H4: fld_button(sensors_state) <> high .
->

Cl: (fld_bottonm(sensors_state) = high) -> ((opening =

halt _cl osed) and (a_on = a_off)) .
c2: ((not (fld_bottom(sensors_state) = high)) and (fld_ponr(

sensors_state) = high)) -> ((opening =
60

uncond_cl osing) and (a_on = a_off)) .

C3: ((not ((fld_botton(sensors_state) = high) or (fld_ponr(
sensors_state) = high))) and (fld_button(
sensors_state) <> high)) -> ((opening = opening) and (
a_on = a_on)) .

CA: (not ((fld_bottonm(sensors_state) = high) or ((fld_ponr(
sensors_state) = high) or (fld_button(
sensors_state) <> high)))) -> ((opening =
closing) and (a_on = a_off)) .

procedure_at _cl osi ng_4.

H1: control = closing .
H2: not (fld_botton(sensors_state) = high)
H3: not (fld_ponr(sensors_state) = high)
H4: not (fld_button(sensors_state) <> high)
->
Cl: (fld_botton(sensors_state) = high) -> ((control =
halt _cl osed) and (a_off = a_off)) .
C2: ((not (fld_botton{sensors_state) = high)) and (fld_ponr(

sensors_state) = high)) -> ((control =
uncond_cl osing) and (a_off = a_off))

C3: ((not ((fld_botton(sensors_state) = high) or (fld_ponr(
sensors_state) = high))) and (fld_button(
sensors_state) <> high)) -> ((control = opening) and (
a_off = a_on)) .

CA: (not ((fld_bottonm(sensors_state) = high) or ((fld_ponr(

sensors_state) = high) or (fld_button(
sensors_state) <> high)))) -> ((control =
closing) and (a_off = a_off))

2. 7 filesof SPADE proofs

init.slg, at_openi.slg, at_open.slg, at_ready.slg, at_closi.slg,
at _uncon. sl g, nmachine.slg

Proof of At _Closing_1 infileat cl osi.slg shown here.

EEEEEEEEEEEREEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEERESESEEESESE]

LOG OF SI MPLI FI CATI ONS PERFORMED BY SPADE SI MPLI FI ER
PVL SPADE TOOL VERSION : 1.4
Copyright (C) 1986-97 Praxis Critical Systens, Bath, WK

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEESEEEEEEEEESEEEESESESEESESE]

DATE : 12-SEP-1999 TIME : 12:20: 07

@ VC:. procedure_at_closing_ 1.
W8 Sinplified C1 on reading fornmula in,

%8 Cl: true
%R Sinplified C2 on reading formula in, to give:

%B6 C2: not (not fld_botton(sensors_state) = high and fld_ponr(sensors_state) = high)
W8 Sinplified C3 on reading fornmula in, to give:

%R C3: not (not (fld_bottom(sensors_state) = high or fld_ponr(sensors_state) = high)
and fld_button(sensors_state) <> high)
%R Sinplified C4 on reading formula in, to give:

%Bo C4: fld_botton(sensors_state) = high or (fld_ponr(sensors_state) = high or
fld_button(sensors_state) <> high)
-S- Applied substitution rule at_closing_rules(3).

This was achi eved by replacing all occurrences of high by:

sensors__hi gh.

<S> New H2: fld_botton(sensors_state) = sensors__high
<S> New C2: not (not fld_botton(sensors_state) = sensors__high and fld_ponr(sensors_state)
sensors__hi gh)
<S> New C3: not (not (fld_botton(sensors_state) = sensors__high or fld_ponr(sensors_state)
sensors__high) and fld_button(sensors_state) <> sensors__high)
<S> New C4: fld_botton(sensors_state) = sensors__high or (fld_ponr(sensors_state) =
sensors__high or fld_button(sensors_state) <> sensors__high)

61

*** Proved Cl: true
*** Proved C2: not (not fld_botton(sensors_state) = sensors__high and
fld_ponr(sensors_state) = sensors__high)
usi ng hypot hesi s H2.
*** Proved C3: not (not (fld_bottom(sensors_state) = sensors__high or
fld_ponr(sensors_state) = sensors__high) and fld_button(sensors_state) <> sensors__high)
usi ng hypot hesi s H2.
*** Proved C4: fld_bottonm(sensors_state) = sensors__high or (fld_ponr(sensors_state)
sensors__high or fld_button(sensors_state) <> sensors__high)
usi ng hypot hesi s H2.
*** PROVED VC.

ag® VC:. procedure_at_cl osing_2. /8
%80 Sl rrpllfled Cl on reading forrmula in, to give:

%B®6 Cl: not fld_botton(sensors_state) = high
%R Sinplified C2 on reading fornmula in, to give:

%8 C2: true
W86 Sinplified C3 on reading fornmula in, to give:

%86 C3: not (not (fld_botton(sensors_state) = high or fld_ponr(sensors_state) = high)
and fld_button(sensors_state) <> high)
W86 Sinplified C4 on reading forrmula in, to give:

%86 C4: fld_botton(sensors_state) = high or (fld_ponr(sensors_state) = high or
fld_button(sensors_state) <> high)
>>> Restructured hypothesis H2 into:

>>> H2: fld_botton(sensors_state) <> high
-S- Applied substitution rule at_closing_rules(3).

This was achi eved by replacing all occurrences of high by:

sensors__hi gh.

<S> New H2: fld_botton(sensors_state) <> sensors__high
<S> New H3: fld_ponr(sensors_state) = sensors__high
<S> New Cl: not fld_botton(sensors_state) = sensors__high
<S> New C3: not (not (fld_botton(sensors_state) = sensors__high or fld_ponr(sensors_state)
sensors__high) and fld_button(sensors_state) <> sensors__high)
<S> New C4: fld_botton(sensors_state) = sensors__high or (fld_ponr(sensors_state) =
sensors__high or fld_button(sensors_state) <> sensors__high)
*** Proved C2: true
*** Proved Cl: not fld_botton(sensors_state) = sensors__high

usi ng hypot hesi s H2.
*** Proved C3: not (not (fld_botton(sensors_state) = sensors__high or
fld_ponr(sensors_state) = sensors__high) and fld_button(sensors_state) <> sensors__high)

usi ng hypot hesi s H3.
*** Proved C4: fld_botton{sensors_state) = sensors__high or (fld_ponr(sensors_state) =
sensors__high or fld_button(sensors_state) <> sensors__high)

usi ng hypot hesi s H3.
*** PROVED VC.

ag VC:. procedure_at_cl osing_3. /2
%% Slnpllfled Cl on reading formula in, to give:
%B6 Cl: not fld_botton(sensors_state) = high
W8 Sinplified C2 on reading forrmula in, to give:
WB6 C2: not (not fld_botton(sensors_state) = high and fld_ponr(sensors_state) = high)
%R Sinplified C3 on reading formula in, to give:
W C3: true
W8 Sinplified C4 on reading fornmula in, to give:
%86 C4: fld_botton(sensors_state) = high or (fld_ponr(sensors_state) = high or
fld_button(sensors_state) <> high)
>>> Restructured hypothesis H2 into:
>>> H2: fld_botton(sensors_state) <> high
>>> Restructured hypothesis H3 into:
>>> H3: fld_ponr(sensors_state) <> high
-S- Applied substitution rule at_closing_rules(3).
This was achi eved by replacing all occurrences of high by:
sensors__hi gh.
<S> New H2: fld_botton(sensors_state) <> sensors__high
<S> New H3: fld_ponr(sensors_state) <> sensors__high
<S> New H4: fld_button(sensors_state) <> sensors__high
<S> New Cl: not fld_botton(sensors_state) = sensors__high
<S> New C2: not (not fld_botton(sensors_state) = sensors__high and fld_ponr(sensors_state)
sensors__hi gh)
<S> New C4: fld_botton(sensors_state) = sensors__high or (fld_ponr(sensors_state)
sensors__high or fld_button(sensors_state) <> sensors__high)
*** Proved C3: true
*** Proved Cl: not fld_botton(sensors_state) = sensors__high
usi ng hypot hesi s H2.

62

*** Proved C2: not (not fld_botton(sensors_state) = sensors__high and
fld_ponr(sensors_state) = sensors__high)

usi ng hypot hesi s H3.
*** Proved C4: fld_bottom(sensors_state) = sensors__high or (fld_ponr(sensors_state) =
sensors__high or fld_button(sensors_state) <> sensors__high)

usi ng hypot hesi s H4.
*** PROVED VC.

oaaaaoo VVC: procedure_at _cl osing_4. /2
W8 Sinplified Cl1 on reading forrmula in, to give:
%6 Cl: fld_botton(sensors_state) = high -> control = halt_cl osed
%R Sinplified C2 on reading formula in, to give:
WB6 C2: not fld_botton(sensors_state) = high and fld_ponr(sensors_state) = high ->
control = uncond_cl osi ng
%R Sinplified C4 on reading formula in, to give:
%B6 C4: not (fld_botton(sensors_state) = high or (fld_ponr(sensors_state) = high or
fld_button(sensors_state) <> high)) -> control = closing
>>> Restructured hypothesis H2 into:
>>> H2: fld_botton(sensors_state) <> high
>>> Restructured hypothesis H3 into:
>>> H3: fld_ponr(sensors_state) <> high
>>> Restructured hypothesis H4 into:
>>> H4: fld_button(sensors_state) = high
-S- Applied substitution rule at_closing_rules(1).
This was achi eved by replacing all occurrences of a_on by:
actuator__a_on.
<S> New C3: not (fld_botton(sensors_state) hi gh or fld_ponr(sensors_state) = high) and
fld_button(sensors_state) <> high -> control opening and a_off = actuator__a_on
-S- Applied substitution rule at_closing_rules(2).
Thi s was achi eved by replacing all occurrences of a_off by:
actuator__a_off.
<S> New C3: not (not (fld_botton(sensors_state) = high or fld_ponr(sensors_state) = high)
and fld_button(sensors_state) <> high)
-S- Applied substitution rule at_closing_rules(3).
This was achi eved by replacing all occurrences of high by:
sensors__hi gh.
<S> New H2: fld_botton(sensors_state) <> sensors__high
<S> New H3: fld_ponr(sensors_state) <> sensors__high
<S> New H4: fld_button(sensors_state) = sensors__high
<S> New Cl: fld_botton(sensors_state) = sensors__high -> control = halt_cl osed
<S> New C2: not fld_botton(sensors_state) = sensors__high and fld_ponr(sensors_state) =
sensors__high -> control = uncond_cl osi ng
<S> New C4: not (fld_botton(sensors_state) = sensors__high or (fld_ponr(sensors_state) =
sensors__high or fld_button(sensors_state) <> sensors__high)) -> control = closing
<S> New C3: not (not (fld_botton(sensors_state) = sensors__high or fld_ponr(sensors_state) =
sensors__high) and fld_button(sensors_state) <> sensors__high)
*** Proved Cl: fld_botton(sensors_state) = sensors__high -> control = halt_cl osed
usi ng hypot hesi s H2.
*** Proved C2: not fld_bottom(sensors_state) = sensors__high and fld_ponr(sensors_state) =
sensors__high -> control = uncond_cl osi ng
usi ng hypot hesi s H3.
*** Proved C4: not (fld_bottom(sensors_state) = sensors__high or (fld_ponr(sensors_state) =
sensors__high or fld_button(sensors_state) <> sensors__high)) -> control = closing
usi ng hypot hesi s HL.
*** Proved C3: not (not (fld_botton(sensors_state) = sensors__high or
fld_ponr(sensors_state) = sensors__high) and fld_button(sensors_state) <> sensors__high)
usi ng hypot hesi s H4.
*** PROVED VC.

3. 7 filesof summary theorems

init.siv, at_openi.siv, at_open.siv, at_ready.siv, at_closi.siv,
at _uncon. siv, nachine.siv

Fileat _cl osi . si v shown here
R R R EE S

Senmantic Anal ysis of SPARK Text
SPARK95 Examiner with VC and RTC Generator Release 2.5 / 04.97
Denonstration Version

R R R R R

CREATED 12- SEP- 1999, 12:19:09 SIMPLIFIED 12- SEP-1999, 12:20: 07
(Sinplified by SPADE Sinplifier, Version 1.4)

63

procedure Transitions. At_C osing

For path(s) fromstart to finish
procedure_at _cl osing_1.
*** true . /* all conclusions

procedure_at _cl osing_2.
*** true . /* all concl usions

procedure_at _cl osing_3.
*** true . /* all concl usions

procedure_at _cl osi ng_4.
*** true . /* all concl usions

proved

proved

proved

proved

*/

*/

*/

*/

