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Abstract

This article describes our experience of using formal specifica-
tion to reformulate the requirements of the Nulka Electronic
Decoy. The Nulka Electronic Decoy is a hovering rocket that
lures anti-ship missiles away from the ship. The requirements
specification contained informal natural language requirements
relating both to time-related performance requirements, and
to other physical characteristics that were not time-related.
‘Timed Interval Calculus’ was used for the time-related perfor-
mance requirements whereas simple mathematics was used for
the others, thereby creating two different views of the Decoy.
While no conflicting requirements or incorrect values were de-
tected, 50% of the requirements were modified as a result of
formalisation and consultation with domain experts. This ar-
ticle describes the techniques that were used, the changes that
were made, reflects on lessons learned and discusses related
work.

Section 6 discusses the results of the formal analy-
sis. Some discussion of the possible benefits of tool
support is included in Section 7. Related work is dis-
cussed in Section 8. Concluding remarks are made in
Section 9.

2 Project Overview

The Nulka Electronic Decoy is a joint Australian/US
project being developed to counter anti-ship missiles.
The rocket-powered decoy is launched from its host
ship and lures incoming missiles away from the ship.
The Decoy PIDS establishes the performance, de-
sign, development and test requirements for the De-
coy prime item of the Nulka ship launched Electronic
Decoy. It has been prepared in accordance with MIL-
STD-490A “Specification Practices” (Department of
Defense 1985). This standard establishes uniform
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1 Introduction

practice for the format and content of specifications
prepared for the Department of Defence in order to
ensure the inclusion of essential requirements, and to
aid in the use and analysis of specification content.

Formal specification techniques apply formal math-

2.1 PIDS Formalisation

ematical notations to express system requirements.
Formal mathematical notations enable precise expres-
sion and tool support that are not possible when using
natural language (NL) exclusively.

This article describes a project where formal spec-
ification was used to improve the requirements given
in the existing Prime Item Development Specifica-
tion (PIDS) of the Nulka Electronic Decoy. In this
case formal specification was applied cost-effectively:
a dramatic improvement was achieved with a small
cost. Costs were minimised by the use of appropri-
ate formal notations and by using review as the sole
form of analysis. This article focuses on the benefits
provided by the use of an appropriate formal specifi-
cation notation and review alone.

1.1 Overview of Paper

Section 2 describes the Electronic Decoy and sum-
marises the analysis that was performed on the Decoy
PIDS. Section 3 introduces the Timed Interval Calcu-
lus (TIC) (Fidge, Hayes, Martin & Wabenhorst 1998)
and Section 4 then discusses how formal specification
in TIC was applied to the Decoy performance require-
ments. Section 5 describes how simple mathematics
was used to model the other physical characteristics.
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The Nulka project was coming to the end of a long
development phase motivating the development and
reissue of the PIDS based on experience gained dur-
ing the ten years of engineering development. As a
first step, formal specification was used to capture
the requirements contained in the existing PIDS. The
formal model of the Decoy was then developed in con-
sultation with Nulka project personnel with various
areas of interest (Prime Contractor, Commonwealth,
US) and expertise: flight dynamics, missile seduction,
project management, to name a few.

The Timed Interval Calculus (Fidge, Hayes, Mar-
tin & Wabenhorst 1998) was used to formalise the
performance requirements of the Decoy. Flight per-
formance, being highly dynamic and time dependent,
is notoriously difficult to specify; particularly where
NL is used exclusively. However, this is where the
application of formal specification had the greatest
effect. Section 6 examines the result of formalisation.

Physical characteristics that were not time-related
were formalised using simple mathematics involving
predicates, functions and relations. Some minor re-
visions were made to the physical characteristics,
mostly to do with unnecessary or incorrect require-
ments.

The formalised requirements were combined side-
by-side with systematically translated NL require-
ments to generate the final Decoy PIDS. The NL re-
quirements were understood to take precedence over
the formal requirements. However, the formalised re-
quirements were retained for clarification and as a
basis for evolutionary requirements change.



2.2 Method

The project took place in two stages: detailed refor-
mulation and final acceptance. The first stage in-
volved 35 man-days taking place over a period of
6 months, during which the requirements were for-
malised in 5 iterations involving 4 workshops. The
workshops were held with a variety of domain ex-
perts. This was for the purpose of reviewing progress
and solving problems found within the original infor-
mal requirements text and its subsequent reformu-
lations. Each iteration focussed on particular prob-
lem requirements. Attempted formalisation of these
requirements raised questions which were then dis-
cussed at the workshops. Modifications were then
integrated into the model.

The second stage occurred after a further year.
This was in preparation for the final acceptance of the
revised PIDS. The changes to the PIDS were docu-
mented and some final clarifications and corrections
were made.

No tool support was used in the project. (Section
7 discusses why and considers possibilities for the in-
corporation of tools.) However, manual checking was
possible because there were only 120 requirements.
The formalised requirements were manually checked
for the following properties.

e Consistency - that the formal notation used in
the specification be free of syntax, type, and se-
mantic errors. (This is not the formal definition
of the word but suffices to describe what was
checked.)

an appropriate (well understood) formalism was not
available. (Section 8.3 discusses related work in this
area.) Process requirements such as those to do
with validation and documentation were also not ad-
dressed.

3 Overview of the formalism

The performance requirements were specified in a for-
malism based on the Timed Interval Calculus (TIC)
(Fidge, Hayes, Martin & Wabenhorst 1998). Follow-
ing a brief introduction to TIC in Section 3.1, Sec-
tion 3.2 describes how interval predicates are used
to model a system. Section 3.3 introduces some addi-
tional TIC operators and Section 3.4 discusses the use
of differentiation of trace variables. Section 3.5 illus-
trates the expressiveness of TIC with some frequently
used idioms.

3.1 Timed Interval Calculus

TIC is a simple set theoretic notation useful for con-
cisely expressing time intervals and predicates over
them. A system is specified by constraints on the
non-empty time intervals over which properties hold.
TIC is closely related to Duration Calculus (DC)
(Chaochen, Hoare & Ravn 1991), featuring similar
laws for interval based reasoning. However, where
DC is defined in terms of temporal logic, TIC is de-
fined in terms of set-theory. Further comparison of
DC and TIC is presented elsewhere (Fidge, Hayes,
Martin & Wabenhorst 1998).

e Correctness - that the specification define be-
haviour equivalent to the informal requirements.

Absolute time, T, is modelled by real numbers.
Here we assume non-negative real numbers.
Observable variables are modelled as traces (total

e Precision - that the specification be free of am-
biguity.

e Abstraction - that the level of abstraction be
suitable for defining a clear and concise speci-
fication.

e Completeness - that all necessary components of
the system be modelled.

e Feasibility - that all requirements be imple-
mentable.

o Testability - that the requirements were able to
be validated.

e Modularity - that the requirements were struc-
tured into independent, internally cohesive, com-
ponents.

e Readability and Style - that naming conventions
and structuring of definitions be acceptable and
appropriate.

2.3 Views

The use of a second formalism constitutes a second
formal view of the requirements. The use of multiple
formal views is recommended where different aspects
of a system are more easily expressed in different for-
malisms or frameworks (Jackson 1995). A simple view
invariant links the views. Section 5.2 gives details of
the view invariant.

2.4 Scope

While formalisation was attempted on all Decoy PIDS
requirements, some requirements were not formalis-
able. For instance probabilistic requirements, i.e.,
those that are expressed probabilistically or statis-
tically, were not formalised in this analysis because

functions from the time domain to a type representing
the set of all values that the variable may have). For
example, a variable indicating whether the Decoy is
in the flight phase can be expressed as a function from
time to Booleans (B):

flight : T — B

//the Decoy is in flight phase.

Similarly, the height of the Decoy can be expressed
as a timed trace of Reals (R).

height : T - R

//Decoy height

Aside: We adhere to the box notation used in the
formalised Decoy PIDS. Trace variable declarations
and formalised requirements were added to the PIDS
in a box embedded in the relevant PIDS paragraph.
Comments were added to indicate the real-world in-
terpretations of declared variables. End Aside

3.2 Interval Predicates

Sets of intervals can be specified using the interval
brackets ( and ). Here, a much simpler notation is
used than the numerous brackets presented elsewhere
(Fidge, Hayes, Martin & Wabenhorst 1998). The
brackets ( and ) represent sets of intervals where the
endpoints are either open or closed. This is equiva-
lent to F and ? in Fidge et al. We forego the various
other brackets (left-closed, right-closed etc) preferring
to use the minimum of special notation.

For example, the set of all time intervals where
the Decoy is in flight phase for the entire interval
is specified as (flight). An interval I is in the set
of intervals (flight) if and only if, for all times ¢ in
I, flight(t) is true. Note that this includes all pos-
sible sub-intervals where flight is true. In general,



the property in the brackets is any first-order pred-
icate in which total functions from the time domain
to some type X may be treated as values of type X.
The elision of explicit references to the time domain
of these functions results in specifications which are
more concise and readable. For example, the set of
all intervals where the Decoy is in flight phase and its
height is greater than H metres for the whole interval
is written as follows.

(flight A height > Hm)

The dimensions of constants (e.g. m, s, kg, m/s)
have been included in the formal specification. We
have added these annotations as a simple extension
to the type system of TIC. Dimensions provide extra
typing information useful when checking the consis-
tency of the specification (Hayes & Mahony 1995).
Dimensions are discussed further in Section 7.1.

Propositions are formed by combining sets of in-
tervals using standard relations from set theory. For
example, the property

During the flight phase the height of the
Decoy shall be not less than H metres.

can be specified as follows.

(flight) C (height > Hm)

That is, the set of all intervals where the Decoy is
in flight phase is a subset of the set of intervals where
the height of the Decoy in not less than H.

The set of all intervals of duration X seconds can
be expressed as (6 = Xs). The symbol § is a re-
served symbol representing the duration of an inter-
val. Other reserved symbols are a and w representing

FLIGHT

HEIGHT

TIME

Figure 1: Flight Profile

(flight A & > Xs) C
(flight N\ 6 = Xs);(height > Hm)

This says that any interval of flight greater than X
seconds is comprised of an interval of flight X seconds,
where the height is unrestricted, followed by an inter-
val where the height is no less than H metres. While
this may seem slightly weaker than required (consider
an X + 1 second sub-interval at the end of the flight
phase - in isolation, this constraint says that during
this sub-interval the Decoy need only be above H for
the last second), it is sufficient because the constraint
on the complete flight interval restricts the possible
sub-intervals. That is, the X + 1 second sub-interval
belongs to a larger X + N second sub-interval where
for the last N seconds the Decoy must be above H.

the infimum (start) and supremum (end) times of an
interval respectively. These operators are related by

3.4 Differentiable functions

§ = w — «, which alternately can be stated as an
interval predicate in the following way:

(6 =w — a) = (true)
where (true) is the set of all intervals.

3.3 Interval Concatenation

More complex predicates can also be specified using
the interval concatenation operator (5;_) (chop). This
operator forms a set of intervals by joining intervals
from one set to those of the other whenever their end
points adjoin.

(P) = (R);(S)

In other words, an interval r from (R) above can be
joined to an interval s from (S) to form a a new in-
terval p in (P) if r occurs strictly before s and the
two endpoints meet exactly, with no overlap or gap
(Fidge, Hayes, Martin & Wabenhorst 1998). Impor-
tantly, the supremum of r must equal the infimum
of s. However, so that no overlap occurs, this point
may only lie in one of the intervals. That is, the join-
ing interval endpoints must be either open-closed or
closed-open. Here, where the interval brackets ( and
} do not specify whether the interval endpoints are
closed or open, the join can be formed from either
open-closed or closed-open pairings of the adjoining
endpoints.

For example, the requirement that the Decoy
height must be no less than H after the Decoy has
been in the flight Phase for at least X seconds can be
specified as follows.

Functions modelling physical quantities generally
map from the time domain to some contiguous subset
of R. In most cases such functions are differentiable
(Fidge, Hayes & Mahony 1998). Derivatives were use-
ful (where they existed) in the PIDS formalisation for
modelling the dynamic behaviour of the Decoy.

For example, given the definition of height above,
the derivative of height, denoted by height, represents
the vertical speed of the Decoy. Thus the require-
ment that the Decoy should continue to rise during
the first X seconds of the flight phase before main-
taining height H, can be formalised as follows.

((— flight);(6 > Xs A flight)) C
(( flight); L
0 = Xs A flight A height > Om/s);
height > Hm))

Here, the specification explicitly applies to the
start of flight because it is only during the start of
flight that the Decoy is required to rise. This specifi-
cation is satisfied by the Decoy which flies according
to the graph displayed in Figure 1. Such graphical
representations of traces are a natural and useful way
of understanding TIC specifications.

3.5 Idioms

A number of frequently occurring specification idioms
have been extracted from the formalised PIDS and
are presented in Table 1. These idioms are the basis
of a systematic translation that was made from the
formalised requirements back to the NL requirements.
This was done to acheive some consistency between



the form of the NL requirement and the form of the
formalised requirement.

P)
P)
P)
P)

) P and Q always hold at the same time

true) P always holds
) When P holds on an interval, Q also holds

true); (@) When P holds on an interval, Q
olds at the end

(P);(—| P) C (- @);{(Q) Immediately after P ceases
to hold, Q is established.

IN

(P)=(@Q
(P)={(
(P)c (@
(P) c

c
h

Table 1: Specification Idioms

The last idiom may be understood by considering
arbitrarily brief intervals of true followed by not true.
Note also that intervals are non-empty.

4 Application to the Decoy

In this section some examples of the issues uncovered
by formal specification are given.

4.1 Completeness

The initial review of the NL requirements revealed
several lifecycle phases of the Decoy (say n phases).
These provided a basic structure to the requirements
and were the obvious place to start formalisation.
Phases were formally represented as boolean vari-
ables, which in TIC are modelled as traces from time
to boolean.

several iterations, some key event times (Ey,..., Ep,)
were identified. These events are either observable in
the Decoy, or events known globally to the system.
Identification of these events enabled the following
much clearer (and complete) definition of formal re-
quirements.

(phase;) = (a > E; ANw < E»)
//phasel goes from FEi to FEa
(phases) = (a > E> AN w < E3)

//phase2 goes from FEs to FE3

.<]‘J'ha86n> ={a > E,)

//phase n starts at FE,,

This event based definition also enabled a much
simpler NL description. In addition, bounds on the
lengths of the phases can be stated in terms of the
event times, i.e., By — F; < Xs, and several other
requirements are also more simply expressed.

As many Decoy requirements are phase related, a
complete definition of the phases had a broad impact
on the requirements. This example illustrates not
only the benefit of formalisation for eliciting ambigu-
ity, but also a follow-on effect: simplicity in the formal
model can lead to more easily understood NL require-
ments. It was easy to verify that the original incom-
plete phase formulation is consistent with the new
event-based reformulation. Thus, the event-based re-
formulation clarifies the original requirements.

4.2 Consistency and Correctness

No requirements were detected that were in conflict
or had incorrect numerical values. While the errors

ph(],581, faey phasen :T—B // Decoy phases

However, further formalisation was hindered by
the lack of information about the exact definitions
of these phases. Various facts were able to be drawn
from the requirements: some phases (but not all) were
distinct, some phases occurred in order, the lengths
of some of the phases were bounded. However no
complete definition of the phases was possible. This
‘loose specification’ is not necessarily a problem. For
instance, the timing of these phases may really have
been unrestricted. However, other Decoy require-
ments expressed in terms of the phases were ambigu-
ous because it was unclear when the Decoy went from
one phase to another.

In response, the above properties were specified
as follows and the issue was raised at the first PIDS
workshop.

zor(phasey, . .. ,phasek) //k phases are distinct
(phasey );(— phase;) C (— phases);(phases)

//phase2 follows phasel
C (- phases);(phases)

//phase3 follows phase2

(phases);{— phases)

phasel g 1) S T1 //phasel takes less than Tis
phaseg C < T2s //phase2 takes less than T2s
ph(l$€3 g 6>1T3 //phase3 takes no less than T3s

Upon discussion of this issue in the workshop it be-
came clear that there were various opinions as to the
exact definitions of these phases and that such am-
biguity had caused confusion when interpreting test
results. At this stage a commitment was made to find
exact definitions in terms of key Decoy events. After

found were sins of ommission rather than commis-
sion, minor inconsistencies arose because of the am-
biguous specification of the phases mentioned previ-
ously. That is, providing a more complete specifica-
tion solved problems due to inconsistent interpreta-
tion.

In addition, some requirements were corrected
during the process of reformulation as a result of the
involvement of the domain experts. Such changes
were evolutionary in nature, yet had not been cor-
rected in the Decoy PIDS. The process of reformula-
tion provided the opportunity to make these correc-
tions and introduce them into the formal specifica-
tion. While not a direct product of formal analysis,
the pursuit of completeness in the formal specification
raised the questions which prompted these corrections
to be made.

4.3 Feasibility

Absolute requirements with respect to timing, height,
or other dynamic properties are infeasible because of
the uncontrollable nature of the environment and lim-
itations on the accuracy of sensors at the environ-
ment /system interface. Therefore all such require-
ments should be stated with allowable margins for
error. Some absolute requirements were found in the
Decoy PIDS and suitable error margins were sought
at the workshops. These were then formalised in TIC
as follows.

demanded_value : T — R
actual_value : T — R

// demanded value
// actual value

(phase;) C
(actual_value = demanded_value £ margin)




That is, during phase i, the actual value shall be
within margin of the demanded value. The error mar-
gin may either be constant or linearly or otherwise
related to the demanded value, or it may be an inde-
pendently evolving value. Formalising error margins
in this way provides a basis for their justification in
terms of assumptions about the properties of the envi-
ronment, and the sampling rate/accuracy of the sys-
tem/environment interface (Hayes 1993). However,
this was not attempted in this project.

4.4 Testability

When reviewing the formalised requirements, the
ability to validate the requirements was considered.
While formal specification does not necessarily pre-
vent one from writing untestable requirements, for-
malisation assisted in the identification of these re-
quirements because they were generally very difficult
to specify. For instance some requirements were or-
dered in terms of their priority. That is, certain re-
quirements could be relaxed if meeting them meant
that others of higher priority would be missed. Ex-
pressing this in TIC turned out to be quite difficult
and motivated the authors to question the necessity of
such a requirement. As it turned out, this was a case
of over-specification. A more abstract requirement
was identified which captured the over-riding inten-
tion. Thus, the detailed implementation in terms of
priorities could be removed. This example also illus-
trates the way in which choosing a suitable level of
abstraction can simplify requirement specification.

avoided because events local to the Decoy were iden-
tified that were suitable for completely defining the
phases.

5 Physical Characteristics

Physical characteristics that were not time related
were formally specified using simple predicate calcu-
lus, functions, and relations. This remainder of this
section gives some details of their formal specification.

5.1 Componentry

The set of all physical Components is modelled by the
set. Component. Various components were identified.

[Component]
1, C2,C3,...: Component

//The set of all components

Facts about the Decoy components were modelled
by relations or functions. The requirements were
then tested by trying to prove simple putative the-
orems. For instance, the has_subcomponent relation
described the hierarchical structure of the Decoy com-
ponents.

has_subcomponent : Component <+ Component
//Decoy structure

¢, has_subcomponent cy

Requirements which were either not quantifiable
or were too difficult to measure were either removed
or moved to the Advice Only section of the PIDS.

A simple putative theorem given this structure is
that it is a tree. That is,

e every component is either in the domain or range

4.5 Modularity

Modularity is a fundamental principle of large scale
system development. Modularity allows system de-
signers to control complexity by structuring a system
into components with minimal interdependency and
maximal cohesion (IEEE 1998). This principle was
pursued in the Decoy PIDS in two ways:

e Reordering paragraphs so that like requirements
occurred together, maximising the cohesiveness
of PIDS sections while also minimising their in-
terdependence.

e Restating requirements in terms of the Decoy
frame of reference so that they applied to the
Decoy itself rather than to the system in general.

Reordering removed overlapping and repeated re-
quirements while also reducing the likelihood of in-
consistency accidentally introduced through modifi-
cations of related requirements in different sections.

Phrasing the requirements in terms of objects in
the Decoys frame of reference reduced the dependence
on other requirements specification documents. This
also served to increase the completeness of a require-
ment by identifying a precise value. An example of
this is the identification of the events used to define
the phases as described above. Part of the problem
had been that some phases had been defined in terms
of properties of the system which were not local to the
Decoy frame of reference. Therefore, in attempting to
precisely define the Decoy phase in terms of a system
property, a large portion of the system had to be de-
scribed in sufficient detail to state the requirement.
However, the system property was sufficiently com-
plex that a brief description was necessarily incom-
plete. Attempted formalisation of the system prop-
erty could not be completed without formalising other
Nulka system specifications. Fortunately, this was

of this relation;

e the Decoy itself is the only component not in the
range; and thirdly,

e 1o cycles should occur in this relation.

Such theorems were investigated by review.

Several times such analysis identified components
that were out of the scope of the Decoy PIDS. This
was the case when our putative theorems were too
strong. For example, weight is a property of all com-
ponents and was modelled by a total function.

weight : Component — R //Component weight

weight(c;) = Xkg

Here, a suitable obligation might be to show that
every component was given a specified weight. How-
ever, it turned out that several requirements specified
that the weight of a component should be such that
when assembled with the other components, the as-
sembly had the correct weight. That is, there was
no specific requirement of the weight of some com-
ponents, so long as the weight of certain key com-
ponents were correct. In this case, the non-specific
requirements were unnecessary: since the Decoy is
already required to meet the specification, these re-
quirements do not contribute any new constraints on
the Decoy. As it turned out, several such compo-
nents were specified by other requirements documents
and were duplicated in the Decoy PIDS unnecessarily.
Upon discussion with Nulka personnel, it was decided
that they were out of the scope of the Decoy PIDS
and tagged for removal. This was also done to keep
the set of requirements as small as possible, thus sim-
plifying requirement maintenance.



Incomplete 12
Missing 6
Terminology 10
Unnecessary 19

Table 2: Frequency of faults

5.2 Views

The formal specification contains two formal views of
the Decoy. The first is a time-evolving dynamic view
of Decoys expressed in TIC, where the second is a
statement of properties that are true for Decoys, in-
variant over time, and expressed in simple mathemat-
ics. The use of multiple views is recommended where
different aspects of a system are more easily expressed
in different formalisms or frameworks (Jackson 1995).
In such cases, use of a single view often results in an
over-complicated specification because disparate as-
pects of the system have been forced into a common
framework, unsuitable for expressing all of the vari-
ous sorts of properties. The views are linked by the
following simple view invariant. Any property P, in-
variant over time, can be expressed as a TIC property
in the following way.

(P) = (true)
That is, all intervals have the property P. This ap-

proach requires that variables used to model physical
characteristics be interpreted as traces.

6 Results

not the prime focus of the work (no attention was
given to static properties during the any of the four
workshops) this is an indication of how much easier
it is to get static properties correct.

6.1 Sources of faults

Many faults arose as some sort of ambiguity in the
original PIDS. The faults were then identified by the
process of trying to make the requirements more com-
plete. For instance, ambiguity arose in three ways:

e genuine incompleteness,

e abstraction level too low - resulting in overly de-
tailed but incomplete descriptions,

e inaccurate wording.

When genuine incompleteness arose more detail
was added to make the requirement more complete.
An inappropriate level of abstraction resulted either
in a reduction of scope or the identification of a suit-
able parameter. In either case, some requirements
were then unnecessary and deleted. Inaccurate word-
ing was corrected by suitable rephrasing.

This perspective indicates that searching for in-
completeness was the principal mechanism by which
faults were identified and the Decoy PIDS improved.
This view is widely held (IEEE 1998).

6.2 Effectiveness

The effectiveness of the formalisation is illustrated by
the following qualities of the final PIDS.

The final stage of the Decoy PIDS reformulation in-
volved detailed analysis of the changes made to the
PIDS. This included justifications of the reasons why
requirements were changed, deleted, moved, or added.

e Smaller. Although the Decoy PIDS is more com-
plete, it has less requirements largely due to the
removal of requirements out of scope of the De-
CcOy.

Table 2 summarises the frequency of the faults which
lead to changes to the PIDS. The sorts of faults iden-
tified are

e Simpler. Being based on simple events and eas-
ily defined parameters, the Decoy PIDS is much
simpler. This comes about because the modelling

o incompleteness, leading to extra detail being
added,

e missing requirements, leading to new require-
ments being added,

e incorrect terminology, leading to rephrasing of
requirements, and

e unnecessary requirements, leading to their dele-
tion.

The distinction between incomplete and missing
requirements is that the former arises from ambiguity
of the existing requirements whereas the later arises
from the complete lack of a requirement.

The figures given in Table 2 result from an ex-
amination of the number of requirements modified as
reported in the detailed comparison of the initial and
final Decoy PIDS documents. A significant amount of
reordering also occurred in the Decoy PIDS, and sev-
eral requirements were both reordered and corrected
of one of the given faults. However, a measurement
of the amount of reordering has not been attempted.

In total, 120 individual requirements were formally
specified. Of these 58 were modified in some way in
the final Decoy PIDS (including reordering). Most
of the modifications came about through formalisa-
tion of the performance requirements rather than the
physical characteristics: 43 performance requirements
were formalised resulting in 40 of them being modified
whereas 77 physical characteristics were formalised
resulting in 13 of them being modified (all removals).
Besides the fact that the physical characteristics were

of system events has been replaced by references
to interface parameters.

e More understandable. The Decoy PIDS can now
be reviewed in a workshop taking a single day
rather than several days. In addition, the Decoy
PIDS was accepted at the final workshop as a
baseline for further engineering change.

e Changeable. The new Decoy PIDS is much easier
to keep up to date than the previous Decoy PIDS.
This is mainly due to its simplicity and because
it has been restructured into independent sub-
units.

7 Tool support

Tools where not used in this project due to time
constraints. In the case of TIC, the only known
support was provided by the Ergo theorem prover
(Cereone 2001). However it was anticipated that the
cost of setting up this tool and using it would be
too high. In the case of the simple predicates used
to model the physical characteristics, several tools
would have been suitable, e.g., Sum (Nickson, Utting
& Traynor 1996) or CADIZ (Toyn & McDermid 1995).
However, with the prime focus of the work being the
performance requirements, the benefit was not per-
ceived to be high.

The cost-effectiveness of review based methods is
appealing, however some would argue that tool sup-
port is required to validate and verify the application
of the formalism (Rushby 1995). While the evidence



of this article supports the view that formal specifica-
tion with review provides significant value in itself, it
is worth considering how tool support for the Timed
Interval Calculus would improve the outcome.

7.1 Type checking

Definedness and type checking tools check that vari-
ables are declared before their use and that their
use is consistent with their declared types. They
may also check that every declared variable is used
at least once. Such tools eliminate the most com-
mon inconsistencies found in a formal specification.
However, in the case of TIC, most variables are de-
clared to be of type T — R, providing a fairly flat
and homogeneous domain of objects when compared
to languages exhibiting complex type structures such
as ML and other functional languages. The lack of
type structure diminishes the benefit of type check-
ing. This situation is ameliorated to some extent
by the use of dimensions such as seconds, metres,
metres/second on physical quantities. This solution
(Hayes & Mahony 1995), commonplace in the physi-
cal sciences, extends the reals with more type struc-
ture. The author is not aware of any automatic tool
support for dimensions in any formal specification
languages. However, within the presence of suitable
type definitions and functions, it can be implemented
with a minor extension to the type system of Z (Hayes
& Mahony 1995).

7.2 Animation

explicit support for performing the listed techniques,
however, a sufficiently powerful theorem prover such
as Isabelle (Paulson, Nipkov & Wenzel 2002) or PVS
(Shankar, Owre, Rushby & Stringer-Calvert 2001)
may allow them to be proved quickly. However, such
provers typically require a significant amount of as-
sistance from the user.

8 Related work

Interest in applying formal specification in real-world
systems has increased in the systems and software
engineering literature (Palshikar 2001, Lamsweerde
2000, Berry 2002). Some suggest that slow industrial
acceptance of formal methods is due to the perceived
difficulty of learning mathematical notations; costs
of training; lack of tools, standards, and case stud-
ies. These problems are being addressed, for instance,
numerous guidelines for the use of formal specifica-
tion have been presented (Palshikar 2001, Bowen &
Hinchey 1995) and case studies also appear describing
how formal methods can be applied to requirements
modelling on projects such as the International Space
Station (Easterbrook, Lutz, Covington, Kelly, Ampo
& Hamilton 1998) for example.

Tool development has become the focus of much
formal methods research in general (Abrial 1996,
Nickson et al. 1996). Support for DC has been imple-
mented in PVS (Skakkebaek & Shankar 1994). DC
has also been integrated with other formalisms such
as SCR (Software Cost Reduction) (Heitmeyer, Kirby,
Labaw & Bharadwaj 1998) (a formal method involv-

The next level of tool support worth considering is
animation. This is quite useful where external fi-
delity (checking that the specifications say what is
intended) is of interest (Rushby 1995). External fi-
delity is most commonly checked by informal review
by domain experts. However, this may require a tab-
ular or diagrammatic form of specification where the
domain experts are not familiar with mathematical
specification languages. Animation of formal specifi-
cations allows the dynamic behaviour of the system
being specified to be reviewed. Animation tools such
as Possum (Hazel, Strooper & Traynor 1997) allow
graphical representations to be used to interpret the
states being generated by the tool. However, the au-
thor is not aware of any animation tools for TIC or
other related interval-based specification languages.
Some mechanism for drawing graphs such as that pre-
sented in Figure 1 would be worth pursuing.

7.3 Theorem provers

A variety of techniques are available for validating

requirements where both external fidelity and com-

pleteness are key attributes of interest (Rushby 1995).
External fidelity may be investigated by:

o challenging the specification with a ques-
tion/theorem it should be able to answer, or

showing that the model describes simple desired
situations by putative interpretation.

Completeness may be investigated by:

e proving that the disjunction of all cases is a tau-
tology, or

e proving that the environmental assumptions and
the requirements specification imply the required
system constraints (Rushby 1995, pg 157).

In the formalisation of the Decoy PIDS, some of
the above techniques were applied in an informal and
ad hoc manner. Typically theorem provers provide no

ing tabular presentations of function specifications)
for the specification of the requirements of hybrid sys-
tems (Chaochen, Ravn & Hansen 1993).

8.1 Costs

The cost of applying formal methods is difficult to as-
sess. Rules of thumb have been presented elsewhere
(Berry 2002) which estimate that the use of formal
specification without formal verification may drive up
the cost of a project as much as twofold, whereas the
use of formal verification may drive up the cost as
much as tenfold. This is in agreement with our expe-
rience of applying formal specification to the Decoy
PIDS; while we only applied formal specification to
one of many requirements documents within a large
project, formal verification would have increased the
costs of our work dramatically.

8.2 Benefits

Similar results to ours are reported from a project
which employed formal specification on subsystems
of NASA’s space shuttle software (Crow & Di Vito
1998). They conclude that formal specification con-
fers benefits regardless of how extensively they are
applied, and formal methods are most effective when
they are judiciously tailored to the application. They
emphasise the following benefits of formal specifica-
tion by itself.

e Clarifies requirements: the concise and unam-
biguous formal statement of a requirement can
cut through lengthy informal statements to ex-
pose fundamental issues that can be expressed
simply.

e Articulates Implicit Assumptions: undocu-
mented assumptions about inputs and state vari-
ables are made explicit when defined in the for-
mal notation.



e Exposes flaws: NASA’s project exposed a signif-
icant number of flaws in the Shuttle subsystem
requirements.

Here, formalisation had a similar effect on the De-
coy PIDS. For instance the description of the phases
was dramatically simplified when events were chosen
to complete their description in the formalism. Also,
the implicit assumptions about margins for error on
demanded values were exposed by pursuing feasible
statements of the requirements. Several flaws were
also exposed by formalisation.

8.3 Probabilistic requirements

Probabilistic requirements were not formalised in this
project due to the lack of a sufficiently well under-
stood formalism. However, much work exists in this
area. For instance, the Probabilistic Duration Calcu-
lus (PDC) (Hung & Chaochen 1999) for dealing with
dependability requirements (that the probability for
undesirable but unavoidable behaviour of a system
be below a certain limit) uses probabilistic automata
to model imperfect implementations and then defines
the probability that a system satisfies a DC formula.
Should this approach be applicable to TIC, it is likely
to provide a semantic basis for formalising the de-
pendability requirements of the Decoy.

9 Conclusion

This article presents an overview of TIC and gives

Cereone, A. (2001), Axiomatisation of an interval cal-
culus for theorem proving, in ‘Computing: The
Australasian Theory Symposium, (CATS 2001)’.

Chaochen, Z., Hoare, C. A. R. & Ravn, A. P. (1991),
‘A calculus of durations’, Information Processing
Letters 40(5), 269-276.

Chaochen, Z., Ravn, A. P. & Hansen, M. R. (1993),
An extended duration calculaus for hybrid real-
time systems, in R. L. Grossman, A. Nerode,
A. P. Ravnand & H. Rischel, eds, ‘Hybrid Sys-
tems’, Vol. 736 of LNCS, Springer-Verlag.

Crow, J. & Di Vito, B. (1998), ‘Formalizing space
shuttle software requirements: Four case stud-
ies’, ACM Transactions on Software Engineering
and Methodology 7(3), 296-332.

Department of Defense (1985), MIL-STD-490A,
Specification Practices.

Easterbrook, S., Lutz, R. R., Covington, R., Kelly, J.,
Ampo, Y. & Hamilton, D. (1998), ‘Experiences
using lightweight formal methods for require-
ments modeling’, Software Engineering 24(1), 4
14.

Fidge, C. J., Hayes, I. J. & Mahony, B. P. (1998),
Defining differentiation and integration in Z,
Technical Report 98-09, Software Verification
Research Centre, School of Information Tech-
nology, The University of Queensland, Brisbane
4072, Australia.

examples of the formalism in application. It also ex-
plains how formalisation motivated specific changes
to the requirements. The improved readability and
structure of the revised PIDS, combined with the min-
imal cost gained by using formal specification with
review, suggest that the Decoy PIDS reformulation

Fidge, C. J., Hayes, 1. J., Martin, A. P. & Waben-
horst, A. K. (1998), A set theoretic model for
real-time specification and reasoning, in ‘Mathe-
matics of Program Construction (MPC 98)’, Vol.
1422 of LNCS, Springer-Verlag, pp. 188-206.

project was cost-effective. Opportunities for tool sup-
port are discussed and a brief survey of related work
is presented.
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