
SOFTWARE VERIFICATION RESEARCH CENTRE

SCHOOL OF INFORMATION TECHNOLOGY

THE UNIVERSITY OF QUEENSLAND

Queensland 4072
Australia

TECHNICAL REPORT

No. 99-31

A Case Study in Software Safety Assurance Using Formal Methods

Brenton Atchison, Peter Lindsay, David Tombs

September 1999

Phone: +61 7 3365 1003
Fax: +61 7 3365 1533

Note: Most SVRC technical reports are available via
anonymous FTP, from svrc.it.uq.edu.au in the directory
/pub/SVRC/techreports. Abstracts and compressed
postscript files are available via http://svrc.it.uq.edu.au.

1

A Case Study in Software Safety Assurance

Using Formal Methods

Brenton Atchison, Peter Lindsay, David Tombs

Software Verification Research Centre
School of Information Technology

The University of Queensland
Queensland 4072, Australia

email: { brenton,pal,tombs} @svrc.uq.edu.au

Abstract

This report describes a formal approach to verification and validation of safety requirements
for embedded software, by application to a simple control-logic case study. The logic is
formally specified in Z. System safety properties are formalised by defining an abstract
model of the system’s physical behaviour in Z, including its hazardous states and dominant
sensor failures. The Possum specification-animation tool is then used to check that the logic
meets its safety requirements. Finally, the logic is implemented in SPARK Ada and SPARK
Examiner is used to formally verify the implementation meets its specification. Design safety
validation and source code verification are completely automated, removing the need for
human intervention.

Keywords: safety-critical systems, formal methods, safety assurance, V&V

1 Introduction

This report describes a formal approach to assuring safety of the design and implementation of
embedded software for simple control systems. The approach differs from more traditional formal
approaches in that much of it is full y automated and it largely avoids the need for complex
mathematical proofs. It is thus likely to be far more cost-effective, while offering as high (and arguably
even higher) assurance.

The approach is illustrated on the development of a safety argument for a simple case study concerning
the software control logic for a hydro-mechanical press. Background to the case study is presented in
section 2, including the operational concept and system architecture.

1.1 Approach to Safety Assurance

There follows an outline of the proposed software safety assurance process:

1. System safety requirements are assumed to have been derived by an appropriate hazard analysis,
including consideration of possible software-input (sensor) failure modes. For the case study, the
results of such an analysis are described in section 3, but a full description of the task is outside the
scope of this report. The requirements are expressed as properties of the press’s physical
behaviour and control system sensor and actuator values. [Atchison, 1997 #8] contains more
details of the hazard analysis activities.

2. Control-logic design is expressed as a finite-state input/output machine. Safety of the logic design
is validated by analysing all possible behaviours of the logic in its operational environment
(including the possibility of single sensor failures). Formally this is achieved by specification
animation using a Z specification of the control logic and an abstract model of the press and its
sensors and actuator. The behaviours leading to hazardous system states are analysed, and it is

2

argued that the residual risk of logic-related system failures is acceptably low. The software design
is presented in section 4 and the safety validation process is described in section 5. The Possum
tool [Hazel, 1997 #7] is used for specification animation.

3. The control logic is implemented in SPARK Ada, with formal annotations derived directly from
the Z specification. (With appropriate tool support this step could be fully automated.) The
SPARK Examiner toolset [2] is used to formally verify that the implementation meets its
specification. The process used is described in sections 6 and 7.

The result is a fully tool-supported safety argument for the control-logic software for the press, such as
could form the core of a software safety case. (Safety case ingredients not covered here include
failures’ likelihood, and system-integration test results showing that the installed software behaves as
implemented.)

The approach made it possible to discover deficiencies in the control-logic design, and to replay the
analysis automatically upon making modifications to the logic. The systematic, repeatable nature of the
approach represents a significant improvement over manual processes, without the overhead of full
formal development. As such, we believe it has the potential to be a highly cost-effective, high
integrity approach to development of safety assurance for embedded software.

There are necessaril y some activities of the safety assurance process that cannot be treated by formal
functional analysis, in particular the assessment of failure li kelihoods and residual risk. It is intended
that the analysis presented in this paper wil l provide information for these activities but they are not
presented here.

1.2 Formal Specification Notation

The Sum specification language [5] is used to specify both the control logic and operational
environment. Sum is a variant of the Z specification language [6] devised primarily to facilitate the
production of modular specifications and ease specification readability. Unique features of the Sum
language relevant to this case study are:

1. A collection of declarations and definitions may be grouped into a module. Modules may be
imported, giving visibility to the referenced entities.

2. State machines are easily represented by modules through the use of predefined State, Init and Op
schemas. State schemas represent the state encapsulated by the module through a collection of
typed variables. The state is initialised by the Init schema. State transitions are captured by Op
schemas which specify the relationship between state variables before and after a transition. The
modified state variables are identified by an appended dash. The scope of variables that can be
referenced by the Init and Op schemas is restricted to the module State schema variables by default
but can be extended arbitrarily. The changes_only expression in a schema specifies which part of
the state may be changed by an operation.

3. Preconditions can be explicitly associated with Op schemas in order to convey more information
about the intended specification. A precondition is identified with the prefix pre and represent
assumptions about the state prior to invocation of an operation.

Possum interprets queries made in Sum and responds with simplifications to those queries. Arbitrary
Sum expressions and predicates can be evaluated and a Sum state machine can be “executed” by
stepping consecutively through operations of that machine with active (true) preconditions.

The control logic Sum specification is manually translated to SPARK Ada annotations which provide a
functional specification embedded within the program. The SPARK analysis tools enable proofs that
the program satisfies the specification.

3

2 Case Study

2.1 Operational Concept

The (hypothetical) case study is based on a system first described by the HISE group at the University
of York [3] and which was purportedly inspired by a real system. The case study concerns a 50 tonne
hydro-mechanical press which is used to produce body parts for a certain make of motor vehicle. The
press is loaded and unloaded by a single operator. Unformed sheets of metal (workpieces) arrive on a
conveyor belt roughly once per minute. The operator loads a workpiece from the roll -off area into the
press, then pushes a button which causes the press to close: that is, the plunger falls to the bottom
under gravity, pressing the workpiece into its desired shape. The press then opens again, and the
operator unloads the formed product from the press and places it onto a second conveyor belt.

The press is opened by activating an electric motor and engaging clutches which drive hydro-
mechanical winding gear. The press plunger is held against the top stop by running the motor
continuously. There is a point, called the point of no return (PoNR), after which it is pointless – and
may in fact be dangerous – to try to open a closing press because the falling plunger’s momentum is so
great.

Under normal operation, the press wil l close in approximately 2 seconds, and open in approximately 4
seconds. There would normally be 420 operations of the press per day. The industrial press is
illustrated in Figure 1.

Figure 1 - Industrial Press

2.2 System Architecture

The system architecture extends existing hydro-mechanical winding gear with the push button, position
sensors and a PLC based control system. A functional block diagram of the architecture is illustrated
by Figure 2.

Top sensor

PoNR sensor

Bottom sensor

PLC

Button

Plunger

Drive chain

Motor

Clutches

Guard

4

Push Button

Top Sensor

PoNR
Sensor

Bottom
Sensor

Plunger
Drive

PLC Control
System

Button Sig

Top Sig

PoNR Sig

Bottom Sig

Drive Sig

Figure 2 - Industrial Press Control System Architecture

The position of the press plunger is measured by three micro-switch sensors, positioned at the top,
bottom and physical point of no return, which are ‘ toggled’ by a lever fitted to the centre of the plunger
whenever the plunger passes the switch. Table 2-1 indicates how the sensor values are interpreted.

Sensor Interpretation of high signal

Top plunger is at top of travel

PoNR plunger is below point of no return

Bottom plunger is at bottom of travel

Button button is pressed

Table 2-1 - Press System Sensor Signals

The control logic of the press is implemented in software executing on a PLC. It scans sensor signals
from an input register at frequent intervals and writes the motor drive signal to an output register where
appropriate. The motor drive signal is scanned by electronic components that activate the electro-
mechanical clutch and motor system.

3 Safety Analysis

Although a complete safety analysis is outside the scope of this report, a summary of results is
provided by way of context.

The press includes a physical guard which allows the operator to put his or her arms into the press, but
not the head or torso. The main remaining operational safety hazard is that the operator, or a second
person, will have his or her hands crushed by the closing press. This hazard is to be mitigated by
inclusion of an “abort” facility, whereby the motor drive will be engaged if the button is released while
the plunger is falling above the PoNR.

Any attempt to raise a plunger falling below the PoNR is hazardous, since it will slow plunger descent
without actually stopping it reaching the bottom (thus giving the operator more time to put his hands in
a closing press), or may even cause the winding gear to break. A partial mitigation of this hazard is
ensure that the button is placed far enough away to allow a plunger falling past the PoNR to reach the
bottom before the operator can travel from the button to the press.

The “primary” system safety requirements for normal (fault-free) operation are:

1. The motor drive shall be active when button is released while plunger is above the PoNR.

2. The motor drive shall not be activated when the plunger is falling below the PoNR.

5

A further, “secondary” safety requirement is that sensor failures should not cause a hazard. More
precisely, it will be required that all single critical persistent sensor failures be detected and revealed
within one operational cycle of the press. Sensor failures may have a variety of causes, including
electrical and mechanical faults. Persistent failures (such as breakages) only shall be considered here,
since they are the most likely and the most pernicious (especially if allowed to go undetected for many
operational cycles of the press). In a full safety case, these and other possible hardware failures would
be identified and assessed by a separate analysis such as an FMEA [4].

Rather than derive software specific safety requirements, we present a model of the software design
and investigate whether safety is preserved under operating conditions, even in the presence of single
persistent sensor faults.

4 Software Design

This section describes the control logic chosen for the case study. This report will not attempt to record
how this particular design was chosen, except to say that the logic corresponds closely to the intuitive
operation of the press as described above, with tests for physically impossible sensor-value
combinations. Section 5 below presents the detailed assurance to show that the design meets the safety
requirements described above.

4.1 Informal Design Specification

The software is designed with typical scan architecture consisting of input module, control logic
module and output module. Normal operation of the software is a repeated cycle consisting of:

1. Scan inputs from sensors;

2. Execute control logic; and

3. Write outputs to motor drive actuator

The state transition diagram in Figure 3 defines the control logic module. Sensor value combinations
not represented in the diagram result in a null transition. Under normal (fault-free) operation of the
press, logical states correspond to physical states of the press as described by Table 4-1. The motor
drive output is only modified on entry to the opening and closing states. At power up, the state
machine is initiali sed to the opening state.

opening

open

uncond
closing

closing

halt
closed

halt
open

top

 button

Key: low signal

high signal

PoNR

bottom

bottom

or PoNR

bottom

motor drive off

motor drive on

& bottom
& PoNR

& button
& bottom

ready

button

bottom or PoNR

button

& bottom & PoNR

top

& bottom & PoNR

and top

or button

6

Figure 3 - Press Control Logic

Logical State Interpretation

Opening Plunger is rising

Open Plunger has reached top

ready Plunger has reached top and
button is not currently pressed

closing Plunger is falling above PoNR

uncond closing Plunger is falling below PoNR
and will close unconditionally

halt open Operation is halted with plunger
at top

halt closed Operation is halted with plunger
on press bed

Table 4-1 Software states

Note that the operator is required to release the push button before the plunger reaches the top,
otherwise the press will halt open. We do not consider the procedure for restarting the press after fault
detection here. Clearly there would need to be procedures for safely shutting down the press to allow
repair. Similarly, the software would be augmented with facilities for reporting the nature of the
failure detected, but these are not treated here.

Table 4-2 summarises the point of detection of critical sensor failures. It is assumed that the critical
sensor failures are determined by a separate analysis. Some failures may also be detected at other
points in the operation.

Sensor failure mode Point of detection

Bottom sensor stuck low Not detected – non critical fault

Bottom sensor stuck high Bottom sensor high signal received when
plunger is closing above PoNR

Top sensor stuck low Not detected – non critical fault

Top sensor stuck high Top sensor high signal received when
plunger is closing below PoNR

PoNR sensor stuck low Bottom sensor high signal received before
PoNR sensor low signal received when
plunger is descending

PoNR sensor stuck high PoNR sensor high signal received when
plunger is at top of travel

Button sensor stuck low Non detected – non critical fault

Button sensor stuck high Button sensor high signal received as
plunger reaches top of travel.

Table 4-2 - Detection of critical sensor failures

7

4.2 Formal Design Specification

The software design is translated into Sum using three modules, as illustrated by Figure 4. The
complete Sum specifications are in Appendix A. The formal specification is described below. The
ASCII representation of Sum is translated into a more traditional Z style, interspersed with
commentary. The specification is presented in a modular fashion with Sum modules delimited by an
outer frame and schemas within separated by internal frames.

Machine

ActuatorSensors

Figure 4 - Formal Software Specification Structure

The Sensors and Actuator modules represent the input and output interfaces of the software by the
types and values of the sensor and motor drive signals. They are an abstraction of the interfaces only
and do not specify the interface protocol to be used. The following introduces a number of typed
variables denoting Sensor and Actuator states. Types for the variables; IN_SIG and OUT_SIG are
defined within the module by the set of potential variable values.

� Sensors��
IN_SIG ::= high

�
low� �

state�� �
button, top, PoNR, bottom: IN_SIG� � 	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

� 	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

 Actuator
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
OUT_SIG ::= a_on

�
a_off�
 state

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
� �

motor: OUT_SIG� � 	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
� 	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

The control logic is specified by the Machine module. This module imports the interface modules in
order to read and manipulate interface signal states. The type for the local control variable, which
records the local control state, is introduced within the module.

 Machine
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
import Sensors�
import Actuator�
CONTROL ::= opening

�
open

�
ready

�
closing

�
uncond_closing

�
�

 halt_open
�

halt_closed�
 state
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

� �
control: CONTROL� �
Sensors.state� �
Actuator.state

8

� � ���
�

Initialisation sets values for the control logic state and the motor drive signal, but not the sensor values.� �
init
���

� �
control' � opening� �
Actuator.motor' � Actuator.a_on� 	
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

State machine transitions are modelled by an Op schema for each machine state. Execution of the state
machine is assumed to occur by invoking the operational schema with an active precondition.

An example operational schema follows. The schema concerns the transitions from the Closing state
of the state machine, including the null transition which results in no change. Note that, since the
changes_only expression cannot be embedded in a Sum if expression, the values of control and
Actuator.motor are set on every branch.� �

op At_Closing

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

� �
pre control � closing� �
if Sensors.bottom � Sensors.high� �
then� �
 (control' � halt_closed � Actuator.motor'
 Actuator.a_off)� �
else� �
 (if Sensors.PoNR
 Sensors.high� �
 then� �
 (control'
 uncond_closing � Actuator.motor'
 Actuator.a_off)� �
 else� �
 (if Sensors.button
 Sensors.low� �
 then� �
 (control'
 opening � Actuator.motor'
 Actuator.a_on)� �
 else� �
 (control'
 closing � Actuator.motor'
 Actuator.a_off)� �
 fi)� �
 fi)� �
fi� �
changes_only� control, Actuator.motor�� � ���

For convenience, execution of the state machine is captured by a single operation. The result is
deterministic since the preconditions of all operations are disjoint, as can be checked by inspection.�

Transition ��� (At_Opening � At_Open � At_Ready � At_Closing ��
At_Uncond_Closing � At_Halt_Open � At_Halt_Closed)� ���

The operational semantics of this specification are assumed to be that the Transition operation is
repeatedly invoked until no further progress is possible. Sensor values may change arbitrarily between
invocations.

4.3 Hardware Interface Specification

The software interacts with the sensors and motor drive via input and output registers. Sensor signals
are mapped onto a single register at memory address 1000011. Its content is specified by Table 4-3.

1 The underlying hardware and addresses of registers is imaginary and has been conceived for this paper.

9

Sensor Register Protocol

Top 11xxxxxx: high signal

00xxxxxx: low signal

PoNR xx11xxxx: high signal

xx00xxxx: low signal

Bottom xxxx11xx: high signal

xxxx00xx: low signal

Button xxxxxx11: high signal

xxxxxx00: low signal

Table 4-3 - Press System Sensor Signals

The motor output register is located at memory address 100011. The motor drive interprets 11111111
as an ON signal and 00000000 as an OFF signal.

5 Software Design Safety Assurance

5.1 Strategy

This section describes our approach to verification that the software design satisfies the safety
requirements described above. The approach is based on formal modelling of system states as they
relate to safety, and exhaustive analysis of possible system behaviours using the Possum specification-
animation tool [7].

In order to verify the safety requirements of the press physical system, the software state machine is
animated within an (abstract) environment simulating the equipment under control. Different
animations are used to explore the effect of software control on physical system behaviour under
normal (fault-free) conditions and in the presence of single persistent sensor failures. Press operation
and sensor failures are modelled as a finite state machine and formally specified in Sum.

Verification of system safety requirements is then performed by systematically searching all possible
behaviours of the combined system using specification animation. The system states reached are
automatically compared with the system safety requirements and unsafe operational scenarios are
identified and analysed.

5.2 Abstract Model of Press Operation

To simulate the operation of the press we introduce a model comprising six possible physical states of
the plunger (see Table 5-1), with transitions as il lustrated in Figure 5. The simulation model abstracts
away from timing properties such as exactly when transitions in the physical state occur. The
interpretation of when transitions take place is as follows:

• ‘motor drive on’ means that the motor drive is applied for sufficiently long to achieve the indicated
effect on the state of the plunger;

• ‘motor drive off’ means that the motor drive is off f or sufficiently long to have the indicated effect;

• all other cases result in a null transition.

Note that the model is more liberal than reality, in the sense that it considers more states than may be
physically possible.

In defining the press simulation model, a number of simpli fying assumptions have been made about
aspects of press operation, in particular:

10

1. There are no failures of the electromechanical plunger drive mechanism, and the motor drive has
the desired effect on the plunger.

2. The press sensors are installed in their correct positions; in particular, the PoNR sensor is installed
close to the true “point of no return” .

3. The system only exhibits single, permanent sensor failures.

4. The controller operates according to the control logic design. Note however that no assumption is
made about processor response time.

We expect that possible violations of these assumptions would be dealt with in other parts of the safety
case, such as a consideration of possible hardware failures and a software timing analysis.

The position of the plunger in each state is used by the animator to determine what would be the
corresponding press-sensor values under fault-free operation: e.g. in the at_bottom state, the bottom
and PoNR sensor values would be high and the top sensor value would be low. To model persistent
sensor failures, the simulation is extended by transitions corresponding to sensors failing and thereafter
reporting a constant value.

A formal specification of the model is given in section 5.4

Simulator state Physical interpretation

at_bottom Plunger is below bottom sensor

below_PoNR Plunger is between bottom and PoNR sensors; continuous
application of the motor drive will prevent press closing and will
eventually raise plunger above PoNR sensor

falling_to_bottom Similar to below_PoNR but motor drive cannot prevent press
closing due to downward momentum

above_PoNR Plunger is between PoNR and top sensor; continuous application
of the motor drive will prevent plunger passing PoNR sensor and
will eventually raise plunger above top sensor

falling_past_PoNR Similar to above_PoNR but motor drive cannot prevent plunger
passing PoNR sensor due to downward momentum

at_top Plunger is above top sensor

Table 5-1 - Plunger states in press simulation

5.3 Animation Design

In the animation, the press simulation model takes actuator values from the control software as inputs
and assigns press sensor values as outputs. Together, the simulation model, the control software
specification, and push and release of the button will emulate operation of the Press.

The animation consists of a systematic exploration of the possible physical behaviours of the press
simulation model under software and operator control. The “system state” comprises all possible
combinations of states of the system components (simulator, software and button). The primary system
safety requirements from section 3 are formalised as properties of the system state and checked at each
step of the animation. The secondary safety requirement – that single persistent sensor failures are
detected and revealed – is demonstrated by showing that the press halts within one cycle of such a
failure occurring.

11

motor drive off

Below PoNR

At bottom

Above PoNR

At top

Falling past PoNR

Falling to bottom

motor drive on/off

motor drive on

motor drive off

motor drive off

motor drive off

motor drive on

motor drive on

motor drive on

motor drive on

PoNR Sensor

Bottom Sensor

Top Sensor

motor drive off

Figure 5 - Press Simulation Model

Separate animations are performed for fault-free operation and for each sensor failure mode. The
animation is performed using a depth-first search of all reachable system states. The search is
constructed from basic animation events as described in Table 5-2.

Animation event Interpretation

Init Initialise simulation state (software in opening
state, plunger at bottom, button released)

Control_Transition Single (possibly null) transition of the software
state machine without change to plunger state or
sensor values

Button_Transition Toggle of the button sensor value (push or release
as appropriate), with no other changes

Plunger_Transition Single (possibly null) transition of the plunger
state and press sensor values, based on the current
actuator state

Sensor_Failure Activates the appropriate sensor failure mode
(e.g. Bottom_Fail_High)

STOP Terminate this run of the animation

Table 5-2 – Basic animation events

The algorithms for animating the “normal operation” and “bottom sensor stuck high” scenarios are
described in Figure 6 using a CCS-like process description language [8]. The algorithms keep track of
what system states have been visited, and backtrack when an already-visited state is reached. By their
exhaustive nature, the algorithms clearly will determine all possible system states reachable from the
initial state.

12

The algorithms return a transition table for the complete system, as well as example runs (sequences of
states corresponding to possible behaviours of the system) to aid in analysis.

a)

Normal -> Init ;P

P -> if state_already_visited then STOP
else Q

Q-> Control_Transition ;P
| Plunger_Transition ;P
| Button_Transition ; P

b)

Bottom_Stuck_High -> Init ;P

P-> if state_already_visited then STOP
else Q

Q-> Control_Transition ;P
| Plunger_Transition ;P
| Button_Transition ; P
| Bottom_Fail_High ;R

R -> if state_already_visited then STOP
else S

S -> Control_Transition ;R
| Plunger_Transition ;R
| Button_Transition ;R

Figure 6 -Animation algorithm for a) normal operation b) bottom sensor fails high

5.4 Animation Specification

The system for animation is specified by extending the existing Sum software specification with a new
Simulator module through the shared import of interface states, as illustrated by Figure 7. The
specification is explained in more detail below. The complete specification is given in Appendix B.
<<Requires update!!>>

Machine

Simulator

ActuatorSensors

Control System

Environment

Figure 7 - Simulation Environment

5.4.1 Simulation State

The state of the Simulation module extends the machine state with a record of sensor health, physical
state of the plunger and button, and an indication of safety. For convenience we define identifiers for
useful sets of physical states and rename values of sensor variables.

� Simulator��
// ---�
// Industrial Press Simulation Environment�
// The environment module provides a simulation environment for the Press�
// logic state machine. The simulation is performed at a physical level.

13

�
// The modelled physical state of the press is used to drive sensor signals.�
// These, in turn, drive the control logic which then causes a physical�
// state change. It is possible to activate sensor failures and�
// investigate their effect.�
// ---�
import Sensors�
import Actuator�
import Machine�
// -------------------------------�
// State�
// In addition to encapsulating the logic, sensor and motor drive states,�
// the state represents the physical movement of the plunger.�
// -------------------------------�
SENSOR_HEALTH ::= broken

�
ok�

PLUNGER ::= at_bottom
�

below_PoNR
�

above_PoNR
�

at_top�
falling_past_PoNR

�
falling_to_bottom�

states_above_top ��� � at_top��
states_above_PoNR ��� � above_PoNR, at_top, falling_past_PoNR��
states_above_bottom ��� � s: PLUNGER � s � at_bottom�	
SAFETY ::= safe

	
abort_failed

	
unsafe_motor_drive	

BUTTON ::= pressed
	

released	
high
�
 Sensors.high	
low
�
 Sensors.low	

	 �
state�
���
���
���
�
�
�����
�
���
���
���
�
���
�
�����
�
���
���
�	 	

Sensors.state	 	
Actuator.state	 	
Machine.state	 	
plunger: PLUNGER	 	
button: BUTTON	 	
safety: SAFETY	 	
button_health, top_health, PoNR_health, bottom_health: SENSOR_HEALTH� �
�
�
���
���
���
�
���
���
���
�
���
���
�
���
���
���
�
���
���
���

The Init schema initialises the complete simulation state, including the value of sensors and physical
states of the press plunger and push button. Note that no initial value is assigned to the safety indicator
variable. � �

init
�
���
�
���
���
�
���
���
���
�
���
���
���
�
�
�����
���
�
���
�

� �
Machine.init� �
Sensors.button' � Sensors.low� �
Sensors.top' � Sensors.low� �
Sensors.PoNR' � Sensors.high� �
Sensors.bottom' � Sensors.high� �
button_health' � ok� �
top_health' � ok� �
PoNR_health' � ok� �
bottom_health' � ok� �
plunger' � at_bottom� �
button' � released� � �
�
���
���
���
�
���
���
���
�
���
���
�
���
���
���
�
���
���
���

14

5.4.2 Evaluating Safety

Safety is automatically evaluated through animation by updating the safety variable in accordance with
the hazardous states defined by Section 3. This is achieved by including the condition of safety within
the state schema as a state invariant. The state invariant is then included as a condition within each
operational schema, resulting in modification of the safety variable throughout the animation.� �

state���
…� � �� �

safety � if ((plunger = falling_to_bottom and� �
 (Actuator.motor = Actuator.a_on)) then� �
 unsafe_motor_drive� �
 else� �
 if ((plunger in states_above_PoNR) and� �

(Actuator.motor /= Actuator.a_on) and� �
(button = released)) then� �
abort_failed� �

 else� �
safe� �

 fi� �
 fi� � ���

5.4.3 Simulation Operations

Top level operations corresponding to the animation events of Table 5-2 are defined, corresponding to
transitions of the simulator, the button and the control logic.

The Control_Transition simply renames the transition of the state machine.� �
op Control_Transition�������������������������������� �

Machine.Transition� �
changes_only 	Machine.control, Actuator.motor, safety
� � ���

The physical simulation model described in Section 5.2 is captured by a set of valid transitions. These
are recorded by a local function variable next_plunger_state defined as follows.� �

next_plunger_state: (PLUNGER � Actuator.OUT_SIG) � PLUNGER
 ���

next_plunger_state(at_bottom, Actuator.a_off) � at_bottom

next_plunger_state(at_bottom, Actuator.a_on) � below_PoNR

next_plunger_state(below_PoNR, Actuator.a_off) � falling_to_bottom

next_plunger_state(below_PoNR, Actuator.a_on) � above_PoNR

next_plunger_state(above_PoNR, Actuator.a_off) � falling_past_PoNR

next_plunger_state(above_PoNR, Actuator.a_on) � at_top

next_plunger_state(at_top, Actuator.a_off) � above_PoNR

next_plunger_state(at_top, Actuator.a_on) � at_top

next_plunger_state(falling_past_PoNR, Actuator.a_off) � falling_to_bottom

next_plunger_state(falling_past_PoNR, Actuator.a_on) � below_PoNR

next_plunger_state(falling_to_bottom, Actuator.a_off) � at_bottom

next_plunger_state(falling_to_bottom, Actuator.a_on) � at_bottom

15

A single operation is used to execute the physical movement of the plunger and update sensor values
accordingly. Sensor values are only modified if the corresponding sensor is “healthy” (not failed
stuck). �

� op Plunger_Transition������������������������������������ �
plunger' � next_plunger_state(plunger, Actuator.motor)� �
Sensors.top' �� � �

if top_health � ok then	 	
 (if (next_plunger_state (plunger, Actuator.motor)
� �

 states_above_top) then high else low fi)� �
else� �

Sensors.top� �
fi)� �

Sensors.PoNR' �� �

if PoNR_health � ok then� �

 if (next_plunger_state (plunger, Actuator.motor)
� �
 states_above_PoNR) then low else high fi)� �

else� �
Sensors.PoNR� �

fi)� �
Sensors.bottom' �� �

if bottom_health � ok then� �
 (if (next_plunger_state(plunger, Actuator.motor)
� �

 states_above_bottom) then low else high fi)� �
else� �

Sensors.bottom� �
fi)� �

changes_only� plunger, Sensors.top, Sensors.PoNR, Sensors.bottom, safety�� � ���

Operations are provided to push and release the button. The button signal is only modified if the
button sensor is healthy. Only the example of pushing the button is shown here.� �

op Push_Transition
���

� �
Sensors.button' � (if (button_health � ok) then high else Sensors.button fi)� �
button' � pressed� �
changes_only� Sensors.button, button, safety�� � ���

Sensor failures are forced through a number of operations, one for each failure mode. The following
specifies the bottom sensor failing with a permanent high signal.� �

op Bottom_Fail_High
���

� �
Sensors.bottom � high� �
 bottom_health' � broken� �
changes_only� Sensors.bottom, bottom_health�� � ���

5.4.4 Algorithm Implementation

The search algorithm of Figure 6 is implemented by a Tcl program [9] integrated with the Possum tool
to execute the appropriate sequence of operations. The program executes a traditional stack-based
implementation of a depth-first search. During the search, a list of all visited states is maintained. In
order to backtrack during the search, some auxiliary operations are provided to reset the system state.

16

The program produces a transcript of all runs explored, together with a summary table of reachable
system states and corresponding system state transitions.

5.5 Animation Results

5.5.1 Presentation of Results

The animation results are generated separately for fault-free operation and for each permanent sensor
failure mode. The number of visited states for each operational scenario is listed in Table 5-3. The
states encountered in fault-free operation are also visited while exploring the effects of sensor failures.

Animation mode #states

Normal (fault-free) 32

Bottom Stuck Low 64

Bottom Stuck High 74

PoNR Stuck Low 66

PoNR Stuck High 78

Top Stuck Low 64

Top Stuck High 88

Button Stuck Low 64

Button Stuck High 64

Total (unique) 338

Table 5-3 - Number of visited states

For each mode, all generated paths are recorded and the results are summarised in a transition table.
Example results for fault-free operation and for the bottom sensor high failure are presented in Sections
5.5.2 and 5.5.3. A summary of all animation results is presented in Appendix C. Some abbreviations
have been used to capture the states but their meaning should be evident.

5.5.2 Fault-Free Operation

A transition table summarising all behaviours under fault-free operation is presented in Figure 8. There
are three hazardous states that occur when the button is initially released while the plunger is falling
above the PoNR. However, these states are transitory and are safety is immediately restored upon next
execution of the software. Unless the software halts or is extremely slow, no accidents can arise.

===
Model check for Industrial Press Control System
===
Number of states = 32

 plunger control button motor safe C.T B.T P.T

1 at_bottom opening released a_on safe 1 2 4
2 at_bottom opening pressed a_on safe 2 1 3
3 below_PoNR opening pressed a_on safe 3 4 6
4 below_PoNR opening released a_on safe 4 3 5
5 above_PoNR opening released a_on safe 5 6 16
6 above_PoNR opening pressed a_on safe 6 5 7
7 at_top opening pressed a_on safe 8 16 7
8 at_top open pressed a_on safe 9 11 8
9 at_top halt_open pressed a_on safe 9 10 9
10 at_top halt_open released a_on safe 10 9 10
11 at_top open released a_on safe 12 8 11
12 at_top ready released a_on safe 12 13 12

17

13 at_top ready pressed a_on safe 14 12 13
14 at_top closing pressed a_off safe 14 15 18
15 at_top closing released a_off no_abort 16 14 17
16 at_top opening released a_on safe 11 7 16
17 above_PoNR closing released a_off no_abort 5 18 20
18 above_PoNR closing pressed a_off safe 18 17 19
19 past_PoNR closing pressed a_off safe 19 20 28
20 past_PoNR closing released a_off no_abort 21 19 23
21 past_PoNR opening released a_on safe 21 22 4
22 past_PoNR opening pressed a_on safe 22 21 3
23 to_bottom closing released a_off safe 24 28 32
24 to_bottom uncond_cls released a_off safe 24 25 27
25 to_bottom uncond_cls pressed a_off safe 25 24 26
26 at_bottom uncond_cls pressed a_off safe 2 27 26
27 at_bottom uncond_cls released a_off safe 1 26 27
28 to_bottom closing pressed a_off safe 25 23 29
29 at_bottom closing pressed a_off safe 30 32 29
30 at_bottom halt_closed pressed a_off safe 30 31 30
31 at_bottom halt_closed released a_off safe 31 30 31
32 at_bottom closing released a_off safe 31 29 32

Figure 8 – States visited under Fault-free operation

5.5.3 Bottom Stuck High Failure Operation

Figure 9 illustrates the list of states visited under a permanent bottom high sensor failure. Again there
are temporary hazardous states that are controlled by immediate software execution. Other hazardous
states of longer duration are highlighted.

===
Model check for Industrial Press Control System Bottom_Fail_High
===
Number of states 74
--
 plunger control button motor safe bottom C.T B.T P.T F.T
--
1 at_bottom opening released a_on safe ok 1 2 4 41
2 at_bottom opening pressed a_on safe ok 2 1 3 42
3 below_PoNR opening pressed a_on safe ok 3 4 6 32
4 below_PoNR opening released a_on safe ok 4 3 5 31
5 above_PoNR opening released a_on safe ok 5 6 18 34
6 above_PoNR opening pressed a_on safe ok 6 5 7 33
7 at_top opening pressed a_on safe ok 8 18 7 22
8 at_top open pressed a_on safe ok 9 13 8 21
9 at_top halt_open pressed a_on safe ok 9 10 9 12
10 at_top halt_open released a_on safe ok 10 9 10 11
11 at_top halt_open released a_on safe broken 11 12 11 11
12 at_top halt_open pressed a_on safe broken 12 11 12 12
13 at_top open released a_on safe ok 14 8 13 20
14 at_top ready released a_on safe ok 14 15 14 74
15 at_top ready pressed a_on safe ok 16 14 15 73
16 at_top closing pressed a_off safe ok 16 17 24 72
17 at_top closing released a_off no_abort ok 18 16 23 69
18 at_top opening released a_on safe ok 13 7 18 19
19 at_top opening released a_on safe broken 20 22 19 19
20 at_top open released a_on safe broken 11 21 20 20
21 at_top open pressed a_on safe broken 12 20 21 21
22 at_top opening pressed a_on safe broken 21 19 22 22
23 above_PoNR closing released a_off no_abort ok 5 24 26 68
24 above_PoNR closing pressed a_off safe ok 24 23 25 65
25 past_PoNR closing pressed a_off safe ok 25 26 48 64
26 past_PoNR closing released a_off no_abort ok 27 25 35 61
27 past_PoNR opening released a_on safe ok 27 28 4 30
28 past_PoNR opening pressed a_on safe ok 28 27 3 29
29 past_PoNR opening pressed a_on safe broken 29 30 32 29

18

30 past_PoNR opening released a_on safe broken 30 29 31 30
31 below_PoNR opening released a_on safe broken 31 32 34 31
32 below_PoNR opening pressed a_on safe broken 32 31 33 32
33 above_PoNR opening pressed a_on safe broken 33 34 22 33
34 above_PoNR opening released a_on safe broken 34 33 19 34
35 to_bottom closing released a_off safe ok 36 48 54 60
36 to_bottom uncond_cls released a_off safe ok 36 37 39 47
37 to_bottom uncond_cls pressed a_off safe ok 37 36 38 44
38 at_bottom uncond_cls pressed a_off safe ok 2 39 38 43
39 at_bottom uncond_cls released a_off safe ok 1 38 39 40
40 at_bottom uncond_cls released a_off safe broken 41 43 40 40
41 at_bottom opening released a_on safe broken 41 42 31 41
42 at_bottom opening pressed a_on safe broken 42 41 32 42
43 at_bottom uncond_cls pressed a_off safe broken 42 40 43 43
44 to_bottom uncond_cls pressed a_off safe broken 45 47 43 44

45 to_bottom opening pressed a_on bad_drv broken 45 46 42 45
46 to_bottom opening released a_on bad_drv broken 46 45 41 46
47 to_bottom uncond_cls released a_off safe broken 46 44 40 47
48 to_bottom closing pressed a_off safe ok 37 35 49 57
49 at_bottom closing pressed a_off safe ok 50 54 49 56
50 at_bottom halt_closed pressed a_off safe ok 50 51 50 53
51 at_bottom halt_closed released a_off safe ok 51 50 51 52
52 at_bottom halt_closed released a_off safe broken 52 53 52 52
53 at_bottom halt_closed pressed a_off safe broken 53 52 53 53
54 at_bottom closing released a_off safe ok 51 49 54 55
55 at_bottom closing released a_off safe broken 52 56 55 55
56 at_bottom closing pressed a_off safe broken 53 55 56 56
57 to_bottom closing pressed a_off safe broken 58 60 56 57
58 to_bottom halt_closed pressed a_off safe broken 58 59 53 58
59 to_bottom halt_closed released a_off safe broken 59 58 52 59
60 to_bottom closing released a_off safe broken 59 57 55 60
61 past_PoNR closing released a_off no_abort broken 62 64 60 61
62 past_PoNR halt_closed released a_off no_abort broken 62 63 59 62
63 past_PoNR halt_closed pressed a_off safe broken 63 62 58 63
64 past_PoNR closing pressed a_off safe broken 63 61 57 64
65 above_PoNR closing pressed a_off safe broken 66 68 64 65
66 above_PoNR halt_closed pressed a_off safe broken 66 67 63 66
67 above_PoNR halt_closed released a_off no_abort broken 67 66 62 67
68 above_PoNR closing released a_off no_abort broken 67 65 61 68
69 at_top closing released a_off no_abort broken 70 72 68 69
70 at_top halt_closed released a_off no_abort broken 70 71 67 70
71 at_top halt_closed pressed a_off safe broken 71 70 66 71
72 at_top closing pressed a_off safe broken 71 69 65 72
73 at_top ready pressed a_on safe broken 12 74 73 73
74 at_top ready released a_on safe broken 11 73 74 74
--

Figure 9 - States visited with bottom sensor stuck high

Figure 10 illustrates one of the unsafe scenarios produced by the animation. In this scenario, the bottom
sensor fails high while the plunger is falling above the PoNR. As a result, the software fails to abort
press closure when the button is released and the plunger falls uncontrollably to the press bottom. The
sensor failure is detected when the plunger returns to the top of travel, and the press operation is halted.

--
 plunger control button motor safe bottom
--
1 at_bottom opening released a_on safe ok
2 below_PoNR opening released a_on safe ok
3 above_PoNR opening released a_on safe ok
4 at_top opening released a_on safe ok
5 at_top open released a_on safe ok
6 at_top ready released a_on safe ok
7 at_top ready pressed a_on safe ok
8 at_top closing pressed a_off safe ok
9 above_PoNR closing pressed a_off safe ok

19

10 above_PoNR closing pressed a_off safe broken
11 above_PoNR uncond_cls pressed a_off safe broken
12 above_PoNR uncond_cls pressed a_off safe broken
13 above_PoNR uncond_cls released a_off no_abort broken
14 past_PoNR uncond_cls released a_off no_abort broken
15 to_bottom uncond_cls released a_off safe broken
16 at_bottom uncond_cls released a_off safe broken
17 at_bottom opening released a_on safe broken
18 at_bottom opening released a_on safe broken
19 below_PoNR opening released a_on safe broken
20 above_PoNR opening released a_on safe broken
21 at_top opening released a_on safe broken
22 at_top halt_open released a_on safe broken
--
Path complete: cycle or halted
--

Figure 10 - An example hazardous scenario

This scenario is typical of the remaining hazardous states of press operation. Section 5.5.4 presents a
more complete analysis of the results.

5.5.4 Analysis of Results

Inspection of the animation output reveals that all persistent failure modes are detected and handled
within one operational cycle. Despite this, 22 unsafe states are still encountered that are not
immediately rectified by the control logic. Such states require further analysis to determine
acceptability, as follows.

1. The bottom sensor fails high while the plunger is below PoNR and falling to bottom. In this case
the motor drive will be unsafely activated before the plunger reaches the bottom of the press. The
sensor fault will then be detected when the plunger reaches top of the travel, and the press will halt
open. An argument for accepting this risk would probably be based on the low likelihood that the
sensor would fail within this small window of opportunity.

2. The bottom sensor fails high while the plunger is falling above the PoNR. The fault will be
detected immediately and the press will halt closed; in the meantime however the abort facility will
be lost for the rest of that cycle. An argument for accepting this risk would probably be based on
the low likelihood that the abort facility would be required in the small window of opportunity.

3. The PoNR sensor fails low at almost any point in the cycle, the press closes under normal
operation, the plunger falls past the PoNR, and the operator then erroneously releases the button
before the plunger has reached the bottom. As a result, the software, thinking the plunger has not
yet passed the PoNR, will try to abort operation by activating the motor drive (unsafely, as it turns
out). The press will close and then immediately start re-opening. The sensor fault will be detected
the next time the plunger reaches the bottom under normal operation, and the press will halt closed.
However, it is possible that this fault would go undetected for several operations if the operator
continues to release the button before the plunger reaches the bottom. This can be prevented by
operational procedures to maintain button pressure until the plunger begins to rise.

4. The PoNR sensor fails high while the plunger is falling above the PoNR. Again, the abort facility
will be lost temporarily, but the fault will be detected when the plunger reaches the bottom and the
press will halt closed.

5. An unusual (and extremely unlikely) scenario occurs when the PoNR sensor fails high after the
plunger begins descent but prior to passing the top sensor. In this case, the software may cycle
through to the uncond_closing state where an assumed failure of the top sensor is detected and
operation is halted. The plunger is allowed to fall and descent cannot be aborted. The very small
window of opportunity for this scenario would render it acceptable.

6. The button sensor fails high while the press is fully open or closing, resulting in the loss of the
abort facility. The sensor fault will be detected when the plunger next reaches top of travel. The

20

risk of this failure may be reduced by an additional form of protection, for example a beam to
detect human presence in the press vicinity.

6 Implementation

This section describes the implementation of the Press software using the SPARK restricted subset of
Ada and its associated toolset [2]. Annotations inserted to assist code verification are included but not
discussed until section 7. The complete code li sting is in Appendix D.

6.1 SPARK background

SPARK is a subset of Ada that excludes many unsafe features. The SPARK kernel is well - defined,
easy to understand, yet suited to programming in the large. Ada features that are hard to specify or
inappropriate in a high-integrity context are excluded.

As well as the Ada subset, SPARK contains two layers of annotation, or formal comment. Annotations
constrain the Ada semantics to enable static flow analysis and proof against specification.

Static analysis is a mandatory aspect of SPARK Ada development that provides a rigorous sanity
check on the static structure of the code, over and above normal type-checking. Data flow analysis
checks the direction of data flow: that variables are written before they are read. Information flow
analysis further checks dependencies between variables: that an output depends only on a specified set
of inputs. In SPARK these dependencies between variables are ‘declared’ as part of a procedure
specification through (mandatory) global and derives annotations2. The SPARK Examiner tool
performs flow analysis using these annotations.

The second, optional, layer of annotation (pre, post, assert and check) state conditions that must hold
on the program at different points of its execution. For example, pre states a subprogram’s
preconditions and post its postconditions; together they act as specification of the subprogram’s
behaviour. The conditions are expressed in a predicate logic called FDL that relates Ada program
objects. The SPARK Examiner generates a collection of verification conditions (VCs - also known as
proof obligations) on the SPARK program using the optional annotations. VCs are generated by
tracing backwards over the program flow graph from an asserted final state to an initial state.

VCs must be discharged to prove that the program meets its specification. For example, a procedure
body must achieve the post-condition on its procedure specification and a loop assertion must be valid
at every iteration. The SPARK Simpli fier tool will normally discharge each VC automatically.
Otherwise, the more powerful interactive SPARK Proof Checker is needed.

The original SPARK source is submitted to a normal Ada compiler for translation to machine code. If
the SPARK analysis reveals no errors then the compilation should succeed. Some Ada programs
cannot be handled by the SPARK toolkit, in particular those containing low-level and IO code; these
must be validated separately.

6.2 Implementation description

6.2.1 Program units

Ada and SPARK code is produced manually by translating from the formal Sum specification. Code
production is also informed by an understanding of the informal transition diagram.

The Ada architecture broadly mirrors the Sum specification. There are however notable differences
owing to the way the two languages handle state. In Sum, state and behaviour are present in each
schema definition, and the machine’s total state and behaviour is derived via Sum’s semantic rules.

2 Strictly, data flow analysis (the global annotations) is mandatory and information flow analysis (the derives
annotations) is optional, but we regard both forms as essential in a rigorous development.

21

Ada is an imperative programming language and state and behaviour must be programmed explicitly.
This leads to a slightly different module structure, with four Ada program units.

package Sensors - defines sensor values and read operation
package Actuator - defines actuator values and write operation
package Transitions - defines machine states, initial state, and state transitions
procedure Machine – declares state variables and executes main control loop

Figure 7 illustrates the Ada program structure, with arrows indicating unit dependencies. Units not
subject to SPARK analysis are shaded grey. Comparison with Figure 4 shows how Ada differs from
the Sum. The most obvious change is that the specification module Machine is implemented by the
main procedure Machine and the supporting Transitions package. Clearly, there is no implementation
of the simulation environment.

Actuator
package body

Transitions
package spec

Actuator
package spec

Sensors
package spec

Machine
main procedure

Transitions
package body

Sensors
package body

Figure 7 - Software Implementation Structure

The translation of objects and functions is relatively intuitive, except that some name modifications are
made to improve coding style and to enable the SPARK toolset to verify the code. Additional code is
provided to implement the implicit operational semantics.

The other packages in the hierarchy declare static types and subprograms, which animate the machine
when invoked. The Sensors and Actuator packages correspond to the Sum interface modules with the
same names. They contain type definitions and access methods to hardware devices. The bodies of
these packages access device registers directly and are not formally analysed; they are shaded grey on
the diagram.

The Sum init and op schemas become procedures in a new package called Transitions with no direct
access to state. This corresponds to input and output schema variables, an alternative specification
style, and eases verification.

For reasons of programming style and convenience, and for ease of analysis, state and behaviour are
declared in the top-level procedure, Machine. Machine repeatedly executes transitions on the state until
a halt state is reached, thereby implementing the implicit operation of the Sum machine.

Specific elements of the program are discussed below. For ease of reference, each program segment is
labelled with the host program unit.

6.2.2 Type and variable declarations

Translation of Sum types into Ada types and variables is straightforward, with the exception that
slightly different approaches were taken in aggregation of type declarations.

Sensor and actuator signal types translate exactly to enumerated types; however there is an extra type
that captures the complete sensor state. This is done to simpli fy procedural access to the state.

type In_Sig is (high, low);

22

type State is record
top : In_Sig;
PoNR : In_Sig;
bottom : In_Sig;
button : In_Sig;

end record; .. package Sensors

type Out_Sig is (a_on, a_off); .. package Actuator

The definition of control logic states translates naturally into an Ada enumeration type.

type Control_Type is (opening, open, ready, closing, uncond_closing, halt_open, halt_closed);
package Transitions

The program state is declared centrally in main procedure Machine, as three variables. This
corresponds to the total state of the Sum modules.

control : Transitions.Control_Type;
sensors_state : Sensors.State;
motor : Actuator.Out_Sig; .. procedure Machine

6.2.3 External device control

The Sum specification does not capture external device control but assumes that device state is directly
accessible. The Ada code abstracts from device control in a similar way through access procedures that
read the sensor values and switch the motor drive.

procedure Read (Value: out State);
 --# global State_Seq;
 --# derives Value, State_Seq from State_Seq; .. package Sensors

procedure Write (Value: in Out_Sig);
 --# global State_Seq;
 --# derives State_Seq from Value, State_Seq; package Actuator

The global and derives annotations, together with the procedure parameter modes, specify data and
information flow. The physical hardware devices access mapped memory attached to the host
processor directly and asynchronously, as defined in Section 2.2. State_Seq is an imaginary variable
that represents the sequence of values of mapped memory. Read gets a new value from the devices,
which it also updates. Write sends a new value to the devices, and also depends on their current value.

The bodies of the Read and Write procedures directly address this memory via a low-level Ada
representation of the address space. The implementation is inherently hardware-specific; it cannot be
analysed by SPARK and must be verified by inspection and test. Specimen implementations are
presented in Appendices D.2 and D.4.

Note that the flow annotations specify a general behaviour for all device readers and writers, whatever
implementation is chosen.

The specification in Section 2.2 requires the press to halt if one of the sensor registers contains an
undefined value ‘10’ or ‘01’ . If the sensor Read procedure detects such a value it returns a
Sensors_State where all values are stuck ‘high’ permanently. The press should then halt within one
normal operational cycle.

6.2.4 Initialisation

An Ada procedure specification is written corresponding to the SUM initialisation schema.

procedure Init (control : out Control_Type;
 motor : out Actuator.Out_Sig);

 --# derives control, motor from ;

23

 --# post(control = opening and motor = a_on); package Transitions

This procedure assigns initial values to the state machine and the motor drive at system start-up. The
derives annotation indicates that the output values of both control and motor do not depend on
anything, i.e. that the function is a true initialisation. The post-condition specifies what the initial
values are. It is copied from the SUM.

The implementation is trivial and listed in Appendix D.4.

6.2.5 State transitions

A SPARK procedure is defined for each state transition specified by a SUM operation schema. Each
procedure has three parameters: the set of sensors, the current state, and the motor effector. It also has
SPARK information flow annotations and pre and post-conditions translated from the SUM
specification. Here is the procedure specification corresponding to the At_Closing schema.

procedure At_Closing (sensors_state: in Sensors.State;
 control : in out Control_Type;
 motor : out Actuator.Out_Sig);

 --# derives control from control, sensors_state
 --# & motor from sensors_state;

--# pre control = closing;
 --# post (sensors_state.bottom = high
 --# -> (control = halt_closed and motor = a_off))
 --# and ((not (sensors_state.bottom = high)
 --# and (sensors_state.PoNR = high))
 --# -> (control = uncond_closing and motor = a_off))
 --# and ((not (sensors_state.bottom = high or
 --# sensors_state.PoNR = high)
 --# and (sensors_state.button /= high))
 --# -> (control = opening and motor = a_on))
 --# and (not (sensors_state.bottom = high or
 --# sensors_state.PoNR = high or
 --# sensors_state.button /=high)

 --# -> (control = closing and motor = a_off)); package Transitions

The modes of the three parameters and their information flow derivations correspond directly to their
roles in the state machine.

• sensors_state is pure input, and therefore a non-changing in parameter.

• control may change during the procedure depending on the old state and sensor values, so it is
an in out parameter with accompanying derivation rules.

• motor is specified as an out parameter whose value is derived from the sensor input values.
This information flow rule follows from the formal Sum specification, which assigns a value to
the motor on every transition, regardless of its previous state. Informal analysis of the system
indicates that the motor is known to be in state a_off on entry (and is likewise known on entry
to every other state transition), but this fact is not stated by the Sum and is accordingly ignored.

The pre- and postconditions specify what the function must achieve. They are obtained by manual
transliteration of Sum into FDL. The translation is fairly immediate up to substitution of variable
names. The one difference is that FDL does not have an if ... then ... else ... form. SUM rules of the
form if A then B else C fi are translated to the semantically equivalent (A -> B) and (not A -> C). The
form is also provably equivalent to (A and B) or (not A and C).

The bodies of the transition functions are straightforward. There are no further annotations. The body
of At_Closing is given here.

procedure At_Closing (sensors_state: in Sensors.State;

24

 control : in out Control_Type;
 motor : out Actuator.Out_Sig) is

 begin
 if sensors_state.bottom = high then
 control := halt_closed;
 motor := a_off;
 elsif sensors_state.PoNR = high then
 control := uncond_closing;
 motor := a_off;
 elsif sensors_state.button /=high then
 control := opening;
 motor := a_on;
 else
 motor := a_off;
 end if;

 end At_Closing; .. package body Transitions

The At_Closing example ill ustrates how flow annotations and code interact. Parameter control is
assigned a new value if the condition on the sensors holds. Therefore it depends on the sensors.
Otherwise, it does not change, and its value depends on its own initial value. Hence the derivation
control from control, sensors_state is respected. The Motor variable is assigned a different value
according to the sensors’ values. Therefore the derivation motor from sensors_state is respected. Note
that motor is assigned a value inside each conditional case, which is a necessary condition on a
parameter of mode out.

It is visually apparent that the body satisfies the specification. A discussion of how this fact is proven
follows in sections 7.1.and 7.2.

6.2.6 Alternative programming styles

The Ada procedures could have been written in other ways and still reflect the Sum. Programmer
choice is informed by good Ada style, and by the information flow rules, which place tight restrictions
on how variables are used.

One might make use of the observed, but unspecified, fact that the motor parameter is known on entry
to each transition. With this information, its parameter mode could be changed to in out, information
flow rules simpli fied, and redundant assignments removed. Some transitions never switch the motor
drive, for example At_Opening. In these cases motor could be omitted as a parameter altogether.
However, it is considered better coding style to make all procedure signatures equivalent. It is also
unwise to rely on assumptions not explicit in the formal specification without revisiting that
specification.

The parameter control always takes the same value on entry; in our example it is closing. One
alternative is to make control an out parameter, change its derives statement to control from
sensors_state and omit the precondition. However, if were this was done, an assignment to the
parameter must be performed inside the else clause in the body, because an out parameter must always
be assigned on exit.

It happens that At_Closing and other state transitions are called at only one place in the program,
inside the main control loop (see 6.2.7), and their actual parameters are the state variables mentioned in
Section 6.2.2. An alternative programming style would make the transition procedures parameterless,
and access the variables as globals. SPARK makes all global data use visible, so there would be no cost
to review and analysis. The style adopted here has the advantage of simpli fying package dependencies
and easing long-term maintenance.

The information flow rules are probably the hardest part of SPARK to program correctly, and very
sensitive to slight changes in design, as indicated above. This sensitivity should be expected.
Information flow analysis is a very stringent check that variables and parameters are only used in the
way that the designer intended. In practise, it revealed many flaws in the program code during early
development. Once information flow had been established, formal proof followed without difficulty.

25

6.2.7 Main program

The main Ada program first declares and initialises the state variables, and switches the motor
accordingly.

 Transitions.Init (control,motor);
 Actuator.Write (motor); ... procedure Machine

It then enters a loop that emulates the assumed operation of the Sum specification and informal state
machine, by repeatedly activating transitions where preconditions allow. Specifically, the loop does
three things at each iteration: it reads the current value of the sensors; it executes the transition
procedure for the current state; and it switches the motor drive on or off as appropriate.

The loop only terminates if the state machine enters one of two terminal states, halt_open and
halt_closed.

while (control /= Transitions.halt_open)
 and then (control /= Transitions.halt_closed)

 --# assert true; -- SPARK demands a loop invariant

 loop
 Press_Sensors.Read (sensors_state);

 case control is
 when Transitions.opening =>

 Transitions.At_Opening (sensors_state, control, motor);
 when Transitions.open =>

 Transitions.At_Open (sensors_state, control, motor);
 when Transitions.ready =>

 Transitions.At_Ready (sensors_state, control, motor);
 when Transitions.closing =>

 Transitions.At_Closing (sensors_state, control, motor);
 when Transitions.uncond_closing =>

Transitions.At_Uncond_Closing (sensors_state, control, motor);
 when Transitions.halt_open | Transitions.halt_closed =>

null; --# check false; -- means that this path can never be taken
 end case;

 Press_Actuator.Write (motor);
 end loop; .. procedure Machine

The assertion at the start of the loop is a requirement of SPARK, and states an invariant that must hold
on every iteration. Because the state machine is deterministic, exactly one operation is valid at each
repetition and True is a sufficient invariant.

The last limb of the case clause is necessary according to the rules of Ada but is never executed. This
fact is asserted by the check False annotation, which means that paths leading to that limb must yield
falsehood; i.e. no such path can exist.

The final step of the main program is to assert that it terminates only in a halt_open or halt_closed
state.

--# assert (control = Transitions.halt_open) or (control = Transitions.halt_closed); procedure
Machine

26

7 Implementation Safety Assurance

7.1 Generation of verification conditions

The SPARK Examiner tool generates verification conditions (VCs) for each procedure it examines.
VCs are derived from the executable code and optional proof annotations, and state theorems that must
be satisfied in order to claim that the code meets its specification, as stated by the proof annotations.

They are obtained by walking backwards over the program flow graph, from a fixed point given by one
annotation to an earlier annotation, symbolically undoing assignments on the way (see [2] for more
information). VCs are the relationships between variables remaining at the end of this process. They
are expressed in FDL and are typically verbose, difficult to read, and their derivation from the SPARK
code is unintuitive.

The SPARK press software contains proof annotations as pre- and post-conditions on each transition
procedure, and a loop invariant and termination condition on the main control loop. There are therefore
VCs pertaining to these parts of the program. Altogether there are 19 VCs generated by initialisation
and transition procedures and 15 by the main procedure, including the control loop.

As an example, four verification conditions are generated for procedure At_Closing and recorded in
file at_closi.vcg. The compete listing is shown in Appendix E but one verification condition is
shown here.

procedure_at_closing_1.
H1: control = closing .
H2: fld_bottom(sensors_state) = high .
 ->
C1: (fld_bottom(sensors_state) = high) -> ((halt_closed =
 halt_closed) and (a_off = a_off)) .
C2: ((not (fld_bottom(sensors_state) = high)) and (fld_ponr(
 sensors_state) = high)) -> ((halt_closed =
 uncond_closing) and (a_off = a_off)) .
C3: ((not ((fld_bottom(sensors_state) = high) or (fld_ponr(
 sensors_state) = high))) and (fld_button(
 sensors_state) <> high)) -> ((halt_closed =
 opening) and (a_off = a_on)) .
C4: (not ((fld_bottom(sensors_state) = high) or ((fld_ponr(
 sensors_state) = high) or (fld_button(
 sensors_state) <> high)))) -> ((halt_closed =
 closing) and (a_off = a_off)) .

The FDL notation, particularly record field selection, is somewhat clumsy and obscure. In fact, the
verification conditions are trivial, and can be discharged using name equivalence and modus ponens.
The body of At_Closing achieves its specification in a straightforward, obvious manner, so one might
expect the VCs to be simple.

There are four VCs because the postcondition on the procedure has four conjuncts. By comparing with
the SPARK specification it will be observed that the hypotheses of the VCs are derived from the
precondition together with the antecedents of the postcondition. The conjectures of the VCs are
calculated by assuming the conclusions of the postconditions and walking backwards through the
procedure body.

7.2 Discharge of verification conditions

The SPARK Simplifier generates two sets of log files: a record of the proofs performed (*.slg); and a
summary of proven theorems (*.siv). Inspection of the files shows that all 34 VCs are discharged.

A proof of procedure_at_closing_1, taken from file at_closi.slg is shown in Appendix E.

27

As expected, the VC is discharged automatically by simplifying equivalences in the conjecture and by
showing contradictory hypotheses. Other VCs for other procedures are longer, but do not require logic
that is any more complex.

The summary of proven theorems for procedure at_closing, taken from file at_closi.siv is shown
in Appendix E.

Discharge of all VCs proves formally that the SPARK code satisfies its specification, as stated by the
proof annotations. Because the annotations were translated directly from Sum, it also proves rigorously
that the SPARK satisfies the Sum specification.

8 Discussion

8.1 Formal Methods and Design Safety Analysis

There are a number of ways that formal methods can be used to support safety analysis. In addition to
providing higher levels of rigour, formal methods can improve the efficiency of the analysis task by
enabling various levels of automation. In keeping with our aim of addressing lightweight assurance
methods, we discuss the use of formal methods for animation, static analysis, model checking and
hazard analysis. Assurance by theorem proving is not considered.

8.1.1 Animation

Animation and simulation of formal specifications has been proposed as a useful and cost effective
validation tool and has been implemented for many formalisms, including Z dialects [7, 10], VDM
[11], the B method [12], the SCR method [13] and RSML [14]. The advantages of animation include:

1. Providing enhanced understanding of specifications through immediate feedback;

2. Discovery of specification inconsistencies and simple errors; and

3. Validation of functions and expected behaviour through executed test cases.

For animation to be possible, the specification must be in an executable form. Hayes and Jones note
the dangers of encouraging executable specifications [15], suggesting that useful specification
strategies and styles are precluded and it is impossible to include assumptions or clauses that are not
computable. Furthermore, executable specifications may not allow nondeterminism; a useful and
sometimes necessary specification tool. They conclude that executable specifications would be best
classified as rapid prototyping.

Even interpreted as a protoyping activity, interactive animation and simulation of a formal
specification offers insight into a specification and improves the effectiveness of using formal methods.
However, animation suffers the limitations of testing in that, results drawn from one animation
scenario do not necessarily imply more universal properties about the specification behaviour. For the
case study presented here it was possible to model system safety properties and software as finite state
machines, and to carry out an exhaustive analysis by performing a complete search of the reachable
state space. In more general situations, however, animation alone does not provide the rigorous
assurance required of safety critical systems.

8.1.2 Static Analysis

Some formal specification languages and tools offer limited forms of automated static analysis for
consistency, completeness, non determinism, reachability and deadlock [13] [14] [16]. Such tools can
detect subtle errors in specifications and, where safety properties can be expressed in an appropriate
form, they can be used to perform safety analysis. It has been shown that such simple checks can
identify a large number of specification errors [17]. However, the analysis cannot be generally
extended to more sophisticated functional safety requirements.

28

8.1.3 Model Checking

Model checking is a verification technique that has traditionally been used for rigorous hardware
verification [18]. The success of hardware model checking has lead to increased application to
software verification [19] [20] [21]. The aim of model checking is to systematically explore the
behaviour of an operational system model for satisfaction of a set of desired functional properties. It
suffers the same general problems noted for animation above, but can be more efficient in certain
domains.

A number of input languages have been proposed for the specifications to be verified but most require
translation into an internal representation for efficient execution. The specification langauges are
commonly restricted to constructive styles, often based on finite state machines, where each state can
be determined trivially from existing states. One exception is Jackson’s Nitpick [22] which accepts
specifications in a large subset of Z. In this case, implicit specification styles are allowed, including
the use of state invariants and definition of behaviour through combination of operational schemas [6].

The largest obstacle in making software model checking feasible has been the large state spaces
introduced by complex software data structures. Recent innovations have begun to successfully
address this issue through state space abstraction techniques and efficient executions [20] [21] [22].
Current technology allows state spaces in the order of 1020 to be explored using practical amounts of
time and computing resources.

If it is feasible, safety analysis through model checking promises to be an efficient and rigorous option.
One potential obstacle lies in communicating the assurance gained from successful verification.
Unlike proof, there is no reasoned argument that can be audited and the integrity of the tool must be
relied upon.

8.1.4 Hazard Analysis

Safety analysis has traditionally been performed using semi-formal hazard analysis techniques such as
Fault Tree Analysis [23]. Such techniques are usually used to decompose an identified environmental
hazard into its causal failure modes and, where the failure modes relate to software, complementary
safety requirements are typically derived. Assurance of software safety is then generated by
demonstrating that the software specification satisfies the derived safety properties and that the
specification is implemented correctly [24] [25] [26].

Application of hazard analysis is typically a manual process but some work has been done using formal
specifications as the basis for partial automation of hazard analysis [14] [27]. These techniques
typically use the causal relationships implicit in a specification to derive a structure the analysis.
Others have created formal interpretations of hazard analysis techniques for the purpose of making the
analysis more rigorous [28] [29]. In these cases, failure modes are typically expressed as properties
formulated in some temporal logic but there is no proposed process for generating them automatically
from a formal specification.

8.1.5 Proposed Approach

The safety analysis approach described in this paper initially makes use of animation technology and
the expected advantages were exhibited. In particular, many minor errors in the formal specification
were discovered through initial experimentation with the model. It also facilitated an interactive
approach to software design, where the specification was built and “ tested” incrementally. This
allowed many flaws to be removed before more rigorous analysis began.

The use of animation technology to perform the rigorous safety analysis is quite different to the model
checking approaches described above. In particular, the model checking engine was not built within
the animation tool but was integrated externally via an application program interface. This allowed the
full range of animation capabilities to be used, in particular, the specification could make use of the full
expressive power of the Z language and safety analysis was performed on the specification directly.
However, the performance of the analysis was substantially lower than those demonstrated for custom
model checking tools. Furthermore, the model checking engine was custom built for the application

29

using knowledge of the application. To be applied more widely to larger, generic systems, the toolset
would require significant modification. Alternatively, mature model checking technology could be
used.

Regardless of the tools used, the approach to safety assurance differs significantly to traditional hazard
analysis methods. In particular, we demonstrate safety of the complete software behaviour in the
context of a modelled environment, rather than derive separate software safety properties and
environmental assumptions.

This approach requires additional rigour in specifying assumptions about the software execution
environment but it eliminates the two-step process of applying property-based hazard analysis through
the system design, then validating the derived safety properties against a software specification. In
fact, the rigorous environmental modelling can be viewed as an advantage since it exposes operational
assumptions for external validation.

8.2 Production and verification of SPARK Ada Code

Some of our process is manual, particularly generation of the SPARK Ada code and proof annotations
from the Sum specification. This requires maintenance of different descriptions of the system, at
essentially the same level, and is a source of potential errors of translation. A more automated process
would be more reliable, and also certifiable. The following different, and as yet incomplete, solutions
have been proposed.

The Cogito group [30] have proposed a method for the refinement of Sum specifications to Ada code
within the Cogito framework. The Ada is translated from an Intermediate Language, a subset of SUM,
which contains schema descriptions of imperative statements and control structures, and which can be
assembled into op schemas that are similar to procedures in a programming language. The Intermediate
Language can be written directly, or refined from normal SUM and the refinement steps verified by
Ergo, the theorem prover for Cogito.

The Cogito toolset includes a translator from IL into a subset of Ada. This subset is not SPARK-
compliant. It contains forbidden features such as generic packages and declare blocks; moreover, it
does not offer any annotations. However it does reflect many of the principles underlying SPARK,
such as the prohibitions on unbounded types, aliasing and reading of unitialised variables. Further,
Cogito retains flow information, and so has the potential to generate mandatory SPARK annotations,
although it does not do so presently.

As well as program statements, an IL schema may specify conditions that do not translate directly to
program, perhaps rules derived from software requirements. These are retained as Z rules on op
schemas. At present the Ada translator converts them into simple Ada comments. In principle however,
they could be translated to SPARK proof annotations, and discharged using the SPARK proof checker.

The DERA Compliance Notation [31] is built upon ProofPower, a commercial Z theorem prover. It
uses a literate programming paradigm to link Z specifications, SPARK Ada code and natural language
text. The user builds an Ada framework for their system, without initially providing the details of the
implementation. Instead, requirements are expressed as Z statements and SPARK annotations.
Progressively, these are replaced, manually, by Ada code. An associated Compliance Tool checks that
the Ada code is compatible with the Z, by generating verification conditions in similar manner to the
SPARK tool. VCs can be discharged using ProofPower or another Z prover such as CADiZ. Within the
Notation, fragments of code are scattered throughout a descriptive text. There are tools that assemble
Ada and Z fragments into complete programs for submission to a compiler, animator, or other tool.

The University of York have developed a method to convert a Z specification into the refinement
calculus - essentially an implementable subset of Z together with static pre- and post- conditions [32].
It is claimed that the implementable subset is translatable into SPARK Ada, although the work is less
advanced compared with Cogito. The validity of the refinement process can verified using a theorem
prover like CADiZ.

30

8.3 Limitations of Approach

Although formal methods have been used extensively to verify and validate functional aspects of the
case study system, some aspects have not been formalised and remain as assumptions. For a complete
safety case, these aspects must be addressed by separate analyses.

8.3.1 Hardware Interface

An informal specification for the hardware interface is provided in Section 4.3 and the corresponding
implementation in Section 6.2.3. However, the interface is not considered in the formal design or
implementation assurance. In principle, it may be possible to extend the system model with a
specification of the hardware design and its relationship to the software address space. However, the
formalisation would add little to the informal specification. The interface specification is an important
part of the design but assurance of its correctness must be provided by a separate process.

8.3.2 Failure Analysis and Risk Assessment

The effect of some failures, such as electro-mechanical faults in the drive mechanism, are not treated
formally and the analysis assumes that they do not occur. Although the control system design is
validated under sensor failures, an assumption is made that only single, permanent sensor failures will
be experienced. Even under the assumed sensor failure modes, some hazardous behaviours are still
found to remain.

A separate risk assessment is necessary to show that the likelihood of violating the assumptions is
sufficiently low, and that the residual risk of remaining hazardous conditions is acceptable.

8.3.3 Timing

In Section 5.5.4 we note that some of the hazardous states can be ignored due to their transient nature,
effectively eliminating the exposure of risk. In fact, this relies on the assumption of comparative
execution time of the software and the behaviour of the environment. While discharging the
assumption is quite simple for the system presented in this report, the analysis may be non-trivial for
more complex applications.

8.4 Future Work

Future work could include development of the Possum animation tool to facilitate more efficient model
checking. Alternatively, the use of an existing model checker could be explored. Regardless of the
toolset used, the system design safety assurance approach described in this paper should be explored on
a number of applications, including those with modularised software designs. An interesting direction
would be to apply the approach to partitioned software systems in which the critical software is
modelled and shown to be safe, assuming integrity of the design partition. The obligation to verify the
partition would be then be transferred to the code verification.

We intend to investigate mechanising the translation from the Sum specification to the SPARK
annotations. This would remove a source of error introduced by the manual translation and remove the
burden of multiple representations, particularly with regard to change control. It is possible that some
constraints on the specification style would arise but these may actually assist the specification activity.

9 Conclusions

This paper has demonstrated an approach to applying formal methods to verify that a given software
design meets its system-safety requirements and that given source code (in Ada) meets its design
requirements. We have aimed for lightweight application of formal methods which maximises the
opportunities for automation of assurance tasks and reduces the requirement for verification by formal
proof. The method employs a widely used formal specification language (Z) and a mixture of
systematic animation, similar to model checking, and SPARK Ada code analysis.

31

Full validation of design safety was possible for the particular application because of its relatively
simple nature, and the fact that its behaviours could be reduced to a finite set for animation. Although
such full validation may not be possible in more general situations, the approach none-the-less offers
clarity, traceabili ty and automation of much of the analysis.

In the proposed method, assurance is achieved by:

1. Preliminary hazard analysis that derives top level safety requirements relate to desirable invariants
of the operational system state.

2. Use of animation to execute all behaviours of a formally specified software control system in the
simulated context of its environment. The environment includes a model of the controlled physical
system as well as simulated sensor failure modes. Automatic comparison of executed states with
the safety requirements identifies operational scenarios that can lead to unsafe states.

3. Use of the SPARK toolset to verify correctness of the Ada code against the formal software design.
The Ada code is written to conform to the provided specification, with the style constrained to
facilitate verification. Proof annotations are inserted Complete verification is required. Translation
from the formal specification to SPARK verification annotations is required at present but we aim
to increase the mechanisation of this process in the future.

The method was applied to a small case study with a control system design modelled as a state
machine. Results of the verification confirm that the software is generally safe but some scenarios that
violate the safety requirements are identified. Two of the scenarios are unexpectedly introduced by the
detection mechanisms designed to mitigate other sensor failure modes.

The proposed approach could be applied effectively with current model checking technology and
emerging code verification toolsets. While it imposes greater requirements on the modelling of system
and environmental behaviour, the approach can simpli fy the assurance effort by eliminating the need
for manual system hazard analysis or safety verification.

10 Acknowledgments

We thank Paul Strooper for comments on earlier versions of this paper, Dan Hazel for support of the
animation and the Cogito group for the Sum formatting tool used to prepare this report.

11 References

[1] A. Bloesch, E. Kazmierczak, P. Kearney, and O. Traynor, “Cogito: A methodology and system for
formal software development,” International Journal of Software Engineering and Knowledge
Engineering, vol. 4, pp. 599-617, 1995.

[2] J. G. P. Barnes, High Integrity Ada - The SPARK Approach: Addison-Wesley, 1997.

[3] J. McDermid and T. Kelly, “ Industrial Press: Safety Case,” High Integrity Systems Engineering
Group, University of York 1996.

[4] US Department of Defense, MIL-STD-1629A, Procedures for Performing a Failure Mode Effects
and Criticality Analysis, 1980.

[5] O. Traynor, P. Kearney, E. Kazmierczak, L. Wang, and E. Karlson, “Extending Z with modules,”
Australasian Computer Science Communications, vol. 17, pp. 513-522, 1995.

[6] J. Woodcock and J. Davies, Using Z: Prentice-Hall , 1996.

[7] D. Hazel, P. Strooper, and O. Traynor, “An animator for the SUM specification language,”
presented at Proceedings Asia-Pacific Software Engineering Conference and International
Computer Science Conference, 1997.

[8] R. Milner, “A Calculus of Communicating Systems,” Lecture Notes in Computer Science, vol. 92,
1980.

32

[9] B. Welch, Practical Programming in Tcl and Tk: Prentice Hall, 1995.

[10] M. Hewitt, C. O'Halloran, and C. T. Sennet, “Experiences with PiZA, an Animator for Z,”
presented at Proceedings ZUM'97, 1997.

[11] C. B. Jones, K. D. Jones, P. A. Lindsay, and R. Moore, Mural: A Formal Development System:
Springer Verlag, 1991.

[12] J. Bicarregui, J. Dick, B. Matthews, and E. Woods, “Making the most of formal specification
through animation, testing and proof,” Science of Computer Programming, vol. 29, pp. 53-78, 1997.

[13] C. Heitmeyer, J. K. Jr, B. Labaw, and R. Bharadwaj, “SCR*: A Toolset for Specifying and
Analyzing Requirements,” presented at Proc. 10th Annual Conference on Computer Assurance
(COMPASS'95), 1995.

[14] V. Ratan, K. Partridge, J. Reese, and N. Leveson, “Safety Analysis Tools for Requirements
Specifications,” presented at Proc. 11th Annual Conference on Computer Assurance
(COMPASS'96), 1996.

[15] I. J. Hayes and C. B. Jones, “Specifications are not (necessarily) executable,” IEE/BCS Software
Engineering Journal, vol. 6, pp. 320-338, 1989.

[16] D. Harel, H. Lachover, A. Aaamad, A. Pnueli, M. Poli ti, R. Sherman, A. Shtull -Trauring, and M.
Trakhenbrot, “STATEMATE: A working environment for the development of complex reactive
systems,” IEEE Transactions on Software Engineering, vol. 16, pp. 403-414, 1990.

[17] R. R. Lutz, “Targeting Safety-Related Errors During Software Requirements Analysis,”
presented at Proc. First ACM SIGSOFT Symposium of Software Engineering, Los Angeles, 1993.

[18] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill , and J. Hwang, “Symbolic model

checking: 1020 states and beyond,” presented at Proc. 5th Annual Symposium on Logic in
Computer Science, 1990.

[19] J. M. Atlee and J. Gannon, “State-Based Model Checking of Event-Driven System
Requirements,” IEEE Transactions on Software Engineering, vol. 19, pp. 24-40, 1993.

[20] W. Chan, R. Anderson, P. Beame, S. Burns, F. Mudugno, D. Notkin, and J. D. Reese, “Model
Checking Large Software Specifications,” IEEE Transactions on Software Engineering, vol. 24, pp.
498-519, 1998.

[21] C. Heitmeyer, J. James Kirby, B. Labaw, M. Archer, and R. Bharadwaj, “Using Abstraction and
Model Checking to Detect Safety Violations in Requirements Specifications,” IEEE Transactions
on Software Engineering, vol. 24, pp. 927-947, 1998.

[22] D. Jackson and C. A. Damon, “Elements of Style: Analysing a Software Design Feature with a
Counterexample Detector,” IEEE Transactions on Software Engineering, vol. 22, pp. 484-495,
1996.

[23] N. H. Roberts, W. E. Vesely, D. F. Haasl, and F. F. Goldberg, Fault Tree Handbook: Systems
and Reliabili ty Research Office of U.S. Nuclear Regulatory Commission, 1981.

[24] Australian Department of Defence, Def(Aust) 5679 The procurement of computer-based safety
critical systems, 2.0 ed: Codification and Standardisation Authority, 1998.

[25] RTCA Inc., Software considerations in airborne systems and equipment certification,
RTCA/DO178-B:, 1992.

[26] UK Ministry of Defence, The Procurement of Safety Critival Software in Defence Equipment.
Defence Standard 00-55, 1995.

[27] S. Liu and J. McDermid, “A Model-Oriented Approach to Safety Analysis Using Fault Trees
and a Support System,” J. Systems Software, vol. 35, pp. 151-164, 1996.

[28] K. M. Hansen, A. P. Ravn, and V. Stavridou, “From Safety Analysis to Software Requirements,”
IEEE Transactions on Software Engineering, vol. 24, pp. 573-584, 1998.

33

[29] J. Gorski and A. Wardinski, “Formalising Fault Trees,” presented at Proceedings of the Safety
Critical Systems Symposium, 1995.

[30] P. Kearney and L. Wildman, “From Formal Specifications to Ada Programs,” The University of
Queensland, SVRC Technical Report 98-24, 1998.

[31] C. O'Halloran, C. T. Sennett, and A. Smith, “Demonstrating the Compliance of Ada Programs
with Z Specifications,” presented at Proceedings of the 5th Refinement Workshop, 1992.

[32] D. T. Jordan, C. J. Locke, J. A. McDermid, C. E. Parker, B. A. P. Sharp, and I. Toyn, “Literate
Formal Development of Ada from Z for Safety-Criti cal Application,",” presented at
SAFECOMP'94, 1994.

34

Appendix A Software Design Sum Specifications
Following Sum modules are provided:

1. Sensors

2. Actuator

3. Machine

 � Sensors���

�

// --

�

// Industrial Press Sensors Module

�

// Press_Sensors models the state of the Press Sensor signals.

�

// Each sensor may produce a high or low signal.

�

// --

�

IN_SIG ::= high
�

 low

�

// Binary input signal

�

� state���

� �

button, top, PoNR, bottom: IN_SIG

� �

���

�
���

 � Actuator���

�

// --

�

// Industrial Press Actuator Drive

�

// The motor drive module is imported by the state machine.

�

// The only contents are the type and state of the motor drive

�

// signal.

�

// --

�

// -------------------------------

�

// Type Declarations

�

// -------------------------------

�

OUT_SIG ::= a_on
�

 a_off

�

// -------------------------------

�

// State

�

// -------------------------------

�

� state���

� �

motor: OUT_SIG

� �

���

�
���

 � Machine���

�

// ---

�

// Industrial Press SW State Machine Module

�

// Captures the logic of the Press control system.

�

// Values of Press sensor and drive signals are imported as variables

�

// to be manipulated by the control system.

�

// ---

�

import Sensors

�

import Actuator

�

// -------------------------------

�

// Type Declarations

35

 � // -------------------------------
 � CONTROL ::= opening � open � ready � closing � uncond_closing �
 � halt_open � halt_closed
 � // --
 � // State
 � // Control logic state includes the logical software state
 � // as well as the state of press sensor and drive signals.
 � // --
 � � state���
 � � control: CONTROL
 � � Sensors.state
 � � Actuator.state
 � � ���
 �
 � // ---
 � // Initialisation
 � // ---
 � � init ���
 � � control' � opening
 � � Actuator.motor' � Actuator.a_on
 � � ���
 �
 � // --
 � // Operations
 � // Each operation corresponds to behaviour exercised
 � // in a particular state. The precondition of each operation
 � // is the associated state.
 � // For each operation, current values of sensor signals are used
 � // to determine the appropriate state transition and change the
 � // Press motor drive signal.
 � // Only the software state and motor signal may be modified.
 � //
 � // Execution of the state machine is assumed to occur by repeatedly
 � // invoking the operation with an active (true) preconditon.
 � // Selection of operations is deterministic since operation
 � // preconditions are mutually exclusive.
 � // ---
 � � op At_Opening���
 � � pre control � opening
 � � if Sensors.top � Sensors.high
 � � then
 � � (control' � open � Actuator.motor' � Actuator.a_on)
 � � else
 � � (control' � opening � Actuator.motor' � Actuator.a_on)
 � � fi
 � � changes_only	 control, Actuator.motor

 � � ���
 �
 � � op At_Open���
 � � pre control � open
 � � if (Sensors.bottom � Sensors.high) �
 � � (Sensors.PoNR � Sensors.high) �

36

 � � (Sensors.button � Sensors.high)
 � � then
 � � (control' � halt_open � Actuator.motor' � Actuator.a_on)
 � � else
 � � (control' � ready � Actuator.motor' � Actuator.a_on)
 � � fi
 � � changes_only� control, Actuator.motor �
 � � ���������	�����������������������	�����������������������	���������
 �
 �
 op At_Ready�������������������	�����������������������	�������
 � � pre control � ready
 � � if Sensors.bottom � Sensors.high �
 � � Sensors.PoNR � Sensors.high
 � � then
 � � (control' � halt_open �
 � � Actuator.motor' � Actuator.a_on)
 � � else
 � � (if Sensors.button � Sensors.high
 � � then
 � � (control' � closing � Actuator.motor' � Actuator.a_off)
 � � else
 � � (control' � ready � Actuator.motor' � Actuator.a_on)
 � � fi)
 � � fi
 � � changes_only� control, Actuator.motor �
 � � ���������	�����������������������	�����������������������	���������
 �
 �
 op At_Closing�������������	�����������������������	���������
 � � pre control � closing
 � � if Sensors.bottom � Sensors.high
 � � then
 � � (control' � halt_closed � Actuator.motor' � Actuator.a_off)
 � � else
 � � (if Sensors.PoNR � Sensors.high
 � � then
 � � (control' � uncond_closing � Actuator.motor' � Actuator.a_off)
 � � else
 � � (if Sensors.button � Sensors.low
 � � then
 � � (control' � opening � Actuator.motor' � Actuator.a_on)
 � � else
 � � (control' � closing � Actuator.motor' � Actuator.a_off)
 � � fi)
 � � fi)
 � � fi
 � � changes_only� control, Actuator.motor �
 � � ���������	�����������������������	�����������������������	���������
 �
 �
 op At_Uncond_Closing�����������	���������������������
 � � pre control � uncond_closing
 � � if Sensors.top � Sensors.high
 � � then

37

 � � (control' � halt_closed � Actuator.motor' � Actuator.a_off)
 � � else
 � � (if Sensors.bottom � Sensors.high �
 � � Sensors.top � Sensors.low
 � � then
 � � (control' � opening � Actuator.motor' � Actuator.a_on)
 � � else
 � � (control' � uncond_closing �
 � � Actuator.motor' � Actuator.a_off)
 � � fi)
 � � fi
 � � changes_only� control, Actuator.motor �
 � � ���������	�����������������������	�����������������������	���������
 �
 �
 op At_Halt_Open���������	�������������������������	�������
 � � pre control � halt_open
 � � changes_only� �
 � � ���������	�����������������������	�����������������������	���������
 �
 �
 op At_Halt_Closed���������������������������	�����������
 � � pre control � halt_closed
 � � changes_only� �
 � � ���������	�����������������������	�����������������������	���������
 �
 � Transition ��� (At_Opening � At_Open � At_Ready � At_Closing � At_Uncond_Closing �
At_Halt_Open � At_Halt_Closed)
 � ���	�����������������������	�����������������������	���������������������

38

Appendix B Simulation Environment Sum Specifications
The Simulator module specification is provided.

� Simulator��
// ---�
// Industrial Press Simulation Environment�
// The environment module provides a simulation environment for the Press�
// logic state machine. The simulation is performed at a physical level.�
// The modelled physical state of the press is used to drive sensor signals.�
// These, in turn, drive the control logic which then causes a physical�
// state change. It is possible to activate sensor failures and�
// investigate their effect.�
// ---�
import Sensors�
import Actuator�
import Machine�
// -------------------------------�
// State�
// In addition to encapsulating the logic, sensor and motor drive states,�
// the state represents the physical movement of the plunger.�
// -------------------------------�
SENSOR_HEALTH ::= broken

�
ok�

PLUNGER ::= at_bottom
�

below_PoNR
�

above_PoNR
�

at_top�
falling_past_PoNR

�
falling_to_bottom�

states_above_top ��� � at_top	

states_above_PoNR ��� � above_PoNR, at_top, falling_past_PoNR	

states_above_bottom �
� � s: PLUNGER � s � at_bottom��
SAFETY ::= safe

�
abort_failed

�
unsafe_motor_drive�

BUTTON ::= pressed
�

released�
high ��� Sensors.high�
low ��� Sensors.low�

� �
next_plunger_state: (PLUNGER � Actuator.OUT_SIG) � PLUNGER� ���

� �
next_plunger_state(at_bottom, Actuator.a_off) � at_bottom� �
next_plunger_state(at_bottom, Actuator.a_on) � below_PoNR� �
next_plunger_state(below_PoNR, Actuator.a_off) � falling_to_bottom� �
next_plunger_state(below_PoNR, Actuator.a_on) � above_PoNR� �
next_plunger_state(above_PoNR, Actuator.a_off) � falling_past_PoNR� �
next_plunger_state(above_PoNR, Actuator.a_on) � at_top� �
next_plunger_state(at_top, Actuator.a_off) � above_PoNR� �
next_plunger_state(at_top, Actuator.a_on) � at_top� �
next_plunger_state(falling_past_PoNR, Actuator.a_off) � falling_to_bottom� �
next_plunger_state(falling_past_PoNR, Actuator.a_on) � below_PoNR� �
next_plunger_state(falling_to_bottom, Actuator.a_off) � at_bottom� �
next_plunger_state(falling_to_bottom, Actuator.a_on) � at_bottom�

39

� �
state�� �

Sensors.state� �
Actuator.state� �
Machine.state� �
plunger: PLUNGER� �
button: BUTTON� �
safety: SAFETY� �
button_health, top_health, PoNR_health, bottom_health: SENSOR_HEALTH� � �� �
safety � if ((plunger = falling_to_bottom and� �
 (Actuator.motor = Actuator.a_on)) then� �
 unsafe_motor_drive� �
 else� �
 if ((plunger in states_above_PoNR) and� �

(Actuator.motor /= Actuator.a_on) and� �
(button = released)) then� �
abort_failed� �

 else� �
safe� �

 fi� �
 fi� � 	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

// ---

// Initialisation

// Initialises sensor signals, logic state machine and physical

// state.

// ---
 �

init
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

Machine.init

Sensors.button' � Sensors.low

Sensors.top' � Sensors.low

Sensors.PoNR' � Sensors.high

Sensors.bottom' � Sensors.high

button_health' � ok

top_health' � ok

PoNR_health' � ok

bottom_health' � ok

plunger' � at_bottom

button' � released
 � 	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

// --

// Operations

// Simulation operations are provided to manipulate the system

// at a physical level.

// The button may be pressed or released.

40

�
// Sensors may be forced to fail at any time. Failures are considered�
// to be permanent.�
// The plunger moves between physical states in accordance with�
// expected physical laws. The granularity of movement is to allow�
// realistic simulation of movement to be interleaved with sensor failures�
// and operator behaviour.�
// Plunger movements are driven by current movement and motor drive.�
// Each movement modifies sensor signals as expected and allows execution�
// of the control logic.�
// --�
// --�
// Button operations�
// --� �

op Push_Transition�� �
Sensors.button' � (if (button_health � ok) then high else Sensors.button fi)� �
button' � pressed� �
changes_only� Sensors.button, button, safety�� 	 ��

� �
op Release_Transition�� �

Sensors.button' � (if (button_health � ok) then low else Sensors.button fi)� �
button' � released� �
changes_only� Sensors.button, button, safety�� 	 ��

�
// --�
// Sensor Failure operations�
// --� �

op Top_Fail_High�� �
Sensors.top' � high� �
top_health' � broken� �
changes_only� Sensors.top, top_health�� 	 ��

� �
op Top_Fail_Low�� �

Sensors.top' � low� �
top_health' � broken� �
changes_only� Sensors.top, top_health�� 	 ��

� �
op PoNR_Fail_High�� �

Sensors.PoNR' � high� �
PoNR_health' � broken� �
changes_only� Sensors.PoNR, PoNR_health�� 	 ��

� �
op PoNR_Fail_Low���

41

� �
Sensors.PoNR' � low� �
PoNR_health' � broken� �
changes_only� Sensors.PoNR, PoNR_health�� � ���

�
� 	

op Bottom_Fail_High
�����������������������������������

� �
Sensors.bottom' � high� �
bottom_health' � broken� �
changes_only� Sensors.bottom, bottom_health�� � ���

�
� 	

op Bottom_Fail_Low
�������������������������������������

� �
Sensors.bottom' � low� �
bottom_health' � broken� �
changes_only� Sensors.bottom, bottom_health�� � ���

�
� 	

op Button_Fail_High
�����������������������������������

� �
Sensors.button' � high� �
button_health' � broken� �
changes_only� Sensors.button, button_health�� � ���

�
� 	

op Button_Fail_Low
�������������������������������������

� �
Sensors.button' � low� �
button_health' � broken� �
changes_only� Sensors.button, button_health�� � ���

�
// --�
// Plunger Transition�
//�
// Movement is governed by a state machine which transitions between�
// states in accordance with current motor drive.�
// --� 	

op Plunger_Transition
�����������������������������������

� �
plunger' � next_plunger_state(plunger, Actuator.motor)� �
Sensors.top' �� �

if top_health � ok then� �
 (if (next_plunger_state (plunger, Actuator.motor)
� �

 states_above_top) then high else low fi)� �
else� �

Sensors.top� �
fi)� �

Sensors.PoNR' �� � �
if PoNR_health � ok then� �

 if (next_plunger_state (plunger, Actuator.motor)
� �
 states_above_PoNR) then low else high fi)

42

� �
else� �

Sensors.PoNR� �
fi)� �

Sensors.bottom' �� � �
if bottom_health � ok then� �

 (if (next_plunger_state(plunger, Actuator.motor) �� �
 states_above_bottom) then low else high fi)� �

else� �
Sensors.bottom� �

fi)� �
changes_only� plunger, Sensors.top, Sensors.PoNR, Sensors.bottom, safety�� � �����	�
�	�
�	�
�	�
�	�
�	�
�	�	�
�	�
�	�
�	�
�	�
�	�
�	�
�	�������

�
// ---�
// Can also remain at a steady physical state in order to test�
// behaviour when no sensor signals change.�
// ---� �

op Control_Transition
�������������������	�
�����	�
�

� �
Machine.Transition� �
changes_only�Machine.control, Actuator.motor, safety�� � �����	�
�	�
�	�
�	�
�	�
�	�
�	�	�
�	�
�	�
�	�
�	�
�	�
�	�
�	�������

� �	�
�	�
�	�
�	�
�	�
�	�
�	���������������������������	�
�	�
�	�
�	�
�	�
�

43

Appendix C Simulation Results
The results of the simulations under each of the sensor failures are presented below.

Simulation Under No Sensor Failure
===
Model check for Industrial Press Control System
===
Number of states = 32
--
 plunger control button motor safe C.T B.T P.T
--
1 at_bottom opening released a_on safe 1 2 4
2 at_bottom opening pressed a_on safe 2 1 3
3 below_PoNR opening pressed a_on safe 3 4 6
4 below_PoNR opening released a_on safe 4 3 5
5 above_PoNR opening released a_on safe 5 6 16
6 above_PoNR opening pressed a_on safe 6 5 7
7 at_top opening pressed a_on safe 8 16 7
8 at_top open pressed a_on safe 9 11 8
9 at_top halt_open pressed a_on safe 9 10 9
10 at_top halt_open released a_on safe 10 9 10
11 at_top open released a_on safe 12 8 11
12 at_top ready released a_on safe 12 13 12
13 at_top ready pressed a_on safe 14 12 13
14 at_top closing pressed a_off safe 14 15 18
15 at_top closing released a_off no_abort 16 14 17
16 at_top opening released a_on safe 11 7 16
17 above_PoNR closing released a_off no_abort 5 18 20
18 above_PoNR closing pressed a_off safe 18 17 19
19 past_PoNR closing pressed a_off safe 19 20 28
20 past_PoNR closing released a_off no_abort 21 19 23
21 past_PoNR opening released a_on safe 21 22 4
22 past_PoNR opening pressed a_on safe 22 21 3
23 to_bottom closing released a_off safe 24 28 32
24 to_bottom uncond_cls released a_off safe 24 25 27
25 to_bottom uncond_cls pressed a_off safe 25 24 26
26 at_bottom uncond_cls pressed a_off safe 2 27 26
27 at_bottom uncond_cls released a_off safe 1 26 27
28 to_bottom closing pressed a_off safe 25 23 29
29 at_bottom closing pressed a_off safe 30 32 29
30 at_bottom halt_closed pressed a_off safe 30 31 30
31 at_bottom halt_closed released a_off safe 31 30 31
32 at_bottom closing released a_off safe 31 29 32
--

Simulation Under Bottom Sensor Low Failure
===
Model check for Industrial Press Control System Bottom_Fail_Low
===
Number of states = 64
--
 plunger control button motor safe bottom C.T B.T P.T F.T
--
1 at_bottom opening released a_on safe ok 1 2 4 64
2 at_bottom opening pressed a_on safe ok 2 1 3 63
3 below_PoNR opening pressed a_on safe ok 3 4 6 35
4 below_PoNR opening released a_on safe ok 4 3 5 36
5 above_PoNR opening released a_on safe ok 5 6 18 26
6 above_PoNR opening pressed a_on safe ok 6 5 7 27
7 at_top opening pressed a_on safe ok 8 18 7 28
8 at_top open pressed a_on safe ok 9 13 8 29
9 at_top halt_open pressed a_on safe ok 9 10 9 12
10 at_top halt_open released a_on safe ok 10 9 10 11
11 at_top halt_open released a_on safe broken 11 12 11 11
12 at_top halt_open pressed a_on safe broken 12 11 12 12
13 at_top open released a_on safe ok 14 8 13 20
14 at_top ready released a_on safe ok 14 15 14 21
15 at_top ready pressed a_on safe ok 16 14 15 22
16 at_top closing pressed a_off safe ok 16 17 46 23
17 at_top closing released a_off no_abort ok 18 16 45 24
18 at_top opening released a_on safe ok 13 7 18 19
19 at_top opening released a_on safe broken 20 28 19 19
20 at_top open released a_on safe broken 21 29 20 20

44

21 at_top ready released a_on safe broken 21 22 21 21
22 at_top ready pressed a_on safe broken 23 21 22 22
23 at_top closing pressed a_off safe broken 23 24 30 23
24 at_top closing released a_off no_abort broken 19 23 25 24
25 above_PoNR closing released a_off no_abort broken 26 30 32 25
26 above_PoNR opening released a_on safe broken 26 27 19 26
27 above_PoNR opening pressed a_on safe broken 27 26 28 27
28 at_top opening pressed a_on safe broken 29 19 28 28
29 at_top open pressed a_on safe broken 12 20 29 29
30 above_PoNR closing pressed a_off safe broken 30 25 31 30
31 past_PoNR closing pressed a_off safe broken 31 32 42 31
32 past_PoNR closing released a_off no_abort broken 33 31 37 32
33 past_PoNR opening released a_on safe broken 33 34 36 33
34 past_PoNR opening pressed a_on safe broken 34 33 35 34
35 below_PoNR opening pressed a_on safe broken 35 36 27 35
36 below_PoNR opening released a_on safe broken 36 35 26 36
37 to_bottom closing released a_off safe broken 38 42 44 37
38 to_bottom uncond_cls released a_off safe broken 38 39 41 38
39 to_bottom uncond_cls pressed a_off safe broken 39 38 40 39
40 at_bottom uncond_cls pressed a_off safe broken 40 41 40 40
41 at_bottom uncond_cls released a_off safe broken 41 40 41 41
42 to_bottom closing pressed a_off safe broken 39 37 43 42
43 at_bottom closing pressed a_off safe broken 40 44 43 43
44 at_bottom closing released a_off safe broken 41 43 44 44
45 above_PoNR closing released a_off no_abort ok 5 46 48 25
46 above_PoNR closing pressed a_off safe ok 46 45 47 30
47 past_PoNR closing pressed a_off safe ok 47 48 56 31

48 past_PoNR closing released a_off no_abort ok 49 47 51 32
49 past_PoNR opening released a_on safe ok 49 50 4 33
50 past_PoNR opening pressed a_on safe ok 50 49 3 34
51 to_bottom closing released a_off safe ok 52 56 62 37
52 to_bottom uncond_cls released a_off safe ok 52 53 55 38
53 to_bottom uncond_cls pressed a_off safe ok 53 52 54 39
54 at_bottom uncond_cls pressed a_off safe ok 2 55 54 40
55 at_bottom uncond_cls released a_off safe ok 1 54 55 41
56 to_bottom closing pressed a_off safe ok 53 51 57 42
57 at_bottom closing pressed a_off safe ok 58 62 57 43
58 at_bottom halt_closed pressed a_off safe ok 58 59 58 61
59 at_bottom halt_closed released a_off safe ok 59 58 59 60
60 at_bottom halt_closed released a_off safe broken 60 61 60 60
61 at_bottom halt_closed pressed a_off safe broken 61 60 61 61
62 at_bottom closing released a_off safe ok 59 57 62 44
63 at_bottom opening pressed a_on safe broken 63 64 35 63
64 at_bottom opening released a_on safe broken 64 63 36 64
--

Simulation Under Button Sensor High Failure
===
Model check for Industrial Press Control System Bottom_Fail_High
===
Number of states 74
--
 plunger control button motor safe bottom C.T B.T P.T .T
--
1 at_bottom opening released a_on safe ok 1 2 4 41
2 at_bottom opening pressed a_on safe ok 2 1 3 42
3 below_PoNR opening pressed a_on safe ok 3 4 6 32
4 below_PoNR opening released a_on safe ok 4 3 5 31
5 above_PoNR opening released a_on safe ok 5 6 18 34
6 above_PoNR opening pressed a_on safe ok 6 5 7 33
7 at_top opening pressed a_on safe ok 8 18 7 22
8 at_top open pressed a_on safe ok 9 13 8 21
9 at_top halt_open pressed a_on safe ok 9 10 9 12
10 at_top halt_open released a_on safe ok 10 9 10 11
11 at_top halt_open released a_on safe broken 11 12 11 11
12 at_top halt_open pressed a_on safe broken 12 11 12 12
13 at_top open released a_on safe ok 14 8 13 20
14 at_top ready released a_on safe ok 14 15 14 74
15 at_top ready pressed a_on safe ok 16 14 15 73
16 at_top closing pressed a_off safe ok 16 17 24 72
17 at_top closing released a_off no_abort ok 18 16 23 69
18 at_top opening released a_on safe ok 13 7 18 19
19 at_top opening released a_on safe broken 20 22 19 19
20 at_top open released a_on safe broken 11 21 20 20
21 at_top open pressed a_on safe broken 12 20 21 21

45

22 at_top opening pressed a_on safe broken 21 19 22 22
23 above_PoNR closing released a_off no_abort ok 5 24 26 68
24 above_PoNR closing pressed a_off safe ok 24 23 25 65
25 past_PoNR closing pressed a_off safe ok 25 26 48 64
26 past_PoNR closing released a_off no_abort ok 27 25 35 61
27 past_PoNR opening released a_on safe ok 27 28 4 30
28 past_PoNR opening pressed a_on safe ok 28 27 3 29
29 past_PoNR opening pressed a_on safe broken 29 30 32 29
30 past_PoNR opening released a_on safe broken 30 29 31 30
31 below_PoNR opening released a_on safe broken 31 32 34 31
32 below_PoNR opening pressed a_on safe broken 32 31 33 32
33 above_PoNR opening pressed a_on safe broken 33 34 22 33
34 above_PoNR opening released a_on safe broken 34 33 19 34
35 to_bottom closing released a_off safe ok 36 48 54 60
36 to_bottom uncond_cls released a_off safe ok 36 37 39 47
37 to_bottom uncond_cls pressed a_off safe ok 37 36 38 44
38 at_bottom uncond_cls pressed a_off safe ok 2 39 38 43
39 at_bottom uncond_cls released a_off safe ok 1 38 39 40
40 at_bottom uncond_cls released a_off safe broken 41 43 40 40
41 at_bottom opening released a_on safe broken 41 42 31 41
42 at_bottom opening pressed a_on safe broken 42 41 32 42
43 at_bottom uncond_cls pressed a_off safe broken 42 40 43 43
44 to_bottom uncond_cls pressed a_off safe broken 45 47 43 44

45 to_bottom opening pressed a_on bad_drv broken 45 46 42 45
46 to_bottom opening released a_on bad_drv broken 46 45 41 46
47 to_bottom uncond_cls released a_off safe broken 46 44 40 47
48 to_bottom closing pressed a_off safe ok 37 35 49 57
49 at_bottom closing pressed a_off safe ok 50 54 49 56
50 at_bottom halt_closed pressed a_off safe ok 50 51 50 53
51 at_bottom halt_closed released a_off safe ok 51 50 51 52
52 at_bottom halt_closed released a_off safe broken 52 53 52 52
53 at_bottom halt_closed pressed a_off safe broken 53 52 53 53
54 at_bottom closing released a_off safe ok 51 49 54 55
55 at_bottom closing released a_off safe broken 52 56 55 55
56 at_bottom closing pressed a_off safe broken 53 55 56 56
57 to_bottom closing pressed a_off safe broken 58 60 56 57
58 to_bottom halt_closed pressed a_off safe broken 58 59 53 58
59 to_bottom halt_closed released a_off safe broken 59 58 52 59
60 to_bottom closing released a_off safe broken 59 57 55 60

61 past_PoNR closing released a_off no_abort broken 62 64 60 61
62 past_PoNR halt_closed released a_off no_abort broken 62 63 59 62
63 past_PoNR halt_closed pressed a_off safe broken 63 62 58 63
64 past_PoNR closing pressed a_off safe broken 63 61 57 64
65 above_PoNR closing pressed a_off safe broken 66 68 64 65
66 above_PoNR halt_closed pressed a_off safe broken 66 67 63 66

67 above_PoNR halt_closed released a_off no_abort broken 67 66 62 67
68 above_PoNR closing released a_off no_abort broken 67 65 61 68
69 at_top closing released a_off no_abort broken 70 72 68 69
70 at_top halt_closed released a_off no_abort broken 70 71 67 70
71 at_top halt_closed pressed a_off safe broken 71 70 66 71
72 at_top closing pressed a_off safe broken 71 69 65 72
73 at_top ready pressed a_on safe broken 12 74 73 73
74 at_top ready released a_on safe broken 11 73 74 74
--

Simulation Under PoNR Sensor Low Failure
===
Model check for Industrial Press Control System PoNR_Fail_Low
===
Number of states = 66
--
 plunger control button motor safe PoNR C.T B.T P.T F.T
--
1 at_bottom opening released a_on safe ok 1 2 4 41
2 at_bottom opening pressed a_on safe ok 2 1 3 40
3 below_PoNR opening pressed a_on safe ok 3 4 6 35
4 below_PoNR opening released a_on safe ok 4 3 5 36
5 above_PoNR opening released a_on safe ok 5 6 18 26
6 above_PoNR opening pressed a_on safe ok 6 5 7 27
7 at_top opening pressed a_on safe ok 8 18 7 28
8 at_top open pressed a_on safe ok 9 13 8 29
9 at_top halt_open pressed a_on safe ok 9 10 9 12
10 at_top halt_open released a_on safe ok 10 9 10 11
11 at_top halt_open released a_on safe broken 11 12 11 11

46

12 at_top halt_open pressed a_on safe broken 12 11 12 12
13 at_top open released a_on safe ok 14 8 13 20
14 at_top ready released a_on safe ok 14 15 14 21
15 at_top ready pressed a_on safe ok 16 14 15 22
16 at_top closing pressed a_off safe ok 16 17 48 23
17 at_top closing released a_off no_abort ok 18 16 47 24
18 at_top opening released a_on safe ok 13 7 18 19
19 at_top opening released a_on safe broken 20 28 19 19
20 at_top open released a_on safe broken 21 29 20 20
21 at_top ready released a_on safe broken 21 22 21 21
22 at_top ready pressed a_on safe broken 23 21 22 22
23 at_top closing pressed a_off safe broken 23 24 30 23
24 at_top closing released a_off no_abort broken 19 23 25 24
25 above_PoNR closing released a_off no_abort broken 26 30 32 25
26 above_PoNR opening released a_on safe broken 26 27 19 26
27 above_PoNR opening pressed a_on safe broken 27 26 28 27
28 at_top opening pressed a_on safe broken 29 19 28 28
29 at_top open pressed a_on safe broken 12 20 29 29
30 above_PoNR closing pressed a_off safe broken 30 25 31 30
31 past_PoNR closing pressed a_off safe broken 31 32 42 31
32 past_PoNR closing released a_off no_abort broken 33 31 37 32
33 past_PoNR opening released a_on safe broken 33 34 36 33
34 past_PoNR opening pressed a_on safe broken 34 33 35 34
35 below_PoNR opening pressed a_on safe broken 35 36 27 35
36 below_PoNR opening released a_on safe broken 36 35 26 36
37 to_bottom closing released a_off safe broken 38 42 46 37

38 to_bottom opening released a_on bad_drv broken 38 39 41 38
39 to_bottom opening pressed a_on bad_drv broken 39 38 40 39
40 at_bottom opening pressed a_on safe broken 40 41 35 40
41 at_bottom opening released a_on safe broken 41 40 36 41
42 to_bottom closing pressed a_off safe broken 42 37 43 42
43 at_bottom closing pressed a_off safe broken 44 46 43 43
44 at_bottom halt_closed pressed a_off safe broken 44 45 44 44
45 at_bottom halt_closed released a_off safe broken 45 44 45 45
46 at_bottom closing released a_off safe broken 45 43 46 46
47 above_PoNR closing released a_off no_abort ok 5 48 50 25
48 above_PoNR closing pressed a_off safe ok 48 47 49 30
49 past_PoNR closing pressed a_off safe ok 49 50 62 31
50 past_PoNR closing released a_off no_abort ok 51 49 53 32
51 past_PoNR opening released a_on safe ok 51 52 4 33
52 past_PoNR opening pressed a_on safe ok 52 51 3 34
53 to_bottom closing released a_off safe ok 54 62 66 37
54 to_bottom uncond_cls released a_off safe ok 54 55 57 61
55 to_bottom uncond_cls pressed a_off safe ok 55 54 56 60
56 at_bottom uncond_cls pressed a_off safe ok 2 57 56 59
57 at_bottom uncond_cls released a_off safe ok 1 56 57 58
58 at_bottom uncond_cls released a_off safe broken 41 59 58 58
59 at_bottom uncond_cls pressed a_off safe broken 40 58 59 59
60 to_bottom uncond_cls pressed a_off safe broken 60 61 59 60
61 to_bottom uncond_cls released a_off safe broken 61 60 58 61
62 to_bottom closing pressed a_off safe ok 55 53 63 42
63 at_bottom closing pressed a_off safe ok 64 66 63 43
64 at_bottom halt_closed pressed a_off safe ok 64 65 64 44
65 at_bottom halt_closed released a_off safe ok 65 64 65 45
66 at_bottom closing released a_off safe ok 65 63 66 46
--

Simulation Under PoNR Sensor High Failure
===
Model check for Industrial Press Control System PoNR_Fail_High
===
Number of states = 78
--
 plunger control button motor safe PoNR C.T B.T P.T F.T
--
1 at_bottom opening released a_on safe ok 1 2 4 41
2 at_bottom opening pressed a_on safe ok 2 1 3 42
3 below_PoNR opening pressed a_on safe ok 3 4 6 32
4 below_PoNR opening released a_on safe ok 4 3 5 31
5 above_PoNR opening released a_on safe ok 5 6 18 34
6 above_PoNR opening pressed a_on safe ok 6 5 7 33
7 at_top opening pressed a_on safe ok 8 18 7 22
8 at_top open pressed a_on safe ok 9 13 8 21
9 at_top halt_open pressed a_on safe ok 9 10 9 12
10 at_top halt_open released a_on safe ok 10 9 10 11

47

11 at_top halt_open released a_on safe broken 11 12 11 11
12 at_top halt_open pressed a_on safe broken 12 11 12 12
13 at_top open released a_on safe ok 14 8 13 20
14 at_top ready released a_on safe ok 14 15 14 78
15 at_top ready pressed a_on safe ok 16 14 15 77
16 at_top closing pressed a_off safe ok 16 17 24 76
17 at_top closing released a_off no_abort ok 18 16 23 65
18 at_top opening released a_on safe ok 13 7 18 19
19 at_top opening released a_on safe broken 20 22 19 19
20 at_top open released a_on safe broken 11 21 20 20
21 at_top open pressed a_on safe broken 12 20 21 21
22 at_top opening pressed a_on safe broken 21 19 22 22
23 above_PoNR closing released a_off no_abort ok 5 24 26 64
24 above_PoNR closing pressed a_off safe ok 24 23 25 61
25 past_PoNR closing pressed a_off safe ok 25 26 46 60
26 past_PoNR closing released a_off no_abort ok 27 25 35 57
27 past_PoNR opening released a_on safe ok 27 28 4 30
28 past_PoNR opening pressed a_on safe ok 28 27 3 29
29 past_PoNR opening pressed a_on safe broken 29 30 32 29
30 past_PoNR opening released a_on safe broken 30 29 31 30
31 below_PoNR opening released a_on safe broken 31 32 34 31
32 below_PoNR opening pressed a_on safe broken 32 31 33 32
33 above_PoNR opening pressed a_on safe broken 33 34 22 33
34 above_PoNR opening released a_on safe broken 34 33 19 34
35 to_bottom closing released a_off safe ok 36 46 52 56
36 to_bottom uncond_cls released a_off safe ok 36 37 39 45
37 to_bottom uncond_cls pressed a_off safe ok 37 36 38 44
38 at_bottom uncond_cls pressed a_off safe ok 2 39 38 43
39 at_bottom uncond_cls released a_off safe ok 1 38 39 40
40 at_bottom uncond_cls released a_off safe broken 41 43 40 40
41 at_bottom opening released a_on safe broken 41 42 31 41
42 at_bottom opening pressed a_on safe broken 42 41 32 42
43 at_bottom uncond_cls pressed a_off safe broken 42 40 43 43
44 to_bottom uncond_cls pressed a_off safe broken 44 45 43 44
45 to_bottom uncond_cls released a_off safe broken 45 44 40 45
46 to_bottom closing pressed a_off safe ok 37 35 47 55
47 at_bottom closing pressed a_off safe ok 48 52 47 54
48 at_bottom halt_closed pressed a_off safe ok 48 49 48 51
49 at_bottom halt_closed released a_off safe ok 49 48 49 50
50 at_bottom halt_closed released a_off safe broken 50 51 50 50
51 at_bottom halt_closed pressed a_off safe broken 51 50 51 51
52 at_bottom closing released a_off safe ok 49 47 52 53
53 at_bottom closing released a_off safe broken 50 54 53 53
54 at_bottom closing pressed a_off safe broken 51 53 54 54
55 to_bottom closing pressed a_off safe broken 44 56 54 55
56 to_bottom closing released a_off safe broken 45 55 53 56

57 past_PoNR closing released a_off no_abort broken 58 60 56 57
58 past_PoNR uncond_cls released a_off no_abort broken 58 59 45 58
59 past_PoNR uncond_cls pressed a_off safe broken 59 58 44 59
60 past_PoNR closing pressed a_off safe broken 59 57 55 60
61 above_PoNR closing pressed a_off safe broken 62 64 60 61
62 above_PoNR uncond_cls pressed a_off safe broken 62 63 59 62

63 above_PoNR uncond_cls released a_off no_abort broken 63 62 58 63
64 above_PoNR closing released a_off no_abort broken 63 61 57 64
65 at_top closing released a_off no_abort broken 66 76 64 65
66 at_top uncond_cls released a_off no_abort broken 67 75 63 66
67 at_top halt_closed released a_off no_abort broken 67 68 70 67
68 at_top halt_closed pressed a_off safe broken 68 67 69 68
69 above_PoNR halt_closed pressed a_off safe broken 69 70 72 69

70 above_PoNR halt_closed released a_off no_abort broken 70 69 71 70
71 past_PoNR halt_closed released a_off no_abort broken 71 72 74 71
72 past_PoNR halt_closed pressed a_off safe broken 72 71 73 72
73 to_bottom halt_closed pressed a_off safe broken 73 74 51 73
74 to_bottom halt_closed released a_off safe broken 74 73 50 74
75 at_top uncond_cls pressed a_off safe broken 68 66 62 75
76 at_top closing pressed a_off safe broken 75 65 61 76
77 at_top ready pressed a_on safe broken 12 78 77 77
78 at_top ready released a_on safe broken 11 77 78 78
--

Simulation Under Top Sensor Low Failure
===
Model check for Industrial Press Control System Top_Fail_Low
===

48

Number of states = 64
--
 plunger control button motor safe top C.T B.T P.T F.T
--
1 at_bottom opening released a_on safe ok 1 2 4 41
2 at_bottom opening pressed a_on safe ok 2 1 3 40
3 below_PoNR opening pressed a_on safe ok 3 4 6 30
4 below_PoNR opening released a_on safe ok 4 3 5 29
5 above_PoNR opening released a_on safe ok 5 6 18 32
6 above_PoNR opening pressed a_on safe ok 6 5 7 31
7 at_top opening pressed a_on safe ok 8 18 7 20
8 at_top open pressed a_on safe ok 9 13 8 64
9 at_top halt_open pressed a_on safe ok 9 10 9 12
10 at_top halt_open released a_on safe ok 10 9 10 11
11 at_top halt_open released a_on safe broken 11 12 11 11
12 at_top halt_open pressed a_on safe broken 12 11 12 12
13 at_top open released a_on safe ok 14 8 13 63
14 at_top ready released a_on safe ok 14 15 14 62
15 at_top ready pressed a_on safe ok 16 14 15 61
16 at_top closing pressed a_off safe ok 16 17 22 60
17 at_top closing released a_off no_abort ok 18 16 21 59
18 at_top opening released a_on safe ok 13 7 18 19
19 at_top opening released a_on safe broken 19 20 19 19
20 at_top opening pressed a_on safe broken 20 19 20 20
21 above_PoNR closing released a_off no_abort ok 5 22 24 58
22 above_PoNR closing pressed a_off safe ok 22 21 23 57
23 past_PoNR closing pressed a_off safe ok 23 24 34 56
24 past_PoNR closing released a_off no_abort ok 25 23 33 55
25 past_PoNR opening released a_on safe ok 25 26 4 28
26 past_PoNR opening pressed a_on safe ok 26 25 3 27
27 past_PoNR opening pressed a_on safe broken 27 28 30 27
28 past_PoNR opening released a_on safe broken 28 27 29 28
29 below_PoNR opening released a_on safe broken 29 30 32 29
30 below_PoNR opening pressed a_on safe broken 30 29 31 30
31 above_PoNR opening pressed a_on safe broken 31 32 20 31
32 above_PoNR opening released a_on safe broken 32 31 19 32
33 to_bottom closing released a_off safe ok 33 34 50 54
34 to_bottom closing pressed a_off safe ok 35 33 45 53
35 to_bottom uncond_cls pressed a_off safe ok 35 36 38 44
36 to_bottom uncond_cls released a_off safe ok 36 35 37 43
37 at_bottom uncond_cls released a_off safe ok 1 38 37 42
38 at_bottom uncond_cls pressed a_off safe ok 2 37 38 39
39 at_bottom uncond_cls pressed a_off safe broken 40 42 39 39
40 at_bottom opening pressed a_on safe broken 40 41 30 40
41 at_bottom opening released a_on safe broken 41 40 29 41
42 at_bottom uncond_cls released a_off safe broken 41 39 42 42
43 to_bottom uncond_cls released a_off safe broken 43 44 42 43
44 to_bottom uncond_cls pressed a_off safe broken 44 43 39 44
45 at_bottom closing pressed a_off safe ok 46 50 45 52
46 at_bottom halt_closed pressed a_off safe ok 46 47 46 49
47 at_bottom halt_closed released a_off safe ok 47 46 47 48
48 at_bottom halt_closed released a_off safe broken 48 49 48 48
49 at_bottom halt_closed pressed a_off safe broken 49 48 49 49
50 at_bottom closing released a_off safe ok 47 45 50 51
51 at_bottom closing released a_off safe broken 48 52 51 51
52 at_bottom closing pressed a_off safe broken 49 51 52 52
53 to_bottom closing pressed a_off safe broken 44 54 52 53
54 to_bottom closing released a_off safe broken 54 53 51 54
55 past_PoNR closing released a_off no_abort broken 28 56 54 55
56 past_PoNR closing pressed a_off safe broken 56 55 53 56
57 above_PoNR closing pressed a_off safe broken 57 58 56 57
58 above_PoNR closing released a_off no_abort broken 32 57 55 58
59 at_top closing released a_off no_abort broken 19 60 58 59
60 at_top closing pressed a_off safe broken 60 59 57 60
61 at_top ready pressed a_on safe broken 60 62 61 61
62 at_top ready released a_on safe broken 62 61 62 62
63 at_top open released a_on safe broken 62 64 63 63
64 at_top open pressed a_on safe broken 12 63 64 64
--

Simulation Under Top Sensor High Failure
===
Model check for Industrial Press Control System Top_Fail_High
===
Number of states = 88

49

--
 plunger control button motor safe top C.T B.T P.T F.T
--
1 at_bottom opening released a_on safe ok 1 2 4 88
2 at_bottom opening pressed a_on safe ok 2 1 3 83
3 below_PoNR opening pressed a_on safe ok 3 4 6 51
4 below_PoNR opening released a_on safe ok 4 3 5 52
5 above_PoNR opening released a_on safe ok 5 6 18 26
6 above_PoNR opening pressed a_on safe ok 6 5 7 53
7 at_top opening pressed a_on safe ok 8 18 7 54
8 at_top open pressed a_on safe ok 9 13 8 49
9 at_top halt_open pressed a_on safe ok 9 10 9 12
10 at_top halt_open released a_on safe ok 10 9 10 11
11 at_top halt_open released a_on safe broken 11 12 11 11
12 at_top halt_open pressed a_on safe broken 12 11 12 12
13 at_top open released a_on safe ok 14 8 13 20
14 at_top ready released a_on safe ok 14 15 14 21
15 at_top ready pressed a_on safe ok 16 14 15 22
16 at_top closing pressed a_off safe ok 16 17 68 23
17 at_top closing released a_off no_abort ok 18 16 67 24
18 at_top opening released a_on safe ok 13 7 18 19
19 at_top opening released a_on safe broken 20 54 19 19
20 at_top open released a_on safe broken 21 49 20 20
21 at_top ready released a_on safe broken 21 22 21 21
22 at_top ready pressed a_on safe broken 23 21 22 22
23 at_top closing pressed a_off safe broken 23 24 30 23
24 at_top closing released a_off no_abort broken 19 23 25 24
25 above_PoNR closing released a_off no_abort broken 26 30 32 25
26 above_PoNR opening released a_on safe broken 27 53 19 26
27 above_PoNR open released a_on safe broken 28 48 20 27
28 above_PoNR ready released a_on safe broken 28 29 21 28
29 above_PoNR ready pressed a_on safe broken 30 28 22 29
30 above_PoNR closing pressed a_off safe broken 30 25 31 30
31 past_PoNR closing pressed a_off safe broken 31 32 64 31
32 past_PoNR closing released a_off no_abort broken 33 31 55 32
33 past_PoNR opening released a_on safe broken 34 50 52 33
34 past_PoNR open released a_on safe broken 35 43 47 34
35 past_PoNR ready released a_on safe broken 35 36 42 35
36 past_PoNR ready pressed a_on safe broken 31 35 37 36
37 below_PoNR ready pressed a_on safe broken 38 42 29 37
38 below_PoNR halt_open pressed a_on safe broken 38 39 41 38
39 below_PoNR halt_open released a_on safe broken 39 38 40 39
40 above_PoNR halt_open released a_on safe broken 40 41 11 40
41 above_PoNR halt_open pressed a_on safe broken 41 40 12 41
42 below_PoNR ready released a_on safe broken 39 37 28 42
43 past_PoNR open pressed a_on safe broken 44 34 46 43
44 past_PoNR halt_open pressed a_on safe broken 44 45 38 44
45 past_PoNR halt_open released a_on safe broken 45 44 39 45
46 below_PoNR open pressed a_on safe broken 38 47 48 46
47 below_PoNR open released a_on safe broken 39 46 27 47
48 above_PoNR open pressed a_on safe broken 41 27 49 48
49 at_top open pressed a_on safe broken 12 20 49 49
50 past_PoNR opening pressed a_on safe broken 43 33 51 50
51 below_PoNR opening pressed a_on safe broken 46 52 53 51
52 below_PoNR opening released a_on safe broken 47 51 26 52
53 above_PoNR opening pressed a_on safe broken 48 26 54 53
54 at_top opening pressed a_on safe broken 49 19 54 54
55 to_bottom closing released a_off safe broken 56 64 66 55
56 to_bottom uncond_cls released a_off safe broken 57 61 63 56
57 to_bottom halt_closed released a_off safe broken 57 58 60 57
58 to_bottom halt_closed pressed a_off safe broken 58 57 59 58
59 at_bottom halt_closed pressed a_off safe broken 59 60 59 59
60 at_bottom halt_closed released a_off safe broken 60 59 60 60
61 to_bottom uncond_cls pressed a_off safe broken 58 56 62 61
62 at_bottom uncond_cls pressed a_off safe broken 59 63 62 62
63 at_bottom uncond_cls released a_off safe broken 60 62 63 63
64 to_bottom closing pressed a_off safe broken 61 55 65 64
65 at_bottom closing pressed a_off safe broken 59 66 65 65
66 at_bottom closing released a_off safe broken 60 65 66 66
67 above_PoNR closing released a_off no_abort ok 5 68 70 25
68 above_PoNR closing pressed a_off safe ok 68 67 69 30
69 past_PoNR closing pressed a_off safe ok 69 70 78 31
70 past_PoNR closing released a_off no_abort ok 71 69 73 32
71 past_PoNR opening released a_on safe ok 71 72 4 33
72 past_PoNR opening pressed a_on safe ok 72 71 3 50
73 to_bottom closing released a_off safe ok 74 78 82 55
74 to_bottom uncond_cls released a_off safe ok 74 75 77 56

50

75 to_bottom uncond_cls pressed a_off safe ok 75 74 76 61
76 at_bottom uncond_cls pressed a_off safe ok 2 77 76 62
77 at_bottom uncond_cls released a_off safe ok 1 76 77 63
78 to_bottom closing pressed a_off safe ok 75 73 79 64
79 at_bottom closing pressed a_off safe ok 80 82 79 65
80 at_bottom halt_closed pressed a_off safe ok 80 81 80 59
81 at_bottom halt_closed released a_off safe ok 81 80 81 60
82 at_bottom closing released a_off safe ok 81 79 82 66
83 at_bottom opening pressed a_on safe broken 84 88 51 83
84 at_bottom open pressed a_on safe broken 85 87 46 84
85 at_bottom halt_open pressed a_on safe broken 85 86 38 85
86 at_bottom halt_open released a_on safe broken 86 85 39 86
87 at_bottom open released a_on safe broken 86 84 47 87
88 at_bottom opening released a_on safe broken 87 83 52 88
--

Simulation Under Button Sensor Low Failure
===
Model check for Industrial Press Control System Button_Fail_Low
===
Number of states = 64
--
 plunger control button motor safe button C.T B.T P.T F.T
--
1 at_bottom opening released a_on safe ok 1 2 4 43
2 at_bottom opening pressed a_on safe ok 2 1 3 44
3 below_PoNR opening pressed a_on safe ok 3 4 6 34
4 below_PoNR opening released a_on safe ok 4 3 5 33
5 above_PoNR opening released a_on safe ok 5 6 18 36
6 above_PoNR opening pressed a_on safe ok 6 5 7 35
7 at_top opening pressed a_on safe ok 8 18 7 24
8 at_top open pressed a_on safe ok 9 13 8 23
9 at_top halt_open pressed a_on safe ok 9 10 9 12
10 at_top halt_open released a_on safe ok 10 9 10 11
11 at_top halt_open released a_on safe broken 11 12 11 11
12 at_top halt_open pressed a_on safe broken 12 11 12 12
13 at_top open released a_on safe ok 14 8 13 20
14 at_top ready released a_on safe ok 14 15 14 21
15 at_top ready pressed a_on safe ok 16 14 15 22
16 at_top closing pressed a_off safe ok 16 17 26 64
17 at_top closing released a_off no_abort ok 18 16 25 63
18 at_top opening released a_on safe ok 13 7 18 19
19 at_top opening released a_on safe broken 20 24 19 19
20 at_top open released a_on safe broken 21 23 20 20
21 at_top ready released a_on safe broken 21 22 21 21
22 at_top ready pressed a_on safe broken 22 21 22 22
23 at_top open pressed a_on safe broken 22 20 23 23
24 at_top opening pressed a_on safe broken 23 19 24 24
25 above_PoNR closing released a_off no_abort ok 5 26 28 62
26 above_PoNR closing pressed a_off safe ok 26 25 27 61
27 past_PoNR closing pressed a_off safe ok 27 28 48 60
28 past_PoNR closing released a_off no_abort ok 29 27 37 59
29 past_PoNR opening released a_on safe ok 29 30 4 32
30 past_PoNR opening pressed a_on safe ok 30 29 3 31
31 past_PoNR opening pressed a_on safe broken 31 32 34 31
32 past_PoNR opening released a_on safe broken 32 31 33 32
33 below_PoNR opening released a_on safe broken 33 34 36 33
34 below_PoNR opening pressed a_on safe broken 34 33 35 34
35 above_PoNR opening pressed a_on safe broken 35 36 24 35
36 above_PoNR opening released a_on safe broken 36 35 19 36
37 to_bottom closing released a_off safe ok 38 48 54 58
38 to_bottom uncond_cls released a_off safe ok 38 39 41 47
39 to_bottom uncond_cls pressed a_off safe ok 39 38 40 46
40 at_bottom uncond_cls pressed a_off safe ok 2 41 40 45
41 at_bottom uncond_cls released a_off safe ok 1 40 41 42
42 at_bottom uncond_cls released a_off safe broken 43 45 42 42
43 at_bottom opening released a_on safe broken 43 44 33 43
44 at_bottom opening pressed a_on safe broken 44 43 34 44
45 at_bottom uncond_cls pressed a_off safe broken 44 42 45 45
46 to_bottom uncond_cls pressed a_off safe broken 46 47 45 46
47 to_bottom uncond_cls released a_off safe broken 47 46 42 47
48 to_bottom closing pressed a_off safe ok 39 37 49 57
49 at_bottom closing pressed a_off safe ok 50 54 49 56
50 at_bottom halt_closed pressed a_off safe ok 50 51 50 53
51 at_bottom halt_closed released a_off safe ok 51 50 51 52

51

52 at_bottom halt_closed released a_off safe broken 52 53 52 52
53 at_bottom halt_closed pressed a_off safe broken 53 52 53 53
54 at_bottom closing released a_off safe ok 51 49 54 55
55 at_bottom closing released a_off safe broken 52 56 55 55
56 at_bottom closing pressed a_off safe broken 53 55 56 56
57 to_bottom closing pressed a_off safe broken 46 58 56 57
58 to_bottom closing released a_off safe broken 47 57 55 58
59 past_PoNR closing released a_off no_abort broken 32 60 58 59
60 past_PoNR closing pressed a_off safe broken 31 59 57 60
61 above_PoNR closing pressed a_off safe broken 35 62 60 61
62 above_PoNR closing released a_off no_abort broken 36 61 59 62
63 at_top closing released a_off no_abort broken 19 64 62 63
64 at_top closing pressed a_off safe broken 24 63 61 64
--

Simulate Button Sensor High Failure
===
Model check for Industrial Press Control System Button_Fail_High
===
Number of states = 64
--
 plunger control button motor safe button C.T B.T P.T F.T
--
1 at_bottom opening released a_on safe ok 1 2 4 41
2 at_bottom opening pressed a_on safe ok 2 1 3 42
3 below_PoNR opening pressed a_on safe ok 3 4 6 32
4 below_PoNR opening released a_on safe ok 4 3 5 31
5 above_PoNR opening released a_on safe ok 5 6 18 34
6 above_PoNR opening pressed a_on safe ok 6 5 7 33
7 at_top opening pressed a_on safe ok 8 18 7 22
8 at_top open pressed a_on safe ok 9 13 8 21
9 at_top halt_open pressed a_on safe ok 9 10 9 12
10 at_top halt_open released a_on safe ok 10 9 10 11
11 at_top halt_open released a_on safe broken 11 12 11 11
12 at_top halt_open pressed a_on safe broken 12 11 12 12
13 at_top open released a_on safe ok 14 8 13 20
14 at_top ready released a_on safe ok 14 15 14 64
15 at_top ready pressed a_on safe ok 16 14 15 63
16 at_top closing pressed a_off safe ok 16 17 24 62
17 at_top closing released a_off no_abort ok 18 16 23 61
18 at_top opening released a_on safe ok 13 7 18 19
19 at_top opening released a_on safe broken 20 22 19 19
20 at_top open released a_on safe broken 11 21 20 20
21 at_top open pressed a_on safe broken 12 20 21 21
22 at_top opening pressed a_on safe broken 21 19 22 22
23 above_PoNR closing released a_off no_abort ok 5 24 26 60
24 above_PoNR closing pressed a_off safe ok 24 23 25 59
25 past_PoNR closing pressed a_off safe ok 25 26 46 58
26 past_PoNR closing released a_off no_abort ok 27 25 35 57
27 past_PoNR opening released a_on safe ok 27 28 4 30
28 past_PoNR opening pressed a_on safe ok 28 27 3 29
29 past_PoNR opening pressed a_on safe broken 29 30 32 29
30 past_PoNR opening released a_on safe broken 30 29 31 30
31 below_PoNR opening released a_on safe broken 31 32 34 31
32 below_PoNR opening pressed a_on safe broken 32 31 33 32
33 above_PoNR opening pressed a_on safe broken 33 34 22 33
34 above_PoNR opening released a_on safe broken 34 33 19 34
35 to_bottom closing released a_off safe ok 36 46 52 56
36 to_bottom uncond_cls released a_off safe ok 36 37 39 45
37 to_bottom uncond_cls pressed a_off safe ok 37 36 38 44
38 at_bottom uncond_cls pressed a_off safe ok 2 39 38 43
39 at_bottom uncond_cls released a_off safe ok 1 38 39 40
40 at_bottom uncond_cls released a_off safe broken 41 43 40 40
41 at_bottom opening released a_on safe broken 41 42 31 41
42 at_bottom opening pressed a_on safe broken 42 41 32 42
43 at_bottom uncond_cls pressed a_off safe broken 42 40 43 43
44 to_bottom uncond_cls pressed a_off safe broken 44 45 43 44
45 to_bottom uncond_cls released a_off safe broken 45 44 40 45
46 to_bottom closing pressed a_off safe ok 37 35 47 55
47 at_bottom closing pressed a_off safe ok 48 52 47 54
48 at_bottom halt_closed pressed a_off safe ok 48 49 48 51
49 at_bottom halt_closed released a_off safe ok 49 48 49 50
50 at_bottom halt_closed released a_off safe broken 50 51 50 50
51 at_bottom halt_closed pressed a_off safe broken 51 50 51 51
52 at_bottom closing released a_off safe ok 49 47 52 53

52

53 at_bottom closing released a_off safe broken 50 54 53 53
54 at_bottom closing pressed a_off safe broken 51 53 54 54
55 to_bottom closing pressed a_off safe broken 44 56 54 55
56 to_bottom closing released a_off safe broken 45 55 53 56

57 past_PoNR closing released a_off no_abort broken 57 58 56 57
58 past_PoNR closing pressed a_off safe broken 58 57 55 58
59 above_PoNR closing pressed a_off safe broken 59 60 58 59

60 above_PoNR closing released a_off no_abort broken 60 59 57 60
61 at_top closing released a_off no_abort broken 61 62 60 61
62 at_top closing pressed a_off safe broken 62 61 59 62
63 at_top ready pressed a_on safe broken 62 64 63 63
64 at_top ready released a_on safe broken 61 63 64 64
--

53

Appendix D Spark Ada Code
There are seven Ada files altogether.

1. specification of package Sensors†

2. package body Sensors

3. specification of package Actuator†

4. package body Actuator

5. specification of package Transitions†

6. package body Transitions†

7. main procedure Machine†

All seven have been checked for syntax and semantics by the GNAT Ada compiler, and five (marked
†) have been analysed by the SPARK Examiner. Those five are included here in the form of a
numbered listing generated by SPARK or the original source where no listing is available. The
remaining two are implementatiuon dependent and have not been checked by SPARK. Their listing
here is the original source text.

1. File sensors.lst † - contains a specification of package Sensors.

 Listing of SPARK Text
 SPARK95 Examiner with VC and RTC Generator Release 2.5 / 04.97
 Demonstration Version

 DATE : 12-SEP-1999 12:19:08.03

Line
 1 package Sensors
 2 --# own State_Seq;
 3 --# initializes State_Seq;
 4 is
 5
 6 type In_Sig is (high, low);
 7
 8 type State is record
 9 top : In_Sig;
 10 PoNR : In_Sig;
 11 bottom : In_Sig;
 12 button : In_Sig;
 13 end record;
 14
 15 procedure Read (Value: out State);
 16 --# global State_Seq;
 17 --# derives Value, State_Seq from State_Seq;
 18
 19 end Sensors;

--End of file--

2. File sensors.adb - contains package body Sensors

with System.Storage_Elements;

package body Sensors
 --# own State_Seq is Sensor_Register, Sensor_Error;
is
 type Sensor_Value is (lo, fault_1, fault_2, hi);
 for Sensor_Value use (lo => 0, fault_1 => 1, fault_2 => 2, hi => 3);

 type Local_Sensors_State is record
SV_Top : Sensor_Value;
SV_PNR : Sensor_Value ;
SV_Bottom : Sensor_Value;
SV_Button : Sensor_Value;

54

 end record;

 for Local_Sensors_State use record
 SV_Top at 0 range 0..1;
 SV_PNR at 0 range 2..3;
 SV_Bottom at 0 range 4..5;
 SV_Button at 0 range 6..7;
 end record;

 for Local_Sensors_State'Size use 8; -- fits in a single byte
 for Local_Sensors_State'Alignment use 1; -- byte aligned
 for Local_Sensors_State'Bit_Order use System.High_Order_First; -- big-endian machine

 Sensor_Register : Local_Sensors_State;
 SR_Address : constant := 16#100001#; -- 16Mb addressable RAM, 000000..ffffff
 for Sensor_Register'Address use System.Storage_Elements.To_Address (SR_Address);
 pragma Volatile (Sensor_Register);
 -- machine has 16Mb addressable RAM, 000000..ffffff
 -- hardware sensor is connected to address 100001
 -- hardware is writing to this location continuously

 Sensor_Error : Boolean := False;
-- if ever a sensor error is detected,
-- the read routine delivers a 'high' on all channels forever.
-- this will cause the press machine to halt within one cycle.

 procedure Read1 (X : in Sensor_Value; Y : out In_Sig) is
 --# global out Sensor_Error
 begin
 if X = hi then Y := high;
 elsif X = lo then Y := low;
 else Sensor_Error := True; Y:= high;
 end if;
 end Read1;

 procedure Read (Value: out State) is
 Sensor_Temp : Local_Sensors_State;
 begin
 if Sensor_Error then
 Value := (high, high, high, high);
 return;
 end if;

 Sensor_Temp := Sensor_Register; -- atomic assignment to ensure a stable value

 Read1 (Sensor_Temp.SV_Top, Value.top);
 Read1 (Sensor_Temp.SV_PNR, Value.PoNR);
 Read1 (Sensor_Temp.SV_Bottom, Value.bottom);
 Read1 (Sensor_Temp.SV_Button, Value.button);
 end Read;

begin
 Sensor_Error := False;
end Sensors;

3. File actuator.lst † - contains specification of package Actuator

 Listing of SPARK Text
 SPARK95 Examiner with VC and RTC Generator Release 2.5 / 04.97
 Demonstration Version

 DATE : 12-SEP-1999 12:19:07.92

Line
 1 package Actuator
 2 --# own State_Seq;
 3 --# initializes State_Seq;
 4 is
 5
 6 type Out_Sig is (a_on, a_off);
 7

55

 8 procedure Write (Value: in Out_Sig);
 9 --# global State_Seq;
 10 --# derives State_Seq from Value, State_Seq;
 11
 12 end Actuator;

--End of file--

4. File actuator.adb - contains package body Actuator

with System.Storage_Elements;

package body Actuator
 --# own State_Seq is Drive_Register;
is

 type Drive_Value is range 0..(2**8-1);
 for Drive_Value'Size use 8; -- fits in a single byte
 for Drive_Value'Alignment use 1; -- byte aligned

 Drive_ON : constant Drive_Value := 2#1111_1111#;
 Drive_OFF : constant Drive_Value := 2#0000_0000#;

 Drive_Register : Drive_Value;
 Drive_Address : constant := 16#100011#; -- 16Mb addressable RAM, 000000..ffffff
 for Drive_Register'Address use System.Storage_Elements.To_Address (Drive_Address);
 pragma Volatile (Drive_Register);
 -- machine has 16Mb addressable RAM, 000000..ffffff
 -- hardware motor drive is connected to address 100011
 -- hardware is reading from this location continuously

 procedure Write (Value: in Out_Sig) is
 begin
 case Value is
 when on => Drive_Register := Drive_ON;
 when off => Drive_Register := Dr ive_OFF;

end case;
 end Write;

end Actuator;

5. File transitions.ada † - contains specification of package Transitions

with Sensors;
use type Sensors.In_Sig;

with Actuator;
--# inherit Sensors, Actuator;

package Transitions is

 type Control_Type is (opening, open, ready, closing, uncond_closing, halt_open,
halt_closed);

 -- abbreviations to make the postconditions more readable

 high : c onstant Sensors.In_Sig := Sensors.high;
 low : constant Sensors.In_Sig := Sensors.low;

 a_on : constant Actuator.Out_Sig := Actuator.a_on;
 a_off: constant Actuator.Out_Sig := Actuator.a_off;

 procedure Init (control : out Control_Type;
 motor : out Actuator.Out_Sig);

 --# derives control, motor from ;
 --# post (control = opening and motor = a_on);

 procedure At_Opening (sensors_state: in Sensors.State;
 control: in out Control_Type;
 motor : out Actuator.Out_Sig);

 --# derives control from control, sensors_state
 --# & motor from ;

56

 --# pre control = opening;
 --# post (sensors_state.top = high
 --# -> (control = open and motor = a_on))
 --# and (not (sensors_state.top = high)
 --# -> (control = opening and motor = a_on));

 procedure At_Open (sensors_state : in Sensors.State;
 control : in out Control_Type;
 motor : out Actuator.Out_Sig);

 --# derives control from control, sensors_state
 --# & motor from ;

 --# pre control = open;
 --# post ((sensors_state.bottom = high or
 --# sensors_state.PoNR = high or
 --# sensors_state.button = high)

 --# -> (control = halt_open and motor = a_on))
 --# and (not(sensors_state.bottom = high or
 --# sensors_state.PoNR = high or
 --# sensors_state.button = high)

 --# -> (control = ready and motor = a_on));

 procedure At_Ready (sensors_state : in Sensors.State;

 control : in out Control_Type;
 motor : out Actuator.Out_Sig);

 --# derives control from control, sensors_state

 --# & motor from sensors_state;

 --# pre control = ready;

 --# post ((sensors_state.bottom = high or
 --# sensors_state.PoNR = high)

 --# -> (control = halt_open and motor = a_on))
 --# and ((not (sensors_state.bottom = high or
 --# sensors_state.PoNR = high)
 --# and (sensors_state.button = high))

 --# -> (control = closing and motor = a_off))
 --# and ((not (sensors_state.bottom = high or
 --# sensors_state.PoNR = high)
 --# and (not (sensors_state.button = high)))

 --# -> (control = ready and motor = a_on));

 procedure At_Closing (sensors_state : in Sensors.State;
 control : in out Control_Type;
 motor : out Actuator.Out_Sig);

 --# derives control from control, sensors_state

 --# & motor from sensors_state;

 --# pre control = closing;

 --# post (sensors_state.bottom = high
 --# -> (control = halt_closed and motor = a_off))

 --# and ((not (sensors_state.bottom = high)
 --# and (sensors_state.PoNR = high))

 --# -> (control = uncond_closing and motor = a_off))
 --# and ((not (sensors_state.bottom = high or

 --# sensors_state.PoNR = high)
 --# and (sensors_state.button /= high))
 --# -> (control = opening and motor = a_on))
 --# and (not (sensors_state.bottom = high or

 --# sensors_state.PoNR = high or
 --# sensors_state.button /=high)
 --# -> (control = closing and motor = a_off));

 procedure At_Uncond_Closing (sensors_state : in Sensors.State;
 control : in out Control_Type;
 motor : out Actuator.Out_Sig);

 --# derives control from control, sensors_state

57

 --# & motor from sensors_state;

 --# pre control = uncond_closing;
 --# post (sensors_state.top = high

 --# -> (control = halt_closed and motor = a_off))
 --# and ((not (sensors_state.top = high)
 --# and (sensors_state.bottom= high))

 --# -> (control = opening and motor = a_on))
 --# and ((not (sensors_state.top = high or
 --# sensors_state.bottom = high))

 --# -> (control = unc ond_closing and motor = a_off));

end Transitions;

6. File transitions.lst † – contains package body Transitions

 Listing of SPARK Text
 SPARK95 Examiner with VC and RTC Generator Release 2.5 / 04.97
 Demonstration Version

 DATE : 12-SEP-1999 12:19:10.01

Line
 1 package body Transitions
 2 is
 3 procedure Init (control : out Control_Type;
 4 motor : out Actuator.Out_Sig) is
 5 begin
 6 control := opening;
 7 motor := a_on;
 8 end Init;

+++ Flow analysis of subprogram Init performed: no
 errors found.

 9
 10
 11 procedure At_Opening (sensors_state: in Sensors.State;
 12 control: in out Control_Type;
 13 moto r : out Actuator.Out_Sig) is
 14 begin
 15 if sensors_state.top = high then
 16 control := open;
 17 end if;
 18 motor := a_on;
 19 end At_Opening;

+++ Flow analysis of subprogram At_Opening
 performed: no errors found.

 20
 21 procedure At_Open (sensors_state : in Sensors.State;
 22 control : in out Control_Type;
 23 motor : out Actuator.Out_Sig) is
 24 begin
 25 if (sensors_state.bottom = high) or
 26 (sensors_state.PoNR = high) or
 27 (sensors_state.button = high) then
 28 control := halt_open;
 29 else
 30 control := ready;
 31 end if;
 32 motor := a_on;
 33 end At_Open;

!!! (1) Flow Error : Importation of the initial value of variable
 control is ineffective.
!!! (2) Flow Error : The imported value of control is not used in the
 derivation of control.

58

 34
 35 procedure At_Ready (sensors_state : in Se nsors.State;
 36 control : in out Control_Type;
 37 motor : out Actuator.Out_Sig) is
 38 begin
 39 if (sensors_state.bottom = high) or
 40 (sensors_state.PoNR = high) then
 41 control := halt_open;
 42 motor := a_on;
 43 elsif sensors_state.button = high then
 44 control := closing;
 45 motor := a_off;
 46 else motor := a_on;
 47 end if;
 48 end At_Ready;

+++ Flow analysis of subprogram At_Ready performed:
 no errors found.

 49
 50 procedure At_Closing (sensors_state : in Sensors.State;
 51 control : in out Control_Type;
 52 motor : out Actuator.Out_Sig) is
 53 begin
 54 if sensors_state.bottom = high then
 55 control := halt_closed;
 56 motor := a_off;
 57 elsif sensors_state.PoNR = high then
 58 control := uncond_closing;
 59 motor := a_off;
 60 elsif sensors_state.button /= high then
 61 control := opening;
 62 motor := a_on;
 63 else
 64 motor := a_off;
 65 end if;
 66 end At_Closing;

+++ Flow analysis of subprogram At_Closing
 performed: no errors found.

 67
 68 procedure At_Uncond_Closing (sensors_state : in Sensors.State;
 69 control : in out Control_Type;
 70 motor : out Actuator.Out_Sig) is
 71 begin
 72 if sensors_state.top = high then
 73 control := halt_closed;
 74 motor := a_off;
 75 elsif sensors_state.bottom = high then
 76 control := opening;
 77 motor := a_on;
 78 else motor := a_off;
 79 end if;
 80 end At_Uncond_Closing;

+++ Flow analysis of subprogram At_Uncond_Closing
 performed: no errors found.

 81
 82 end Transitions;

--End of file--

7. File machine.lst † - contains main procedure Machine

 Listing of SPARK Text
 SPARK95 Examiner with VC and RTC Generator Release 2.5 / 04.97
 Demonstration Version

 DATE : 12-SEP-1999 12:19:09.02

59

Line
 1 with Transitions; use type Transitions.Control_Type;
 2 with Sensors;
 3 with Actuator;
 4
 5 --# inherit Transitions, Sensors, Actuator;
 6 --# main_program;
 7
 8 procedure Machine
 9 --# global in out Sensors.State_Seq;
 10 --# in out Actuator.State_Seq;
 11 --# derives Sensors.State_Seq from *
 12 --# & Actuator.State_Seq from *, Sensors.State_Seq;
 13 is
 14
 15 control : Transitions.Control_Type;
 16 sensors_state : Sensors.State;
 17 motor : Actuator.Out_Sig;
 18
 19 begin
 20 Transitions.Init (control, motor);
 21 Actuator.Write (motor);
 22
 23 while (control /= Transitions.halt_open)
 24 and then (control /= Transitions.halt_closed)
 25 --# assert true; -- SPARK demands a loop invariant
 26
 27 loop
 28 Sensors.Read (sensors_state);
 29
 30 case control is
 31 when Transitions.opening =>
 32 Transitions.At_Opening (sensors_state, control, motor);
 33 when Transitions.open =>
 34 Transitions.At_Open (sensors_state, control, motor);
 35 when Transitions.ready =>
 36 Transitions.At_Ready (sensors_state, control, motor);
 37 when Transitions.closing =>
 38 Transitions.At_Closing (sensors_state, control, motor);
 39 when Transitions.uncond_closing =>
 40 Transitions.At_Uncond_Closing (sensors_state, control, motor);
 41 when Transitions.halt_open | Transitions.halt_closed =>
 42 null; --# check false; -- means that this path can never be taken
 43 end case;
 44
 45 Actuator.Write (motor);
 46 end loop;
 47
 48 --# assert (control = Transitions.halt_open) or (control = Transitions.halt_closed);
 49
 50 end Machine;

+++ Flow analysis of subprogram Machine performed:
 no errors found.

--End of file--

60

Appendix E Spade Simplifier Output
The following SPADE outputs are provided:

1. 7 files of generated VCs

init.vcg, at_openi.vcg, at_open.vcg, at_ready.vcg, at_closi.vcg,
at_uncon.vcg, machine.vcg

File at_closi.vcg shown here.

 Semantic Analysis of SPARK Text
 SPARK95 Examiner with VC and RTC Generator Release 2.5 / 04.97
 Demonstration Version

 DATE : 12-SEP-1999 12:19:09.84

 procedure Transitions.At_Closing

For path(s) from start to finish:

procedure_at_closing_1.
H1: control = closing .
H2: fld_bottom(sensors_state) = high .
 ->
C1: (fld_bottom(sensors_state) = high) -> ((halt_closed =
 halt_closed) and (a_off = a_off)) .
C2: ((not (fld_bottom(sensors_state) = high)) and (fld_ponr(
 sensors_state) = high)) -> ((halt_closed =
 uncond_closing) and (a_off = a_off)) .
C3: ((not ((fld_bottom(sensors_state) = high) or (fld_ponr(
 sensors_state) = high))) and (fld_button(
 sensors_state) <> high)) -> ((halt_closed =
 opening) and (a_off = a_on)) .
C4: (not ((fld_bottom(sensors_state) = high) or ((fld_ponr(
 sensors_state) = high) or (fld_button(
 sensors_state) <> high)))) -> ((halt_closed =
 closing) and (a_off = a_off)) .

procedure_at_closing_2.
H1: control = closing .
H2: not (fld_bottom(sensors_state) = high) .
H3: fld_ponr(sensors_state) = high .
 ->
C1: (fld_bottom(sensors_state) = high) -> ((
 uncond_closing = halt_closed) and (a_off = a_off)) .
C2: ((not (fld_bottom(sensors_state) = high)) and (fld_ponr(
 sensors_state) = high)) -> ((uncond_closing =
 uncond_closing) and (a_off = a_off)) .
C3: ((not ((fld_bottom(sensors_state) = high) or (fld_ponr(
 sensors_state) = high))) and (fld_button(
 sensors_state) <> high)) -> ((uncond_closing =
 opening) and (a_off = a_on)) .
C4: (not ((fld_bottom(sensors_state) = high) or ((fld_ponr(
 sensors_state) = high) or (fld_button(
 sensors_state) <> high)))) -> ((uncond_closing =
 closing) and (a_off = a_off)) .

procedure_at_closing_3.
H1: control = closing .
H2: not (fld_bottom(sensors_state) = high) .
H3: not (fld_ponr(sensors_state) = high) .
H4: fld_button(sensors_state) <> high .
 ->
C1: (fld_bottom(sensors_state) = high) -> ((opening =
 halt_closed) and (a_on = a_off)) .
C2: ((not (fld_bottom(sensors_state) = high)) and (fld_ponr(
 sensors_state) = high)) -> ((opening =

61

 uncond_closing) and (a_on = a_off)) .
C3: ((not ((fld_bottom(sensors_state) = high) or (fld_ponr(
 sensors_state) = high))) and (fld_button(
 sensors_state) <> high)) -> ((opening = opening) and (
 a_on = a_on)) .
C4: (not ((fld_bottom(sensors_state) = high) or ((fld_ponr(
 sensors_state) = high) or (fld_button(
 sensors_state) <> high)))) -> ((opening =
 closing) and (a_on = a_off)) .

procedure_at_closing_4.
H1: control = closing .
H2: not (fld_bottom(sensors_state) = high) .
H3: not (fld_ponr(sensors_state) = high) .
H4: not (fld_button(sensors_state) <> high) .
 ->
C1: (fld_bottom(sensors_state) = high) -> ((control =
 halt_closed) and (a_off = a_off)) .
C2: ((not (fld_bottom(sensors_state) = high)) and (fld_ponr(
 sensors_state) = high)) -> ((control =
 uncond_closing) and (a_off = a_off)) .
C3: ((not ((fld_bottom(sensors_state) = high) or (fld_ponr(
 sensors_state) = high))) and (fld_button(
 sensors_state) <> high)) -> ((control = opening) and (
 a_off = a_on)) .
C4: (not ((fld_bottom(sensors_state) = high) or ((fld_ponr(
 sensors_state) = high) or (fld_button(
 sensors_state) <> high)))) -> ((control =
 closing) and (a_off = a_off)) .

2. 7 files of SPADE proofs

init.slg, at_openi.slg, at_open.slg, at_ready.slg, at_closi.slg,
at_uncon.slg, machine.slg

Proof of At_Closing_1 in file at_closi.slg shown here.

 **
 LOG OF SIMPLIFICATIONS PERFORMED BY SPADE SIMPLIFIER
 PVL SPADE TOOL VERSION : 1.4
 Copyright (C) 1986-97 Praxis Critical Systems, Bath, UK
 **

 DATE : 12-SEP-1999 TIME : 12:20:07

@@@@@@@@@@ VC: procedure_at_closing_1. @@@@@@@@@@
%%% Simplified C1 on reading formula in, to give:
 %%% C1: true
%%% Simplified C2 on reading formula in, to give:
 %%% C2: not (not fld_bottom(sensors_state) = high and fld_ponr(sensors_state) = high)
%%% Simplified C3 on reading formula in, to give:
 %%% C3: not (not (fld_bottom(sensors_state) = high or fld_ponr(sensors_state) = high)
and fld_button(sensors_state) <> high)
%%% Simplified C4 on reading formula in, to give:
 %%% C4: fld_bottom(sensors_state) = high or (fld_ponr(sensors_state) = high or
fld_button(sensors_state) <> high)
-S- Applied substitution rule at_closing_rules(3).
 This was achieved by replacing all occurrences of high by:
 sensors__high.
<S> New H2: fld_bottom(sensors_state) = sensors__high
<S> New C2: not (not fld_bottom(sensors_state) = sensors__high and fld_ponr(sensors_state) =
sensors__high)
<S> New C3: not (not (fld_bottom(sensors_state) = sensors__high or fld_ponr(sensors_state) =
sensors__high) and fld_button(sensors_state) <> sensors__high)
<S> New C4: fld_bottom(sensors_state) = sensors__high or (fld_ponr(sensors_state) =
sensors__high or fld_button(sensors_state) <> sensors__high)

62

*** Proved C1: true
*** Proved C2: not (not fld_bottom(sensors_state) = sensors__high and
fld_ponr(sensors_state) = sensors__high)
 using hypothesis H2.
*** Proved C3: not (not (fld_bottom(sensors_state) = sensors__high or
fld_ponr(sensors_state) = sensors__high) and fld_button(sensors_state) <> sensors__high)
 using hypothesis H2.
*** Proved C4: fld_bottom(sensors_state) = sensors__high or (fld_ponr(sensors_state) =
sensors__high or fld_button(sensors_state) <> sensors__high)
 using hypothesis H2.
*** PROVED VC.

@@@@@@@@@@ VC: procedure_at_closing_2. @@@@@@@@@@
%%% Simplified C1 on reading formula in, to give:
 %%% C1: not fld_bottom(sensors_state) = high
%%% Simplified C2 on reading formula in, to give:
 %%% C2: true
%%% Simplified C3 on reading formula in, to give:
 %%% C3: not (not (fld_bottom(sensors_state) = high or fld_ponr(sensors_state) = high)
and fld_button(sensors_state) <> high)
%%% Simplified C4 on reading formula in, to give:
 %%% C4: fld_bottom(sensors_state) = high or (fld_ponr(sensors_state) = high or
fld_button(sensors_state) <> high)
>>> Restructured hypothesis H2 into:
 >>> H2: fld_bottom(sensors_state) <> high
-S- Applied substitution rule at_closing_rules(3).
 This was achieved by replacing all occurrences of high by:
 sensors__high.
<S> New H2: fld_bottom(sensors_state) <> sensors__high
<S> New H3: fld_ponr(sensors_state) = sensors__high
<S> New C1: not fld_bottom(sensors_state) = sensors__high
<S> New C3: not (not (fld_bottom(sensors_state) = sensors__high or fld_ponr(sensors_state) =
sensors__high) and fld_button(sensors_state) <> sensors__high)
<S> New C4: fld_bottom(sensors_state) = sensors__high or (fld_ponr(sensors_state) =
sensors__high or fld_button(sensors_state) <> sensors__high)
*** Proved C2: true
*** Proved C1: not fld_bottom(sensors_state) = sensors__high
 using hypothesis H2.
*** Proved C3: not (not (fld_bottom(sensors_state) = sensors__high or
fld_ponr(sensors_state) = sensors__high) and fld_button(sensors_state) <> sensors__high)
 using hypothesis H3.
*** Proved C4: fld_bottom(sensors_state) = sensors__high or (fld_ponr(sensors_state) =
sensors__high or fld_button(sensors_state) <> sensors__high)
 using hypothesis H3.
*** PROVED VC.

@@@@@@@@@@ VC: procedure_at_closing_3. @@@@@@@@@@
%%% Simplified C1 on reading formula in, to give:
 %%% C1: not fld_bottom(sensors_state) = high
%%% Simplified C2 on reading formula in, to give:
 %%% C2: not (not fld_bottom(sensors_state) = high and fld_ponr(sensors_state) = high)
%%% Simplified C3 on reading formula in, to give:
 %%% C3: true
%%% Simplified C4 on reading formula in, to give:
 %%% C4: fld_bottom(sensors_state) = high or (fld_ponr(sensors_state) = high or
fld_button(sensors_state) <> high)
>>> Restructured hypothesis H2 into:
 >>> H2: fld_bottom(sensors_state) <> high
>>> Restructured hypothesis H3 into:
 >>> H3: fld_ponr(sensors_state) <> high
-S- Applied substitution rule at_closing_rules(3).
 This was achieved by replacing all occurrences of high by:
 sensors__high.
<S> New H2: fld_bottom(sensors_state) <> sensors__high
<S> New H3: fld_ponr(sensors_state) <> sensors__high
<S> New H4: fld_button(sensors_state) <> sensors__high
<S> New C1: not fld_bottom(sensors_state) = sensors__high
<S> New C2: not (not fld_bottom(sensors_state) = sensors__high and fld_ponr(sensors_state) =
sensors__high)
<S> New C4: fld_bottom(sensors_state) = sensors__high or (fld_ponr(sensors_state) =
sensors__high or fld_button(sensors_state) <> sensors__high)
*** Proved C3: true
*** Proved C1: not fld_bottom(sensors_state) = sensors__high
 using hypothesis H2.

63

*** Proved C2: not (not fld_bottom(sensors_state) = sensors__high and
fld_ponr(sensors_state) = sensors__high)
 using hypothesis H3.
*** Proved C4: fld_bottom(sensors_state) = sensors__high or (fld_ponr(sensors_state) =
sensors__high or fld_button(sensors_state) <> sensors__high)
 using hypothesis H4.
*** PROVED VC.

@@@@@@@@@@ VC: procedure_at_closing_4. @@@@@@@@@@
%%% Simplified C1 on reading formula in, to give:
 %%% C1: fld_bottom(sensors_state) = high -> control = halt_closed
%%% Simplified C2 on reading formula in, to give:
 %%% C2: not fld_bottom(sensors_state) = high and fld_ponr(sensors_state) = high ->
control = uncond_closing
%%% Simplified C4 on reading formula in, to give:
 %%% C4: not (fld_bottom(sensors_state) = high or (fld_ponr(sensors_state) = high or
fld_button(sensors_state) <> high)) -> control = closing
>>> Restructured hypothesis H2 into:
 >>> H2: fld_bottom(sensors_state) <> high
>>> Restructured hypothesis H3 into:
 >>> H3: fld_ponr(sensors_state) <> high
>>> Restructured hypothesis H4 into:
 >>> H4: fld_button(sensors_state) = high
-S- Applied substitution rule at_closing_rules(1).
 This was achieved by replacing all occurrences of a_on by:
 actuator__a_on.
<S> New C3: not (fld_bottom(sensors_state) = high or fld_ponr(sensors_state) = high) and
fld_button(sensors_state) <> high -> control = opening and a_off = actuator__a_on
-S- Applied substitution rule at_closing_rules(2).
 This was achieved by replacing all occurrences of a_off by:
 actuator__a_off.
<S> New C3: not (not (fld_bottom(sensors_state) = high or fld_ponr(sensors_state) = high)
and fld_button(sensors_state) <> high)
-S- Applied substitution rule at_closing_rules(3).
 This was achieved by replacing all occurrences of high by:
 sensors__high.
<S> New H2: fld_bottom(sensors_state) <> sensors__high
<S> New H3: fld_ponr(sensors_state) <> sensors__high
<S> New H4: fld_button(sensors_state) = sensors__high
<S> New C1: fld_bottom(sensors_state) = sensors__high -> control = halt_closed
<S> New C2: not fld_bottom(sensors_state) = sensors__high and fld_ponr(sensors_state) =
sensors__high -> control = uncond_closing
<S> New C4: not (fld_bottom(sensors_state) = sensors__high or (fld_ponr(sensors_state) =
sensors__high or fld_button(sensors_state) <> sensors__high)) -> control = closing
<S> New C3: not (not (fld_bottom(sensors_state) = sensors__high or fld_ponr(sensors_state) =
sensors__high) and fld_button(sensors_state) <> sensors__high)
*** Proved C1: fld_bottom(sensors_state) = sensors__high -> control = halt_closed
 using hypothesis H2.
*** Proved C2: not fld_bottom(sensors_state) = sensors__high and fld_ponr(sensors_state) =
sensors__high -> control = uncond_closing
 using hypothesis H3.
*** Proved C4: not (fld_bottom(sensors_state) = sensors__high or (fld_ponr(sensors_state) =
sensors__high or fld_button(sensors_state) <> sensors__high)) -> control = closing
 using hypothesis H1.
*** Proved C3: not (not (fld_bottom(sensors_state) = sensors__high or
fld_ponr(sensors_state) = sensors__high) and fld_button(sensors_state) <> sensors__high)
 using hypothesis H4.
*** PROVED VC.

3. 7 files of summary theorems

init.siv, at_openi.siv, at_open.siv, at_ready.siv, at_closi.siv,
at_uncon.siv, machine.siv

File at_closi.siv shown here

 Semantic Analysis of SPARK Text
 SPARK95 Examiner with VC and RTC Generator Release 2.5 / 04.97
 Demonstration Version

 CREATED 12-SEP-1999, 12:19:09 SIMPLIFIED 12-SEP-1999, 12:20:07
 (Simplified by SPADE Simplifier, Version 1.4)

64

 procedure Transitions.At_Closing

For path(s) from start to finish:

procedure_at_closing_1.
*** true . /* all conclusions proved */

procedure_at_closing_2.
*** true . /* all conclusions proved */

procedure_at_closing_3.
*** true . /* all conclusions proved */

procedure_at_closing_4.
*** true . /* all conclusions proved */

